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Idiot’s Bayes-Not So Stupid After All? 

David J. Hand’ and Kerning Yu2 
IDepartment of Mathematics, Imperial College, London, UK. E-mail: d.j.hand@ ic.ac.uk 
2University of Plymouth, UK 

Summary 

Folklore has it that a very simple supervised classification rule, based on the typically false assumption 
that the predictor variables are independent, can be highly effective, and often more effective than 
sophisticated rules. We examine the evidence For this, both empirical, as observed in real data applications, 
and theoretical, summarising explanations for why this simple rule might be effective. 

Key words: Supervised classification: Independence model; Nave Bayes; Simple Bayes; Diagnosis. 

1 Introduction 

Given the measurement vectors for a sample of objects, along with the labels of classes to which 
those objects belong, supervised classification methods seek to construct classijication rules which 
will permit new objects to be classified into classes purely on the basis of their measurement vec- 
tors. The word ‘supervised’ refers to the fact that the elements of the original sample (the ‘design’ 
or ‘training’ sample) have known class memberships-these were determined by a ‘supervisor’ or 
‘teacher’. 

There are two broad paradimoms through which such rules may be constructed. These have been 
termed the diagnostic paradigm and the sampling paradigm (Dawid, 1976). Denote the vector of 
measurements of an object by x = ( X I ,  . . . , X d )  and its class by i ( i  = 1, . . . , c ) .  Then the diagnostic 
paradigm focuses attention directly on the probabilities P ( i  Ix), the probability that an object belongs 
to class i given that it has measurement vector x ,  and estimates these probabilities from t h ~  design 
sample. In contrast, the sampling paradip  uses the design sample to obtain estimates P ( x f i )  of 
P ( x l i ) ,  the distribution of x for objects from class i ,  and estimates $ ( i )  of P ( i ) ,  i = 1, . :. , c ,  the 
probabilities that a member of class i will occur, and then combines these via Bayes theorem to yield 
estimates of the probabilities P(ilx),  $ ( i Ix )  a @ ( x J i ) $ ( i ) .  

Perhaps the most familiar examples of these two paradigms are logistic discriminant analysis and 
linear discriminant analysis, respectively corresponding to the diagnostic and sampling paradigms 
(although the original derivation of linear discriminant analysis was in terms of separability between 
the classes-that is, the diagnostic paradigm). Not surprisingly, if any assumptions made about the 
individual class distributions of x in the sampIing paradigm are correct, then the extra information 
this implies one has about the problem means that more accurate estimates result (Efron, 1975). On 
the other hand, if these assumptions are incorrect, then they can lead to inaccurate estimators. We 
expand on this below. 

There is also a third possibility: to estimate the overall joint probability, P(i ,  x), from which the 
conditional probabilities P ( i  Ix) can be obtained easily. There are some subtleties associated with this 
approach, pointed out and illustrated by, for example, Friedman et al. (1 997) and Kontkanen et al. 
(1999). In particular, a global criterion of goodness of fit of a model for P(i ,  X )  will not necessarily 
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be optimal for a particular purpose, which is predictive classification in our case, especially if the 
accuracy is assessed by a different loss function. For example, likelihood is a common loss function 
for fitting overall models, whereas 0/1 loss or error rate is common in assessing classification rules. 
Issues of criteria for assessing, selecting, and estimating parameters of classification rules are dis- 
cussed in detail in Hand (1997). 

In this paper we are chiefly concerned with a particular type of model based on the sampling 
paradigm. In order to apply the sampling paradigm, we need to estimate the multivariate class- 
conditional distributions of x. Books on statistical pattern recognition (e.g. Hand, 1981; McLachlan, 
1992; Ripley, 1996; Hand, 1997; Webb, 1999) describe such methods, of which there are many. At 
one extreme we have nonparametric methods, such as kernel approaches (e.g. Hand, 1982). which 
make very weak assumptions about the class-conditional distributions. Towards the other extreme, 
we have methods which make strong parametric assumptions about the form of the distributions, 
such as linear discriminant analysis which assumes that the distributions are ellipsoidal-multivariate 
normal being the most familiar example. In ellipsoidal distributions the overall probability function 
P (x l i )  factorises into terms which involve only pairs of the X,, so that higher order interactions are 
assumed to be zero. Of course, such a gross factorisation of the class-conditional distribution is not 
necessary, and intermediate factorisations are possible, especially if one has some prior knowledge of 
the form that such a factorisation might take. In this paper, however, we are concerned with a model 
which makes an even more severe factorisation, assuming that P ( x l i )  will factorise into a product of 
its univariate marginals-that the components of x are independent: P ( x l i )  = nf=, P (x,  ti). Clearly 
this model is likely to be unrealistic for most probIems. Moreover, it is easy to invent examples where 
this model is incorrect. Despite this, this model has a long and successful history. The aim of this 
paper is to look at that history, and to examine why the model so often performs well. 

