
ar
X

iv
:2

20
2.

08
87

1v
1 

 [
cs

.L
G

] 
 1

7 
Fe

b 
20

22

Graph Data Augmentation for Graph Machine Learning: A Survey

Tong Zhao1∗ , Gang Liu1 , Stephan Günnemann2 and Meng Jiang1

1University of Notre Dame, USA
2Technical University of Munich, Germany

{tzhao2, gliu7, mjiang2}@nd.edu, guennemann@in.tum.de

Abstract

Data augmentation has recently seen increased
interest in graph machine learning given its ability
of creating extra training data and improving model
generalization. Despite this recent upsurge, this
area is still relatively underexplored, due to the
challenges brought by complex, non-Euclidean
structure of graph data, which limits the direct
analogizing of traditional augmentation operations
on other types of data. In this paper, we present a
comprehensive and systematic survey of graph data
augmentation that summarizes the literature in a
structured manner. We first categorize graph data
augmentation operations based on the components
of graph data they modify or create. Next, we
introduce recent advances in graph data augmen-
tation, separating by their learning objectives
and methodologies. We conclude by outlining
currently unsolved challenges as well as directions
for future research. Overall, this paper aims to
clarify the landscape of existing literature in graph
data augmentation and motivate additional work in
this area. We provide a GitHub repository1 with a
reading list that will be continuously updated.

1 Introduction

Data driven inference has received a significant boost in
generalization capability and performance improvement in
recent years from data augmentation (DA) techniques. The
DA techniques increase the amount of training data by cre-
ating plausible variations of existing data without additional
ground-truth labels, and have seen widespread adoption in
fields such as computer vision (CV) [Cubuk et al., 2019] and
natural language processing (NLP) [Feng et al., 2021]. These
techniques allow inference engines to learn to generalize
across those variations and attend to signal over noise.

In recent years, with the rapid development of graph ma-
chine learning (GML) methods such as graph neural networks
(GNNs) [Kipf and Welling, 2016; Hamilton et al., 2017],

∗Contact Author
1https://github.com/zhao-tong/graph-data-augmentation-papers

there has been increased interest and demand for data aug-
mentation techniques on graph data [Zhao et al., 2021b]. Due
to the irregular and non-Euclidean structure of graph data,
graph data augmentation (GDA) techniques could hardly be
directly analogized from the DA techniques used in CV and
NLP. Moreover, GML faces unique challenges such as feature
data incompleteness, structural data sparsity brought by
power-law distributions, lack of labelled data due to costly an-
notations, and over-smoothing caused by message passing in
GNNs. To address these challenges, there has been a growing
number of works on GDA. GML researchers design graph-
specific augmentation techniques for these unique challenges
on graphs. On graph-level tasks, GDA techniques aim at
generating extra data for training with known labels from the
input training data to improve generalization. On node-level
tasks, GDA techniques have enhanced GML models from
a variety of perspectives. For example, Rong et al. [2019]

randomly removes edges during training to alleviate the
over-smoothing problem. Zhao et al. [2021b] enhanced graph
structure to promote graph homophily. Kong et al. [2020]

modified or added node attributes via adversarial training.

This paper aims to sensitize the GML community towards
this growing area of work, when data augmentation has
already drawn much attention in CV and NLP. As interest and
work on this topic continue to increase, this is an opportune
time for a paper of our kind to (i) give a bird’s eye view of
existing GDA techniques, and (ii) identify key challenges to
effectively motivate and orient interest in this area. To the best
of our knowledge, this is the first comprehensive survey on
the topic of graph data augmentation. We hope this survey can
serve as a guide for researchers and practitioners who are new
to or interested in studying this topic.

