摘要: 本文介绍一些线性代数的资源
【对算法,数学,计算机感兴趣的同学,欢迎关注我哈,阅读更多原创文章】
我的网站:潮汐朝夕的生活实验室
我的公众号:算法题刷刷
我的知乎:潮汐朝夕
我的github:FennelDumplings
我的leetcode:FennelDumplings
MIT 18.06
讲义:
Introduction to Linear Algebra 5th
MIT18.06 的 TextBook。
主要内容:
- Introduction to vectors
- Solving Linear Equations
- Vector Spaces and Subspaces
- Orthogonality
- Determinants
- Eigenvalues and Eigenvectors
- The Singular Value Decomposition
- Linear Transformations
- Complex Vectors and Matrices
- Applications
- Numerical Linear Algebra
- Linear Algebra in Probability and Statistics
MIT18.065
Matrix Methods in Data Analysis, Signal Processing, and Machine Learning
Linear Algebra and Learning From Data
MIT18.065 的 TextBook。
7个章节:
- 线性代数重点
- 计算大型矩阵
- 低秩与压缩感知
- 特殊矩阵
- 概率与统计
- 优化
- 从数据中学习
2020线性代数新视野
主要内容:
- 线性代数的新方法
- 矩阵的列空间与向量空间中的基
- 线性代数的 Big Picture
- 正交向量
- 特征值与特征向量
- 奇异值与奇异向量
沉浸式线性代数
主要内容:
- Chapter 1: Introduction
How to navigate, notation, and a recap of some math that we think you already know.
- Chapter 2: Vectors
The concept of a vector is introduced, and we learn how to add and subtract vectors, and more.
- Chapter 3: The Dot Product
A powerful tool that takes two vectors and produces a scalar.
- Chapter 4: The Vector Product
In three-dimensional spaces you can produce a vector from two other vectors using this tool.
- Chapter 5: Gaussian Elimination
A way to solve systems of linear equations.
- Chapter 6: The Matrix
Enter the matrix.
- Chapter 7: Determinants
A fundamental property of square matrices.
- Chapter 8: Rank
Discover the behaviour of matrices.
- Chapter 9: Linear Mappings
Learn to harness the power of linearity…
- Chapter 10: Eigenvalues and Eigenvectors
This chapter has a value in itself.
交互式线性代数
主要内容:
- Systems of Linear Equations: Algebra
- Systems of Linear Equations
- Row Reduction
- Parametric Form
- Systems of Linear Equations: Geometry
- Vectors
- Vector Equations and Spans
- Matrix Equations
- Solution Sets
- Linear Independence
- Subspaces
- Basis and Dimension
- Bases as Coordinate Systems
- The Rank Theorem
- Linear Transformations and Matrix Algebra
- Matrix Transformations
- One-to-one and Onto Transformations
- Linear Transformations
- Matrix Multiplication
- Matrix Inverses
- The Invertible Matrix Theorem
- Determinants
- Determinants: Definition
- Cofactor Expansions
- Determinants and Volumes
- Eigenvalues and Eigenvectors
- Eigenvalues and Eigenvectors
- The Characteristic Polynomial
- Similarity
- Diagonalization
- Complex Eigenvalues
- Stochastic Matrices
- Orthogonality
- Dot Products and Orthogonality
- Orthogonal Complements
- Orthogonal Projection
- Orthogonal Sets
- The Method of Least Squares