This model, which assumes that the measurements are independent within each class, has gone 
under various names. Because of the use of Bayes theorem to deduce the class membership probabil- 
ities, the word ‘Bayes’ often figures in the names. Names which have been used to describe it include 
Idiot’s Buyes (Ohmann et ul., 1988), nafve Buyes (Kononenko. 1990). simple Buyes (Gammerman 
& Thatcher, 1991), and independence Euyes (Todd Bi Stamper, 1994 )-the first two in recognition 
of the fact that its basic simplicity, ignoring interactions which might almost always be expected 
to exist, might be regarded as ndive. Sometimes the model is described as assuming conditional 
independence, refemng to the conditioning on the class indicator. 

The early literature on machine diagnosis (as well as some which is not so early), demonstrated 
some misunderstanding of the necessity of the independence assumption. For example, Barker & 
Bishop (1970) say ‘. . . (in) statistical methods based on Bayes’ theorem. . . it is necessary to assume 
that symptoms are independent’, and O’Connor & Sox (1991) comment ‘implicit in Bayes theo- 
rem is the assumption of conditional independence’. Given the computational burden of including 
dependencies, one can perhaps have some sympathy with this mistake being made before the era 
of powerful computers, even though Fisher showed how to relax the assumption as early as 1936 
(Fisher, 1936). One has less sympathy with more recent occurrences, though the fact that ‘diagnostic 
tests are often used in sequence’ (O’Connor & Sox, 1991) may partly explain why people make it. 

In Section 2 we examine why the independence model might be expected to perform well, despite 
superficial theoretical arguments to the contrary. In Section 3 we look at how the model may be 
extended. Section 4 reviews some additional comparative studies of the method. Section 5 presents 
some summarising and concluding remarks. 

Before commencing, however, some clarification of the role of the word ‘Bayes’ in this context is 
appropriate. In work on supervised classification methods it has become standard to refer to the P ( i )  
as the class i priorpmbubility, because this gives the probability that an object will belong to class 
i prior to observing any information about the object. Combining the prior with P ( x J i ) ,  as shown 
above, gives the posterior probability, after having observed x. This combination is effected via 
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Bayes theorem, and it is because of this that ‘Bayes’ is used in the name of these methods. (Although 
it appears to be used widely only in methods based on the independence assumption for the P ( x ( i ) ,  
which possibly explains some of the misunderstandings indicated above.) The important point for us 
is that no notion of subjective probability is introduced: the methods are not ‘Bayesian’ in the formal 
statistical sense. Perhaps it would be better to say ‘not necessarily Bayesian in the formal sense’, 
since there is no reason why this need be so, and in other work we are developing ‘Bayesian’ Bayes 
independence classifiers. In this paper, following almost all of the work on the idiot’s Bayes method, 
we adopt a frequentist interpretation. 

2 Why the Assumption is Not So Absurd 

The fact that the assumption of independence is clearly almost always wrong (naturally occurring 
covariance matrices are rarely diagonal) has led to a general rejection of the crude independence 
model in favour of more complicated alternatives, at least by researchers knowledgeable about 
theoretical issues. And yet practical comparisons have often shown it to perform surprisingly well. 
For example, in a study of head injury data, Titterington et al. (198 1) found that the independence 
model yielded the overall best result. Similarly, in a study comparing classifiers for predicting 
breast cancer recurrence, Mani, Pazzani & West (1997) found that the independence Bayes model 
did best. Moreover, in studies of heart disease (Russek, Kronmal & Fisher, 1983), thyroid disease 
(Nordyke, Kulikowslu & Kulikowski, 1971), liver disease (Croft & Macho], 1987). abdominal pain 
(Gammerman & Thatcher, 1991; Todd & Stamper, 1994; Ohmann et al., 1996), and dyspepsia (Fox, 
Barber & Bardhan, 1980) the independence model was a good choice. The phenomenon is not 
limited to medicine. Other studies which found that the independence Bayes method performed 
very well, often better than the alternatives, include Cestnik. Kononenko & Bratko (1987). Clark & 
Niblett (1989). Cestnik (1990), Langley, Iba & Thompson (1992). Pazzani, Muramatsu & Billsus 
(1996), Friedman, Geiger & Goldszmidt (1997). and Domingos & Pazzani (1997). Monte Carlo 
studies have also yielded good results with the independence model, even when the assumption is 
manifestly false (see, for example, Ott & Kronmal, 1976). There seem to be very few studies which 
report poor performance for the independence Bayes model in comparison with other methods. 
One is the STATLOG project, for which (King, Feng & Sutherland, 1995) the independence Bayes 
model appeared ‘near the bottom of the performance table for almost all data sets.’ (Even so, for the 
‘heart data’ in that study, the independence model was the best.) The fact that this study is so out of 
tune with most others does require explanation. A hint might be obtained from those researchers’ 
perspective of what the ndive Bayes model is. Michie, Spiegelhalter & Taylor (1994, p.40), in a 
review of the STATLOG project, say ‘if an attribute takes a continuous value, the usual procedure 
is to discretise the interval and to use the appropriate frequency of the interval, although there is an 
option to use the normal distribution to calculate probabilities’. This, of course, is a crude version of 
the approach, and it may result in discriminating information being sacrificed reIative to information 
in the original continuous variables. It is not necessary to discretise the variables. Of course, this 
is not the only study showing situations where the independence Bayes model does not perform as 
well as alternatives (e.g. Heckeman & Nathwani, 1992). It would be extraordinary if it were. But 
the surprising point is that the simple independence model performs so well so often. 