This paper is structured as follows. Section 2 gives back-
ground on GNNs and data augmentation. It categorizes GDA
techniques based on their modified components of graph data.
Section 3 describes GDA techniques for (semi-)supervised
GML – which we separate by the task levels: node-level tasks
(Section 3.1), graph-level tasks (Section 3.2), and edge-level
tasks (Section 3.3). Section 4 introduces GDA techniques
that are used with self-supervised learning objectives, i.e.,
contrastive learning (Section 4.1) and consistency learning
(Section 4.2). Within these subsections, we introduce the
GDA techniques grouping by their methodologies. Finally,
Section 5 discusses challenges and future directions for GDA.

http://arxiv.org/abs/2202.08871v1
https://github.com/zhao-tong/graph-data-augmentation-papers


2 Background

2.1 Graph Neural Networks

Graph neural networks (GNNs) enjoy widespread use
in modern graph-based machine learning due to their
flexibility to incorporate node features, custom aggrega-
tions, and inductive operation, unlike earlier works which
were based on embedding lookups [Perozzi et al., 2014;
Grover and Leskovec, 2016]. Following the initial idea of con-
volution based on spectral graph theory [Bruna et al., 2013],
many spectral GNNs have since been developed and im-
proved by [Defferrard et al., 2016; Kipf and Welling, 2016;
Levie et al., 2018; Klicpera et al., 2018; Ma et al., 2021].
As spectral GNNs generally operate (expensively) on
the full adjacency, spatial-based methods which perform
graph convolution with neighborhood aggregation became
prominent [Hamilton et al., 2017; Veličković et al., 2017;
Xu et al., 2018], owing to their scalability and flexibil-
ity [Ying et al., 2018].

2.2 Data Augmentation

Data augmentation (DA) encompasses techniques of in-
creasing/generating training data without directly collecting
or labeling more data. Most DA techniques either add
slightly modified copies of existing data or generate syn-
thetic based on existing data. The augmented data act as a
regularizer and reduce overfitting when training data-driven
models [Shorten and Khoshgoftaar, 2019]. DA techniques
has been commonly used in CV and NLP [Feng et al., 2021],
where augmentation operations such as cropping, flipping, and
backtranslation are commonly used in machine learning model
training. In graph machine learning, in contrast to regular data
such as grids (e.g., images) and sequences (e.g., sentences),
the graph structure is encoded by node connectivity, which is
non-Euclidean and irregular. Most structured augmentation
operations used frequently in CV and NLP cannot be easily
analogized to graph data. Therefore, how to generate effective
augmented data examples on graph data is less obvious.

2.3 Graph Data Augmentation

Similar to DA techniques for CV and NLP, GDA creates data
objects via modification or generation. However, as graphs
are connected data, unlike images or texts, the data objects in
graph machine learning are often non-i.i.d. Hence, for node-
level and edge-level tasks, GDA techniques modify the entire
dataset (graph) instead of some data objects (nodes or edges).
Based on the graph data components that are modified or cre-
ated, we define four categories of GDA operations as follows.

Node Augmentations are the GDA operations that create
or remove nodes from the graph. For example, Mixup-based
methods [Wang et al., 2021b] created new nodes by com-
bining two existing nodes. Feng et al. [2020] proposed the
DropNode operation that removed nodes by masking of the
features of selected nodes.

Edge Augmentations are the GDA operations that
modify the graph connectivity via adding/removing
edges. The modifications can be either deterministic (e.g.,
GDC [Klicpera et al., 2019] and GAug-M [Zhao et al., 2021b]

both modified the graph structure and used the modifed graph
for training/inferencing) or stochastic (e.g., Rong et al. [2019]

proposed to randomly drop edges during each training epoch).

Feature Augmentations are the GDA operations that mod-
ify or create raw node features. For example, You et al. [2020]

used Attribute Masking that randomly masked off node
features; FLAG [Kong et al., 2020] augmented node features
with gradient-based adversarial perturbations.

Subgraph Augmentation refers to the GDA opera-
tions that operate at the graph level, such as cropping out
subgraphs or creating new graphs. As the subgraph aug-
mentation operations usually affect multiple nodes in the
subgraph, they are mostly used for graph level tasks. For
example, JOAO [You et al., 2021] used subgraph cropping;
ifMixup [Guo and Mao, 2021] created new graphs by mixing
up two graphs.

