OpenAI-Gym-自定义环境的要点

  |  

摘要: OpenAI gym 中自定义环境入门

【对算法,数学,计算机感兴趣的同学,欢迎关注我哈,阅读更多原创文章】
我的网站:潮汐朝夕的生活实验室
我的公众号:算法题刷刷
我的知乎:潮汐朝夕
我的github:FennelDumplings
我的leetcode:FennelDumplings


在文章 OpenAI-Gym入门 中,我们以 CartPole-v1 环境为例学习了 OpenAI Gym 的基本用法。在文章 OpenAI-Gym神经网络策略及其训练 中,我们依然是以 CartPole-v1 为例,学习了策略梯度算法及其实现,并用 Keras 实际训练了一个神经网络策略。

在实际业务场景中,我们需要自己实现环境,也就是继承 gym.Env,然后重新实现 reset, step, render 等函数。本文依然以 CartPole-v1 为例,看一下环境是怎么写的。后面自己实现环境的时候可以以此为基础进行改动。

首先我们找到 CartPole-v1 环境的代码,位置为 gym 目录下的envs/classic_control/cartpole.py,代码见最后。

该文件定义了环境类 CartPoleEnv, 方法有四个

1
2
3
4
seed()
reset()
render()
step()

下面我们分别看 reset(), render() 和 step() 这三个方法

reset()

在强化学习中,智能体要通过多次尝试来积累经验,从中学到各种状态下哪个行动最好。一次尝试称为一个 episode,每次尝试都要到达终止状态。

一次尝试结束后,智能体需要从头开始,因此智能体需要有初始化的功能。

reset() 的源代码如下

1
2
3
4
5
6
7
def reset(self):
# 初始化环境的状态
self.state = self.np_random.uniform(low=-0.05, high=0.05, size=(4,))
# 设置当前步数为 None
self.steps_beyond_done = None
# 返回环境的初始化状态
return np.array(self.state)

这里的 self.np_random 是在 seed() 方法中初始化的,代码如下

1
2
3
4
5
from gym.utils import seeding

def seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]

render()

render() 类似于一个图像引擎,用于显示环境中的物体图像。

首先导入rendering模块,利用rendering模块中的画图函数进行图形的绘制。

然后用 cart = rendering.FilledPolygon() 创建小车,然后给 cart 添加平移和旋转属性。

render() 的源代码如下

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
def render(self, mode='human'):
screen_width = 600
screen_height = 400

world_width = self.x_threshold * 2
scale = screen_width/world_width
carty = 100 # TOP OF CART
polewidth = 10.0
polelen = scale * (2 * self.length)
cartwidth = 50.0
cartheight = 30.0

if self.viewer is None:
from gym.envs.classic_control import rendering
self.viewer = rendering.Viewer(screen_width, screen_height)
l, r, t, b = -cartwidth / 2, cartwidth / 2, cartheight / 2, -cartheight / 2
axleoffset = cartheight / 4.0
cart = rendering.FilledPolygon([(l, b), (l, t), (r, t), (r, b)])
self.carttrans = rendering.Transform()
cart.add_attr(self.carttrans)
self.viewer.add_geom(cart)
l, r, t, b = -polewidth / 2, polewidth / 2, polelen - polewidth / 2, -polewidth / 2
pole = rendering.FilledPolygon([(l, b), (l, t), (r, t), (r, b)])
pole.set_color(.8, .6, .4)
self.poletrans = rendering.Transform(translation=(0, axleoffset))
pole.add_attr(self.poletrans)
pole.add_attr(self.carttrans)
self.viewer.add_geom(pole)
self.axle = rendering.make_circle(polewidth/2)
self.axle.add_attr(self.poletrans)
self.axle.add_attr(self.carttrans)
self.axle.set_color(.5, .5, .8)
self.viewer.add_geom(self.axle)
self.track = rendering.Line((0, carty), (screen_width, carty))
self.track.set_color(0, 0, 0)
self.viewer.add_geom(self.track)

self._pole_geom = pole

if self.state is None:
return None

# Edit the pole polygon vertex
pole = self._pole_geom
l, r, t, b = -polewidth / 2, polewidth / 2, polelen - polewidth / 2, -polewidth / 2
pole.v = [(l, b), (l, t), (r, t), (r, b)]

x = self.state
cartx = x[0] * scale + screen_width / 2.0 # MIDDLE OF CART
self.carttrans.set_translation(cartx, carty)
self.poletrans.set_rotation(-x[2])

return self.viewer.render(return_rgb_array=mode == 'rgb_array')

step()