Hand (1992) summarised some reasons why one might expect the independence Bayes model to 
do well. One important reason is that it requires fewer parameters to be estimated than alternative 
methods which seek to model interactions in the individual class-conditional x distributions. This 
matters because models based on fewer parameters will tend to have a lower variance for the estimates 
of P( i  1x1. This can be seen from the following general result given by Altham (1984). Suppose that 
a model is based on a vector of p parameters, a, and let ,Ll = P ( a )  be a vector of q parameters, 
defined as functions of the parameters a, with q < p.  (In our case, /3 will be the subset of a which 
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refers to the univariate distributions, ignoring interactions.) Let (11 be the vector yielding LI, the 
maximum likelihood for the model, and let a2 be the vector yielding Lz, the maximum likelihood 
for the model under the constraints implied by the relations @ = @(a). Then, for large sample sizes, 
if f(a) is an arbitrary function of a, var (f (a2)) 5 var (f ((YI)). 

This fact may underlie the results of Russek, Kronmal & Fisher (1983), who describe a study to 
predict which heart disease patients would die within six months. When a subset of six variables was 
used, the independence model performed poorly relative to the other methods (linear discriminant 
analysis and nonparametric methods), but when all 22 variables were used, it performed well. With 
22 variables any method more sophisticated than assuming independence could have a large number 
of parameters to estimate. (We present another possible explanation for the difference between these 
two models below.) 

Although the variance of the estimates i ( i l x )  of the P ( i  Ix), as different design samples are taken, 
may be lower in the simple independence model than the variance of a complex alternative, the 
independence model is also likely to yield biased probability estimates for much of the x space, so 
that E[&iIx)] # P(i lx) ,  where the expectation is over different design samples. One manifestation 
of this occurs in the phenomenon of ‘probability overshoot’ or ‘muItipie counting’, which can be 
illustrated as follows. 

To take an extreme case, suppose that the variables are perfectly correlated, so that, for any given 
class, the probability that the rth variable takes the value x is the same for all r .  The true odds ratio, 
P ( i I x ) / P ( j l x ) ,  is then given by 

when x = ( x ,  x ,  . . . , x ) ,  and is undefined when the components of x are different (which does not 
matter, since this never occurs if the components of x are perfectly correlated). 

In contrast, the independence model is based on estimating the odds ratio P ( i  I x ) / P ( j  1x1 assuming 
independence of the components of x within each class. That is, it is based on estimating 

Comparison of (1) with (3) shows that, when the ratio P(x l i ) /P (x l  j )  is less than I, the indepen- 
dence model will tend to underestimate P ( i [ x ) / P ( j l x ) ,  and when the ratio P ( x l i ) / P ( x l j )  is greater 
than 1 the independence model will tend to overestimate P ( i  I x ) / P ( j  Ix)- Furthermore, it can be seen 
that the phenomenon will be more marked the more variables there are (the larger is d in Equation 
3). That is, the independence model will have a tendency to be too confident in its predictions and 
will tend to produce modes at the extremes 0 and 1 (Cornfield, 1971; Cornfield et al., 1973; Ott 
& Kronmal, 1976; Russek, Kronmal & Fisher, 1983). Russek et al. (1983) also discuss theoretical 
explanations for this phenomenon. 