3 Graph Data Augmentation

Techniques for Supervised Learning

In this section, we discuss GDA techniques that are used for
supervised graph learning. We categorize the GDA techniques
by their task levels (node, graph, or edge).

3.1 Node-level Tasks

Edge Dropping Edge dropping methods stochastically
remove a certain amount of edges from the graph data
during each training epoch. Rong et al. [2019] first proposed
DropEdge which randomly dropped a fixed fraction of edges
in each epoch, in a way similar to Dropout. By showing the
GNN model different part of the graph in each training epoch,
DropEdge significantly improved the model’s generalization
and alleviates the over-smoothing problems of GNNs, espe-
cially for deeper GNNs. Although DropEdge efficiently aug-
mented the edges, it is often criticized for also removing task-
relevant signals and corrupting informative graph structures.

Following DropEdge, Zheng et al. [2020] proposed Neu-
ralSparse that utilized a MLP-based graph sparsification
model that learned to remove only the potentially task-
irrelevant edges. The graph sparsification model is supervised
and trained jointly with GNN on the node classification
loss. PTDNet [Luo et al., 2021] further applied the nuclear
norm regularization loss to impose the low-rank constraint
on the modified graph by the graph sparsification model.
Gao et al. [2021] proposed TADropEdge that leveraged the
graph spectrum to generate edge weights that represent the
edges’ criticality for the graph connectivity. TADropEdge
dropped the edges using the edges weights as the probabilities.

Other than node classification, Spinelli et al. [2021] pro-
posed FairDrop for the task of fair graph representation
learning, which biasedly dropped edges with a sensitive
attribute homophily mask to protect against unfairness.

Graph Diffusion Klicpera et al. [2019] first proposed
generalized graph diffusion that modeled a “future” state
of the graph where the signals were more spread out. By
utilizing commonly used graph diffusion such as personalized
PageRank (PPR) or heat kernal along with graph sparsifica-
tion, GDC [Klicpera et al., 2019] generates a diffused version



Table 1: A summary of graph data augmentation techniques for graph machine learning. Task levels: V: node-level; G: graph-level; E: edge-
level. Augmented data categories: V: node; E: edge; X: feature; G: subgraph.
†Although GRAND and NodeAug are semi-supervised methods, they used GDA operations with only self-supervised learning objectives (i.e,
consistency loss). Therefore, we categorize their GDA techniques as designed for self-supervised learning objectives.