该函数输入动作 a,输出下一步的状态,回报,是否达成终止状态,额外信息。

该函数描述了智能体与环境交互的所有信息。在函数中,一般用智能体的物理学模型计算下一步的状态和回报,判断是否达到终止状态。

总结

本文我们通过 CartPole-v1 环境,了解了一个环境需要定义哪些东西。后面我们尝试以此为基础自定义一个元胞自动机的环境。

CartPole-v1 环境的代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
"""
Classic cart-pole system implemented by Rich Sutton et al.
Copied from http://incompleteideas.net/sutton/book/code/pole.c
permalink: https://perma.cc/C9ZM-652R
"""

import math
import gym
from gym import spaces, logger
from gym.utils import seeding
import numpy as np


class CartPoleEnv(gym.Env):
"""
Description:
A pole is attached by an un-actuated joint to a cart, which moves along
a frictionless track. The pendulum starts upright, and the goal is to
prevent it from falling over by increasing and reducing the cart's
velocity.

Source:
This environment corresponds to the version of the cart-pole problem
described by Barto, Sutton, and Anderson

Observation:
Type: Box(4)
Num Observation Min Max
0 Cart Position -4.8 4.8
1 Cart Velocity -Inf Inf
2 Pole Angle -0.418 rad (-24 deg) 0.418 rad (24 deg)
3 Pole Angular Velocity -Inf Inf

Actions:
Type: Discrete(2)
Num Action
0 Push cart to the left
1 Push cart to the right

Note: The amount the velocity that is reduced or increased is not
fixed; it depends on the angle the pole is pointing. This is because
the center of gravity of the pole increases the amount of energy needed
to move the cart underneath it

Reward:
Reward is 1 for every step taken, including the termination step

Starting State:
All observations are assigned a uniform random value in [-0.05..0.05]

Episode Termination:
Pole Angle is more than 12 degrees.
Cart Position is more than 2.4 (center of the cart reaches the edge of
the display).
Episode length is greater than 200.
Solved Requirements:
Considered solved when the average return is greater than or equal to
195.0 over 100 consecutive trials.
"""

metadata = {
'render.modes': ['human', 'rgb_array'],
'video.frames_per_second': 50
}

def __init__(self):
self.gravity = 9.8
self.masscart = 1.0
self.masspole = 0.1
self.total_mass = (self.masspole + self.masscart)
self.length = 0.5 # actually half the pole's length
self.polemass_length = (self.masspole * self.length)
self.force_mag = 10.0
self.tau = 0.02 # seconds between state updates
self.kinematics_integrator = 'euler'

# Angle at which to fail the episode
self.theta_threshold_radians = 12 * 2 * math.pi / 360
self.x_threshold = 2.4

# Angle limit set to 2 * theta_threshold_radians so failing observation
# is still within bounds.
high = np.array([self.x_threshold * 2,
np.finfo(np.float32).max,
self.theta_threshold_radians * 2,
np.finfo(np.float32).max],
dtype=np.float32)

self.action_space = spaces.Discrete(2)
self.observation_space = spaces.Box(-high, high, dtype=np.float32)

self.seed()
self.viewer = None
self.state = None

self.steps_beyond_done = None

def seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]

def step(self, action):
err_msg = "%r (%s) invalid" % (action, type(action))
assert self.action_space.contains(action), err_msg

x, x_dot, theta, theta_dot = self.state
force = self.force_mag if action == 1 else -self.force_mag
costheta = math.cos(theta)
sintheta = math.sin(theta)