Sometimes the reduction in variance resulting from the relatively few parameters involved in the 
independence model will more than compensate for any increase in bias, and we suspect that this 
often occurs in practice and is one explanation for the frequent good performance of the method. 
Note, however, that if simple classification is the aim, then bias may not matter: the best achievable 
classification results will be obtained provided i ( i I x )  > b ( j l x )  whenever P(iIx)  > P ( j l x )  (see, 
for example, Friedman, 1997) and bias, even severe bias, will not matter provided it is in the right 
direction. 

In summary, the independence Bayes method may beat flexible highly parameterised alternatives 
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when small sample sizes are involved because of the relatively low variance of its estimates of P ( i  Ix), 
and may in fact also do well when quite large sample sizes are involved because its relatively large 
bias may not matter over most of the possible patterns (Kohavi, 1996). 

In many problems the variables undergo a selection process before being combined to yield a 
classification (if it is expensive to measure the variables, for example, or in personnel classification 
or psychiatric screening, where one wants to avoid aslung too many questions). Examples are the 
stepwise forward, backwards, and combined methods common in classical discriminant analysis. 
The aim is to remove redundant variables, so that superfluous variables are not measured, and also so 
that unnecessary parameters do not have to be estimated. Typically (but not necessarily-see below) 
this process leads to the elimination of variables which are highly correlated with those already 
included-such variables are less likely to contribute much additional classification information. 
This means that, in real problems, there will be a tendency towards selecting weakly correlated 
variables, so that the independence model may be quite a realistic model in many real situations. 

On the other hand, we note that, in contrast to the above, the variable selection process could also 
mean that some comparative studies are perhaps unfairly biased against the independence model. 
In particular, if the variable selection is made on the basis of performance of a model which makes 
some allowance for dependencies, then it is likely that the selected variables will do better with such 
a model than with a model which assumes independence. This is another possible explanation for the 
result of Russek et al. (1 983) mentioned above, in which an independence model based on a selected 
six variables (in fact, selected using linear discriminant analysis) did poorly, while one based on all 
22 variables did well. To make fair comparisons, the variables for the independence model should 
be selected independently. In fact, earlier and less sophisticated studies did do exactly this (e.g., 
Goldberg, 1972). 

It is also possible that the independence model will yield the optimal separating surface (subject to 
sampling fluctuations) even if the variables are correlated. An example is given by two multivariate 
normal classes with equal (non-diagonal) covariance matrices, and with the vector of the difference 
between the means lying parallel to the first principal axis. Note, however, that even though the 
population decision surface is optimal, and even though the estimate of P ( i ( x )  may be accurate, the 
estimates of the probability density functions for each class separately, based on the independence 
assumption, may be very wrong. 

In a recent paper, Domingos & Pazzani (1997) examine conditions under which one might expect 
the independence Bayes model to do well for categorical predictor variables. They comment (page 
106) that ‘the simple Bayesian classifier is limited in expressiveness in that it can only create linear 
frontiers’. In fact this is not true-unless they are assuming highly restricted marginal forms. For 
example, if on one of the variables the marginal for one population has the form of a two component 
mixture, with well separated means, while the other has a distribution which lies between these two 
components, then the decision surface will be nonlinear. Even simpler, if the two populations have 
normal marginals, but with different variances, then the decision surface will be quadratic. These 
authors also comment on the point noted above, that for classzfication, accurate probability estimates 
are not required-all that need be preserved is the rank order. 

3 Modifications to the Basic Independence Model 

The basic independence Bayes model has been modified in various ways in attempts to improve its 
performance (usually interpreted as classification accuracy as measured by a 0/1 loss function). Of 
course, these modifications sometimes mean that the elegance, computational simplicity, and other 
advantages (e.g. ease of handling incomplete vectors) can be lost. In this section, we examine these 
modifications. 

Hilden & Bjerregaard (1976) suggested making some allowance for dependence by shrinking 
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the marginal probability estimates towards zero by raising them to a power B less than 1. This 
suggestion is based on the probability overshoot property described in Section 2. Tinerington et af. 
(198 1) used this approach in a comparison of a wide range of discrimination methods applied to a 
data set describing head injuries. The data were categorical. They estimated the separate marginal 
distributions of the X r  using multinomial estimators, but modified these slightly to rake into account 
the number of possible response categories in the variable (see Jeffreys, 1961; Bailey, 1964; Good, 
1965). Thus, for class i the probability that the rth variable Xr takes value x r ,  P ( X r  = xr l i ) ,  is 
estimated by 

so that 

where ni (Xr) is the number of design set elements from the ith class which fall in category X r  for 
variable r ,  Cr is the number of categories for variable r ,  and N,  (I) is the number of design set 
elements which have an observation on the rth variable (the paper describes application on a real 
data set which has missing values). If there are no missing values, the denominator is constant in 
each class. This basic form of estimator was then modified by raising it to the power B 

where B is a positive exponent less than 1. This is now a common form for cases when the predictors 
are categorical. Ths study examined several subsets of variables. In a subset of four ‘weakly depen- 
dent variables with appreciable missing data’ the independence models yielded the best performance. 
Even in a subset of four ‘highly dependent variables with little missing data’ the independence model 
was almost the best if assessed by logarithmic score. The best performance over all variable sets and 
methods used was produced by the independence model with B = 0.8. 