Task Level Augmented Data
Augmentation Methodology

V G E V E X G

G
D

A
fo

r
S

u
p

er
v

is
ed

O
b

je
ct

iv
e

DropEdge [Rong et al., 2019] ✓ ✓

Edge dropping
NeuralSparse [Zheng et al., 2020] ✓ ✓

TADropEdge [Gao et al., 2021] ✓ ✓

FairDrop [Spinelli et al., 2021] ✓ ✓

GDC [Klicpera et al., 2019] ✓ ✓
Graph diffusion

MV-GCN [Yuan et al., 2021] ✓ ✓

AdaEdge [Chen et al., 2020] ✓ ✓

Structure
prediction

Pro-GNN [Jin et al., 2020] ✓ ✓

GAug-M [Zhao et al., 2021b] ✓ ✓

GAug-O [Zhao et al., 2021b] ✓ ✓

Eland [Zhao et al., 2021c] ✓ ✓

MH-Aug [Park et al., 2021] ✓ ✓

FLAG [Kong et al., 2020] ✓ ✓ ✓ ✓
Feature
generation

LA-GNN [Liu et al., 2021] ✓ ✓

SR+DR [Song et al., 2021] ✓ ✓

AutoGRL [Sun et al., 2021a] ✓ ✓ ✓ ✓ AutoML

GraphMix [Verma et al., 2019] ✓ ✓

Mixup
Graph Mixup [Wang et al., 2021b] ✓ ✓ ✓ ✓

ifMixup [Guo and Mao, 2021] ✓ ✓

Graph Transparent [Park et al., 2022] ✓ ✓

GraphCrop [Wang et al., 2020a] ✓ ✓ Subgraph cropping

MoCL [Sun et al., 2021b] ✓ ✓ Substructure substitution

M-Evolve [Zhou et al., 2020] ✓ ✓ Motif-similarity mapping

CFLP [Zhao et al., 2021a] ✓ ✓ Counterfactual augmentation

MeTA [Wang et al., 2021a] ✓ Edge perturbation

G
D

A
fo

r
S

el
f-

su
p

er
v

is
ed

O
b

je
ct

iv
e

DGI [Velickovic et al., 2019] ✓ ✓

Corruption

GraphCL [You et al., 2020] ✓ ✓ ✓ ✓ ✓

GRACE [Zhu et al., 2020] ✓ ✓ ✓

SUBG-CON [Jiao et al., 2020] ✓ ✓

InfoGCL [Xu et al., 2021] ✓ ✓ ✓ ✓

BGRL [Thakoor et al., 2022] ✓ ✓ ✓

GRAND† [Feng et al., 2020] ✓ ✓ ✓

MVGRL [Hassani and Khasahmadi, 2020] ✓ ✓
Graph diffusion

MV-CGC [Yuan et al., 2021] ✓ ✓

JOAO [You et al., 2021] ✓ ✓ ✓ ✓ ✓

Automated
augmentation

GCA [Zhu et al., 2021] ✓ ✓ ✓

LG2AR [Hassani and Khasahmadi, 2022] ✓ ✓ ✓ ✓ ✓

FairAug [Kose and Shen, 2022] ✓ ✓ ✓ ✓

AD-GCL [Suresh et al., 2021] ✓ ✓

NodeAug† [Wang et al., 2020b] ✓ ✓ ✓ Biased perturbation



of the observed graph. The generated graph is then used for
both training and inferencing. While message passing-based
GNNs are only capable of aggregating one hop information
in each layer, GDC allows GNNs to learn from multi-hop
information without specifically re-designing the model.

To further utilize the information given by different graph
diffusions, MV-GCN [Yuan et al., 2021] generates two com-
plementary views with PPR and heat kernal and learns from
both created views and the original graph. MV-GCN uses
a consistency regularization loss to reduce the distribution
distance of the representations learned from the three views.

Structure Prediction Prediction-based GDA techniques
update the graph structure to enhance task-relevant informa-
tion in the graph. For example, Zhao et al. [2021b] showed
the correlation between graph structural homophily and node
classification performance. Then they proposed GAug-M
and GAug-O to update the graph structure by neural link
predictors. Similar to GDC [Klicpera et al., 2019], GAug-M
deterministically modifies the graph structure and use the
updated graph for training and inferencing. To allow inductive
learning on graphs, GAug-O samples graph structure from
learned probabilities in each training epoch. Chen et al. [2020]

also proposed AdaEdge that iteratively add/remove edges
according to the node classification prediction. In each iter-
ation, AdaEdge adds edges between nodes that are predicted
to be in the same class with high confidence, and vice versa.
Pro-GNN [Jin et al., 2020] updates the graph structure with
constrains on the low-rank property and feature smoothness.

MH-Aug [Park et al., 2021] creates an “explicit” target
distribution, with controlled strength and diversity, to sample
augmented graphs. As sampling from the complex target
distribution is infeasible, MH-Aug adopts the Metropolis-
Hastings algorithm to obtain the augmented samples.

Zhao et al. [2021c] proposed Eland for the task of anomaly
detection on time-stamped user-item bipartite graphs.
Eland first transforms the user-item graph into users’ ac-
tion sequences and adopts seq2seq model for future action
prediction. The predicted user actions are added back into
the graph to generate the augmented graph data. As the
augmented graph contains richer user behavior information,
Eland enhances the anomaly detection performance and
detects anomalies at an early stage.