# For the interested reader:
# https://coneural.org/florian/papers/05_cart_pole.pdf
temp = (force + self.polemass_length * theta_dot ** 2 * sintheta) / self.total_mass
thetaacc = (self.gravity * sintheta - costheta * temp) / (self.length * (4.0 / 3.0 - self.masspole * costheta ** 2 / self.total_mass))
xacc = temp - self.polemass_length * thetaacc * costheta / self.total_mass

if self.kinematics_integrator == 'euler':
x = x + self.tau * x_dot
x_dot = x_dot + self.tau * xacc
theta = theta + self.tau * theta_dot
theta_dot = theta_dot + self.tau * thetaacc
else: # semi-implicit euler
x_dot = x_dot + self.tau * xacc
x = x + self.tau * x_dot
theta_dot = theta_dot + self.tau * thetaacc
theta = theta + self.tau * theta_dot

self.state = (x, x_dot, theta, theta_dot)

done = bool(
x < -self.x_threshold
or x > self.x_threshold
or theta < -self.theta_threshold_radians
or theta > self.theta_threshold_radians
)

if not done:
reward = 1.0
elif self.steps_beyond_done is None:
# Pole just fell!
self.steps_beyond_done = 0
reward = 1.0
else:
if self.steps_beyond_done == 0:
logger.warn(
"You are calling 'step()' even though this "
"environment has already returned done = True. You "
"should always call 'reset()' once you receive 'done = "
"True' -- any further steps are undefined behavior."
)
self.steps_beyond_done += 1
reward = 0.0

return np.array(self.state), reward, done, {}

def reset(self):
self.state = self.np_random.uniform(low=-0.05, high=0.05, size=(4,))
self.steps_beyond_done = None
return np.array(self.state)

def render(self, mode='human'):
screen_width = 600
screen_height = 400

world_width = self.x_threshold * 2
scale = screen_width/world_width
carty = 100 # TOP OF CART
polewidth = 10.0
polelen = scale * (2 * self.length)
cartwidth = 50.0
cartheight = 30.0

if self.viewer is None:
from gym.envs.classic_control import rendering
self.viewer = rendering.Viewer(screen_width, screen_height)
l, r, t, b = -cartwidth / 2, cartwidth / 2, cartheight / 2, -cartheight / 2
axleoffset = cartheight / 4.0
cart = rendering.FilledPolygon([(l, b), (l, t), (r, t), (r, b)])
self.carttrans = rendering.Transform()
cart.add_attr(self.carttrans)
self.viewer.add_geom(cart)
l, r, t, b = -polewidth / 2, polewidth / 2, polelen - polewidth / 2, -polewidth / 2
pole = rendering.FilledPolygon([(l, b), (l, t), (r, t), (r, b)])
pole.set_color(.8, .6, .4)
self.poletrans = rendering.Transform(translation=(0, axleoffset))
pole.add_attr(self.poletrans)
pole.add_attr(self.carttrans)
self.viewer.add_geom(pole)
self.axle = rendering.make_circle(polewidth/2)
self.axle.add_attr(self.poletrans)
self.axle.add_attr(self.carttrans)
self.axle.set_color(.5, .5, .8)
self.viewer.add_geom(self.axle)
self.track = rendering.Line((0, carty), (screen_width, carty))
self.track.set_color(0, 0, 0)
self.viewer.add_geom(self.track)

self._pole_geom = pole

if self.state is None:
return None

# Edit the pole polygon vertex
pole = self._pole_geom
l, r, t, b = -polewidth / 2, polewidth / 2, polelen - polewidth / 2, -polewidth / 2
pole.v = [(l, b), (l, t), (r, t), (r, b)]

x = self.state
cartx = x[0] * scale + screen_width / 2.0 # MIDDLE OF CART
self.carttrans.set_translation(cartx, carty)
self.poletrans.set_rotation(-x[2])

return self.viewer.render(return_rgb_array=mode == 'rgb_array')

def close(self):
if self.viewer:
self.viewer.close()
self.viewer = None

Share