Thornton, Lilford & Newcombe (1991) also attempted to overcome the independence assumption 
by adjusting the odds ratios, in their case by rescaling the odds ratio using a factor which was a 
function of the false negative and false positive rates. They produced tables for the risks of fetal 
neural tube and ventral wall defects, based on this model. 

Mort elaborate attempts to overcome the independence assumption are based on including extra 
terms describing the relationship between the components of x-see, for example, Friedman, Geiger 
& Goldszmidt ( 1997). Of course, this means that the simpie form of the independence Bayes model is 
sacrificed. In fact, these particular authors approached things from the opposite direction, identifying 
weaknesses of the approach based on constructing an overall model of the joint distribution P ( i ,  x), 
and restricting themselves to models which included all the two way marginals of (x, i )  which had the 
class label as one component. This was motivated by comparisons of independence Bayes methods 
with more elaborate Bayesian belief networks constructed using the minimum description length 
(MDL) to choose the model (Rissanen, 1978). They found that, in some situations, the independence 
Bayes method did better, while in others the more elaborate models did better. They attributed the 
inconsistency to the choice of MDL as the model selection criterion, arguing that this is a global 
measure of goodness of fit, and not one which focuses on the conditional distribution of the class 
given the covariates (see also Kontkanen et af., 1999). This led them to explore the set of models, 
described above, in which the class identifier has edges in the Bayesian belief network linking it 
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to all components of x.  Broadly speaking, the extra complexity in these models did yield greater 
accuracy. 

As we have noted, adding extra edges to include some of the dependencies between the predictors 
in this way detracts from the elegant simplicity of the basic independence Bayes model. An alter- 
native generalisation, which remains within the mould of independence Bayes, has been explored 
by Ohmann et al. (1986), Langley & Sage (1994), Singh & Provan (1996), Kontkanen er al. (1999), 
and others, sometimes called ‘selective Bayesian classifiers’. They built independence Bayes model 
forms, but included a variable selection stage, so that their final model need not include all of the 
variables, with redundant variables being eliminated. Clearly, depending on the number of raw vari- 
ables and the relationships between them, this may lead to superior performance. In a similar vein, 
Crichton & Hinde (1988, 1989) used correspondence analysis to help to choose which variables, 
from a large potential set, should be included in an independence Bayes model. They went on to 
compare this approach with CART on a chest pain data set, finding that the independence Bayes 
model yielded superior performance. 

We have already noted that, for classification, our ultimate interest lies in comparing the distri- 
butions, and not in calculating their absolute values. Thus we will classify a point x by choosing 
the largest of the P ( i { x )  a F(i )F(xl i ) ,  where we assume (the basic independence Bayes model) 
that P(x1i) = nfXl P ( x r l i ) .  We can extend this model by supposing that each P ( x l i )  has the form 
P ( x J i )  = g ( x )  nf=l Q(xr l i ) .  where the g is an arbitrary factor which is common to all classes. 
Comparison between the P ( x l i )  is then equivalent to comparison between the nf=l Q ( x r l i ) ,  be- 
cause the g factor cancels (Hilden. 1984). Indeed, we do not even need to know what the g factor is. 
The difficulty here is that we cannot estimate the Q(x, l i )  directly from the marginals in the 
design set. However, if one estimates ratios (c.f. the diagnostic paradigm) then g cancels. To see how 
this compares with the straightforward independence model in more detail, *consider the following. 
From Equation 2, for the independence model, denoting estimates of P by P ,  we have 

For the more general form for F(xl i )  given by P ( x l i )  = g ( x )  nt=‘=, Q ( x r l i )  we have 

Note that in this formulation neither g nor the Q need be probability distributions; only their 
overall product is. This means that the second model includes the first (the simple independence 
model) as a specid case. Of course, it also means that one cannot estimate the Q factors from the 
marginal distributions, which is one of the attractive features of .the independence Bayes model. 
Instead an iterative approach is‘necessary. In fact, if one takes logarithms to expand the product as a 
sum, this reduces to logistic regression. This relationship between independence Bayes and logistic 
models is explored in more detail in Hand 8t Adams (2000). 