Feature Augmentation For (semi-)supervised graph learn-
ing, feature augmentation methods usually try to improve the
node feature quality by learning additional task-relevant fea-
tures. FLAG [Kong et al., 2020] utilizes adversarial training
to iteratively augment the node features with gradient-based
adversarial perturbations. Being a free training approach,
FLAG improves the performances of GNNs on the tasks of
node classification, link prediction, and graph classification.
LA-GNN [Liu et al., 2021] enhances the locality of node
representations by generating additional node features based
on the conditional distribution of local neighborhoods. The
generated feature is directly used together with the raw node
features. Similarly, SR+DR [Song et al., 2021] generates
topology features with DeepWalk [Perozzi et al., 2014], and
uses a dual GNN model with topology regularization to jointly
train with both raw and topology features.

Mixup Mixup [Zhang et al., 2018] merges two images to
generate a new images with a weighted label. Given the depen-
dent and non-Euclidean structure of graph, the direct analog
of Mixup on graph data is not obvious. Verma et al. [2019]

proposed GraphMix that augmented the training of a GNNs
with a Fully-Connected Network. As GraphMix is more of
a regularization method than the analog of Mixup on graphs,
Wang et al. [2021b] proposed Graph Mixup, which analo-
gized Mixup with a two-branch graph convolution module.
Given a pair of nodes, Graph Mixup mixes the raw features
of them, feeds the them into the two-branch GNN layer, and
mixes their hidden representations of each layer. Mixing up
the nodes on features and hidden states avoids re-assembling
the local neighborhoods of the two nodes.

AutoML With the rapid development of AutoML, auto-
mated graph learning method were proposed to automate
the design of GNN architecture as well as the choice of
GDA operations. Sun et al. [2021a] proposed AutoGRL for
the task of node classification. Though training process,
AutoGRL learns the best combination of GDA operations,
GNN architecture, and hyperparameters. The searching space
of AutoGRL includes four GDA operations implemented
by random masking and GAug-M [Zhao et al., 2021b]: drop
features, drop nodes, add edges, and remove edges.

3.2 Graph-level Tasks

For graph-level tasks, where data objects are independent
graphs, certain augmentation operations in CV and NLP can
be transferred to graph data. For example, similar to image
cropping, GraphCrop [Wang et al., 2020a] crops a contiguous
subgraph from each of the given graph object. GraphCrop
adopts a graph diffusion-based node-centric strategy to
maintain the topology characteristics of original graphs.

M-Evolve [Zhou et al., 2020] utilizes motifs to augment the
graph data. M-Evolve first finds and selects the target motif
in the graph, then adds or removes edges within the selected
motifs based on a sampling weight calculated with Resource
Allocation index. Similarly, MoCL [Sun et al., 2021b] utilizes
biomedical domain knowledge to augment the molecular
graphs on the substructures such as functional groups. MoCL
selects a substructure from each molecular graph and replaces
it with another substructure.

Mixup Several Mixup methods were also proposed for
graph classification. For example, the aforementioned Graph
Mixup [Wang et al., 2021b] also works for graph classifica-
tion. Graph Mixup mixes the latent representations of the pair
of graphs. On the other hand, ifMixup [Guo and Mao, 2021]

directly applies Mixup on the graph data instead of the latent
space. As the pair of graphs are irregular and the nodes
from two graphs are not aligned, ifMixup arbitrarily assigns
indices to the nodes in each graph and matches the nodes
according to the indices. Following ifMixup, Graph Transpar-
ent [Park et al., 2022] also mixes graph in data space. Unlike
ifMixup that randomly matches nodes during mixing, Graph
Transparent uses substructures as mixing units to preserve
the local structural information. Graph Transparent employs
the node saliency information to select one meaningful sub-
structure from each graph, where the saliency information is



defines as the l2 norm of the gradient of the classification loss.

