复变函数总览

  |  

摘要: 柯西的积分理论;魏尔斯特拉斯的级数理论;黎曼的几何理论

【对数据分析、人工智能、金融科技、风控服务感兴趣的同学,欢迎关注我哈,阅读更多原创文章】
我的网站:潮汐朝夕的生活实验室
我的公众号:潮汐朝夕
我的知乎:潮汐朝夕
我的github:FennelDumplings
我的leetcode:FennelDumplings


复变函数理论基础是 19 世纪三位数学家柯西(Cauchy)、魏尔斯特拉斯(Weierstrass)和黎曼(Riemann)奠定的,发展到今天已经非常成熟,在数学其它分支(例如微分方程,积分方程,概率论等)和物理中有重要应用。

如果大学学的事电子信息的话,一般会把复变函数、数学物理方程、积分变换放到一个 4 学分的课里讲,我当时也是这么学的,复变函数和积分变换都留下了笔记,后来考研的时候也用到了。复变函数-本科时期笔记(2012)积分变换-本科时期笔记(2012)

现在回过头来看复变函数的话,它主要包含三大部分内容:柯西的积分理论;魏尔斯特拉斯的级数理论和黎曼的几何理论。内容非常丰富而且很基础,这里推荐史济怀写的《复变函数》,把三大内容都覆盖到了,并且条理非常好,适合回炉的时候看。


Share