Although this paper describes frequentist approaches to using the independence Bayes model, 
there is no reason why full Bayesian approaches should not be used. Of course, since these involve 
combining multiple models according to the prior distributions of the parameters, the simpIicity of 
the basic independence Bayes model is again lost. On the other hand, as many studies have shown, 
this can yield improved predictive performance. Kontkanen er al. (2000) discuss such approaches. 

In recent years several general methods have been developed for improving the performance of 
classification rules. One of these, boosting (Freund & Schapire, 1996), involves iteratively building 
a series of model, each time weighting those design set points which have been misclassified by the 
previous version of the model, and then taking the final model as a weighted sum of the separate 
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models. Unfortunately, because it is a combination of independence models, the final result from 
this procedure sacrifices the interpretable simplicity of the basic independence Bayes model and the 
computational simplicity of a direct estimate from the marginal distributions. However, kdgeway et 
al. (1998) have developed a version which retains the interpretability. 

Both boosting and Bayesian model averaging can be regarded as ways of combining different 
classifiers to yield a single model. In these cases, all of the component models have the form of 
independence Bayes classifiers, but other authors have experimented with combining independence 
Bayes models with other forms. For example, Monti & Cooper (1999) have combined finite mixture 
models with independence Bayes methods. Of course, this loses the simple independence Bayes 
form. 

More generally, the independence model may be used as a base from which to introduce refinements 
in an attempt to produce more effective classification rules. An illustration is the work of Lowe & 
Webb (1990). who use the independence Bayes model as a starting point for a neural network model. 

For non-categorical variables, one can model the component marginal distributions in a wide 
variety of ways. The simplest would be to adopt some parametric form. However, given the likely 
high density of points consequent on the projection from the multivariate space to the marginals, more 
sophisticated nonparametric methods can be used. John & Langley (1993, for example, showed that 
improvement resulted if marginal Gaussian estimators were replaced by kernel estimators (yielding 
a generalised additive model) or discretised marginals. Dougherty. Kohavi & Sahami (1995) also 
reduced the continuous marginals by discretising them. 

4 Examples of Empirical Studies of the Independence Bayes Model 

A large number of studies use the independence model in investigations of the efficacy of auto- 
mated classification methods, often with particular application domains in mind. In many cases, the 
independence model is taken as a baseline, against which to compare the more sophisticated meth- 
ods, but in many studies it does surprisingly well. This section reviews a selection of such studies. 
A comprehensive review would probably be impossible, especially when one takes into account the 
range of branches of scientific literature which have contributed to these investigations, from the 
obvious ones of statistics and machine learning, through application domains such as medicine and 
engineering. 

Bailey (1964), in an early description of statistical methods for medical diagnosis, described the 
independence model. He also suggested ways (which have subsequently been explored, by others- 
see the general books on statistical pattern recognition listed in Section 1) for including dependencies 
between the variables. 

Boyle er al. (1966) used independence Bayes in an early investigation of machine diagnosis ap- 
plied to distinguishing between three classes of goitre. Unfortunately, the models that this paper 
compared were independencq Bayes with and without taking into account the priors of the classes (it 
was a very early study), so that the only conclusions which could be drawn were about the value of 
the methods for matching the clinicians’ predictions. The authors were aware of the independence 
assumption underlying their model, as well as the possibility that more than one of the diagnostic 
classes might occur together. 

Fryback (1978) compared the performance of the independence Bayes model applied to skull 
fracture data with the performance that would have been obtained had the variables really been 
conditionally independent given the observed marginals. This seems a rather odd comparison. He 
then relaxed the independence assumption to permit selected pairwise dependencies-resulting in 
improved performance using error rate. (Derived from an ROC curve, though he appears not to have 
used the positions on the ROC curve that lead to minimum error rate, which requires a projection 
operation-see Hand (1997) for details.) One interesting observation made in this study is that 
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‘the greater the number of variables used in the Bayesian calculations, the more the degradation of 
the model’s performance when the data violate conditional independence’. Fryback goes on to say 
‘When relatively few variables are used, the independent contributions of each toward making the 
final Bayesian diagnosis seem to outweigh the degradation in performance due to over weighting 
redundant information. As the variable set increases in size, the independent contribution gained 
by adding yet one more variable tends to be less than the detrimental effect of multiple counting 
its information already conveyed by other variables’. This is the probability overshoot phenomenon 
mentioned in Section 2. 