3.3 Edge-level Tasks

We note that very few GDA techniques were proposed for
edge level tasks such as link prediction. Zhao et al. [2021a]

proposed a counterfactual data augmentation method CFLP.
CFLP asks the counterfactual question of “would the link still
exist if the graph structure became different from observa-
tion?” To answer the question, Zhao et al. [2021a] proposed
counterfactual links that approximates the unobserved
outcome in the question. CFLP trains the link prediction
model with both the given training data and the generated
counterfactual links (as augmented data).

Wang et al. [2021a] proposed MeTA for link prediction
on temporal graphs. MeTA contains a multi-level module
that processes the augmented graphs of different magnitudes
on separate levels. MeTA adopted three augmentation
operations for the temporal graphs: perturb time that modifies
the time-stamp on edges, remove edge that is similar to
DropEdge [Rong et al., 2019], and add edges that repeats
existing edges with a different time-stamp. During training
and prediction, MeTA performs message passing across levels
to provide adaptively augmented input graphs.

4 Graph Data Augmentation Techniques

for Self-supervised Learning Objectives

In this section, we cover the GDA techniques that are used for
self-supervised learning objectives, i.e., contrastive learning
and consistency learning. Self-supervised objectives learn
representations that are robust to noise and perturbations by
maximizing the (dis)agreements of learned representations.
Therefore, unlike the above presented GDA techniques that
aim to enhance the task-relevant information in the data,
most of the GDA techniques for self-supervised learning are
stochastic augmentations that aims to corrupt the given graph
data. Moreover, most self-supervised graph representation
learning methods tend to use a combination of several simple
GDA operations.

4.1 Contrastive Learning

In the past few years, with the rapid development of
contrastive learning, several graph contrastive learning
methods [You et al., 2021] have been proposed. Contrastive
learning aims to maximize the distance between representa-
tions of different objects and minimize the distance between
representations learned from different views of the same
object. Data augmentation is commonly used for generating
the different views for contrastive learning.

Corruption To efficiently generate different augmented
data for graph contrastive learning, the most commonly used
GDA operations are the corruption-based ones. For example,
DGI [Velickovic et al., 2019] adopts feature corruption where
it conducts a row-wise shuffling on the raw node feature
matrix X. The feature corruption by DGI can also be viewed
as randomly swapping the nodes in the graph.

GraphCL [You et al., 2020] and InfoGCL [Xu et al., 2021]

adopt four GDA operations: node dropping that randomly
removes nodes along with its edges, edge perturbation

that randomly adds or drops edges, attribute masking that
randomly masks off certain node attributes, and subgraph
sampling that samples a connected subgraph. Similar to
the subgraph sampling operation used in GraphCL, SUBG-
CON [Jiao et al., 2020] utilizes a subgraph sampler to sample
the augmented subgraph. GRACE [Zhu et al., 2020] and
BGRL [Thakoor et al., 2022] use only the basic random edge
dropping and attribute masking for creating different views of
the graph.

Graph diffusion As an efficient GDA operation that
can naturally creates a “future view” of the given graph,
graph diffusion is used in graph contrastive learning. MV-
GRL [Hassani and Khasahmadi, 2020] adopts the diffusion
graph proposed by GDC [Klicpera et al., 2019] as the second
view. Interestingly, Hassani and Khasahmadi [2020] showed
that using three views (original graph, diffusion graphs by
PPR and heat kernal) would not result with better performance
than using two views (original graph and one diffusion graph),
and concluded “increasing the number of views does not
improve the performance.” However, Yuan et al. [2021] later
proposed MV-CGC that adopted a similar contrastive learning
framework with three views: original graph, diffusion graph,
and their proposed feature similarity view. Empirically, the
node representations learned by MV-CGC outperformed
those learned by MVGRL on node classification.