Crichton. Fryer & Spicer (1987) re-examined some of the data used in de Dombal’s pioneering 
work (e.g. de Dombal et al., 1972; de Dombal, 1991) with the objective of assessing the problems 
which arise from the independence assumption. They focused on the two class problem of distin- 
guishing between non-specific abdominal pain and specific abdominal pain, the latter meaning one 
of the diagnostic classes appendicitis, perforated peptic ulcer, small bowel obstruction, cholecystitis, 
pancreatitis, or diverticulitis. They found a marginal improvement in the test set error rate when the 
number of variables was reduced from 46 to 5 ,  using a stepwise selection procedure to maximise the 
proportion of design set cases correctly classified. This sort of phenomenon should be expected with 
any classifier, of course (see, for example, Hand (198 l), Chapter 6). because of the reduced variance 
consequent on reducing the number of parameters to be estimated, as described above. In the present 
situation, however, the method may be especially beneficial since it may lead to rejection of variables 
which substantially contravene the independence assumption. The definition of one of the classes 
as a mixture of specific disease classes might cause problems. This fundamentally heterogeneous 
class may be less susceptible to reasonable approximation by an independence model than might the 
individual components. 

Ohmann er al. (1988) remarked that ‘having a limited sample, choosing the Independence Bayes 
model and using many variables may well provide a better classification rule than keeping fewer 
variables and using a sophisticated model’. where they used Fisher’s linear discriminant analysis as 
an example of a sophisticated model. They compared the basic independence Bayes method, inde- 
pendence Bayes with an overall shrinkage factor as in the Titterington et al. (1981) study, a method 
which grouped the variables into pairs and allowed dependence within a pair but independence 
between pairs, a method which allowed all pairwise dependencies, and linear logistic regression 
applied to the diagnosis of upper gastro-intestinal bleeding. Interestingly, they report that ‘the good 
results reported in the literature [with the independence Bayes model] could not be achieved in our 
study, especially with many variables’. Their suggested explanations include the large number of 
pairwise interactions between the variables. They note that the predicted probabilities demonstrated 
the U-shaped distribution described above. Finally, ‘in our study, the model could be recommended 
only for the sets with few variables’. Interestingly, however, ‘for all sets of variables and all per- 
formance criteria, Independence Bayes with a global association factor produced the most reliable 
predictions’. 

Sutton (1989) presented a critical review of computer-aided diagnosis of acute abdominal prob- 
lems. He concluded that much of the improved patient management and outcome effects are due 
to the structured data collection methods and feedback which are a part of such investigations, 
rather than the automated diagnostic methods themselves (see also Wellwood & Spiegelhalter, 1989; 
Paterson-Brown et al., 1989; Gunn, 1991). and he pointed out many of the weaknesses of the early 
studies. However, despite writing as late as 1989, he claimed that Bayes formula assumes that the 
‘indicants are independent’. 

Gammerman & Thatcher (1991) compared the independence Bayes model with a model which 
included some symptom combinations and also the CART algorithm. Using error rate on an indepen- 
dent test set to assess the results, they found that the independence Bayes yielded best performance. 

In a comparative study of diagnostic programs for abdominal pain, Todd & Stamper (1994) said 
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‘the usual approach is to apply Bayes’ theorem with the assumption of conditional independence’. 
They concluded that ‘in this application no significant improvement in accuracy can be made by 
taking interactions into account, either by statistical or by knowledge-based means; independence 
Bayes is near optimal’. 

Ohmann et al. (1996) remarked that ‘the standard model used in computer-aided diagnosis of 
acute abdominal pain is Bayes theorem with the assumption of conditional independence.’ They 
compared this model with six automatic rule induction techniques and evaluated the results on an 
independent test set. They found no differences in overall accuracy (except for one particular, less 
accurate, rule induction method) although they did find ‘considerable differences with respect to 
specific diagnoses’. In particular, they concluded that ‘machine learning techniques did not improve 
the results of the standard model Independence Bayes’. 

Penny & Frost (1997) describe the use of a variety of classification rules to predict the class of 
‘level of observation’ to which psychiatric patients will be assigned. The initial 512 variables were 
reduced to 50 by a process which would seem to favour the independence model, but were then 
further reduced to ten by stepwise regression. The results show independence Bayes performing 
better than nearest neighbour methods. 

The trouble with all such empirical comparisons is that one can always refine the methods. The 
poor showing of the nearest neighbour methods is surprising, and might be attributed to the choice 
of the Euclidean memc, which is unlikely to be optimal. Perhaps a nearest neighbour method with a 
sophisticated adaptive metric might have done well. Moreover, the paper does not state how k in the 
k-nearest neighbour method was chosen. In contrast, the authors of this paper were clearly able to 
refine and tune their neural network algorithm-in a way others might not be able to do. The point is 
that, as discussed in Hand (1997), any comparison of rules should really be from the perspective of 
someone who is likely to use them. In this regard, the independence Bayes model has the merit that 
it is straightforward. Off-the-shelf application, even involving the B shrinking parameter, involves 
no great skills. 

Penny & Frost (1997) also make the important point that sometimes the measured variables have 
a deterministic structure-and that this should be taken advantage of in formulating the model. The 
independence Bayes model ignores any such structure. 

Mani. Pazzani & West (1997) described a comparative study of two tree classifiers, two rule 
inducers, and the independence Bayes model to predict breast cancer recurrence on the basis of six 
attributes. Evaluating the rules on an independent test set, they found that the independence Bayes 
mode1 outperformed the other models. 

Of course, the relative performance of models depends on how one compares them-see Hand 
(1997) for an extensive discussion. It is possible that the use of different performance criteria 
could lead to difference conclusions. In particular, the wider use of measures which assess the 
accuracy of the @(ilx) as estimates of the P ( i J x )  (such as the Brier score, used in the study of 
Titterington et al., 198 I), rather than the common use of measures based on proportions of objects 
correctly classified might lead one to different conclusions, because of the probability overshoot 
phenomenon mentioned above. Similarly, the use of a cost matrix to weight the different kinds of 
misclassification properly (in those cases where this can be determined-see Adams & Hand, 1999; 
Kelly et al., 2000) could lead to different conclusions. In general, of course, the performance criterion 
should be chosen to match the objectives of the problem. 

5 Conclusion 

It will be clear from the above that many of the practical applications of the independence model 
are in medical areas. We speculate that this is at least partly because of the attractive simplicity of 
the method. However, it has been applied in other areas as well. Willcox & Lapage (1973, Willcox, 
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Lapage & Holmes (1980). and Willcox et al. (1973), for example, apply it to bacterial identification, 
and Hand & Adams (2000) apply it to credit scoring. Other publications describing the model in 
medical contexts include Adams et al. (1986), Brunk et al. (1973, Coomans ef al. (1983). Cornfield 
er af. (1973), Croft & Macho1 (1987), duBoulay et al. (1977), de Dombal (1991). de Dombal er al. 
(1972), Edwards & Davis (1984), Heckerman, Horvitz & Nathwani (1992), Spiegelhalter & Knill- 
Jones (1984), van Woerkom & Brodman (1961), and Warner et al. (1961). 

The independence Bayes model seems often to perform surprisingly well. There are sound reasons 
for this: its intrinsic simplicity means low variance in its probability estimates; although these will 
typically be biased, this may not matter in classification situations as long as the rank order is 
preserved; in many situations the variables have undergone a selection process which tends to reduce 
their interdependencies; moreover simple extensions of the basic independence structure can be 
adopted which improve its performance yet further. 

Although this review has focused on the pegonnance of the independence Bayes model as 
a classification rule, one should be aware that the method also has significant other merits. In 
particular, missing values in both the design set and in new cases to be classified can be handled 
with consummate ease-one simply ignores them. (Of course, we are assuming here that the values 
are missing completely at random. To do otherwise gets one into rather deeper water,) Alternatively, 
one can easily introduce ‘missing’ as an extra category of a response variable, without altering the 
basic structure of the model. Moreover, since the model has the form of a product, by taking logs it 
can be converted into a sum-with the usual consequent computational advantages. 

Finally, we should remark that the list of references below is not a comprehensive list of papers 
discussing independence Bayes methods: our aim was to produce a critical review of the key ideas, 
rather than a simple list of all publications which had discussed or made use of those ideas. In 
particular, a large number of papers include the independence Bayes method as a comparator in 
studies of the effectiveness of different classification tools. Despite this, we hope that the references 
cited below cover the major theoretical issues, and provide routes into the main branches of the 
literature dealing with such methods, be it statistical, machine learning, artificial intelligence, or 
whatever. 
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RhUllL 
La aadition veut qu'une rcgle tks simple assumant l'independance des variables prCdictives, une hypo& faussc d m s  

la piupart des cas, peut &e ets efficace, souvent m h e  plus efficace qu'une methcde plus sophistiquie en ce qui concerne 
I'attribution de classes a un groupe d'objets. A ce sujet, nous examhons les preuves empiriques, observCes sur drr donnees 
delles. et les preuves thioriques, c'est-a-dire les raisons pour lesquellcs cctte simple rtgle pourrait faciliter le processus de 
m. 
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