Automated GDA As aforementioned, most contrastive
learning methods adopt a combination of several simple
augmentation operations. The selection among the operations
and their magnitudes significantly increases the number of
hyperparameters. Therefore, automated solutions that can
learn the augmentation strategies are developed.

JOAO [You et al., 2021] models the selection of GDA
for GraphCL [You et al., 2020] as a bilevel optimization
problem, where the outer level learns the augmentation
strategy and the inner level learns graph representations with
the given augmentations. AD-GCL [Suresh et al., 2021]

utilizes an adversarial graph augmentation strategy to avoid
redundant information brought by random augmentation.
LG2AR [Hassani and Khasahmadi, 2022] learns a probabilis-
tic policy that contains a set of distributions over different
augmentation operations, and samples augmentation strategy
from the policy in each training epoch. GCA [Zhu et al., 2021]

designs adaptive augmentations based on the node centrality
measures. Unlike the above-mentioned that finds the best aug-
mentation strategy for the dataset, the adaptive augmentation
of GCA gives different augmentation to nodes according to
their importance. Similarly, FairAug [Kose and Shen, 2022]

utilizes adaptive augmentation for fair graph representation
learning.

4.2 Consistency Learning

Similar to contrastive learning, consistency learning learns
representation from different views of data and maximizes
their agreement. However, unlike contrastive learning
that compares between data objects, the consistency loss
compares the distributions of a batch of representations via
metrics like KL-divergence. Therefore, the consistency
loss is rarely used itself, but often used along with super-



vised losses in the semi-supervised learning. For example,
NodeAug [Wang et al., 2020b] uses three local structure-
based augmentation operations: replace attributes, remove
edges, and add edges. NodeAug minimizes the KL-divergence
between the node representations learned from the original
graph and augmented graph. GRAND [Feng et al., 2020] cre-
ates multiple different augmented graphs with node dropping
and feature masking. The consistency loss then minimizes the
distances of the representations learned from the augmented
graphs.

5 Challenges and Directions

5.1 Automation and Domain Adaptation

As GDA is a relatively new topic, many GDA techniques (as
shown in Table 1) have been proposed and used independently.
However, an ideal GDA solution would have to select and
tune many data augmentation techniques prior to deployment.
This challenge has been observed in CV. For example, over
ten independent augmentation operations exist for image
data [Cubuk et al., 2019], each with its own magnitude param-
eter. CV researchers then developed automated augmentation
solutions to adaptively customize augmentation strategies for
each (batch of) object. Although several automated augmenta-
tion solutions exist for graph contrastive learning, automated
augmentation methods for (semi-)supervised graph learning
are still needed. Moreover, the automated augmentation
solutions should be transferable. That is, domain adaptation is
a desired characteristic for automated GDA techniques. When
the automated augmentation method trained on one dataset
could only be used on that dataset, the method would just auto-
mate the hyperparameter training process and lose the general-
izability [You et al., 2021]. Therefore, for an ideal automated
GDA method, it should be able to be trained on one dataset and
used for many, ideally cross domain. Automated GDA meth-
ods that can be transferable across domains are still missing.

5.2 Scalability for Large-Scale Graphs

Many GDA techniques used global structural information
during the augmentation process as those were hard to learn by
message passing GNNs. However, learning global informa-
tion often requires the method to learn from the entire graph,
which can cause the scalability issue. The scalability issue
is especially severe for node-level tasks where the graph size
can be very large. While the complex GDA techniques bring
significant performance improvements, the scalability of the
methods are still worthy of attention. For example, in order
to enable end-to-end training, GAug-O [Zhao et al., 2021b]

required back-propagating on the entire adjacency matrix,
resulting the extra need of memory on GPU cards. To improve
the performance of DropEdge [Rong et al., 2019], TADropE-
dge [Gao et al., 2021] required the pre-calculation of a score
for each edge in the graph prior to the training of GNNs.
Therefore, to be applicable in real life applications, efficiency
is also a necessity for GDA techniques. As mentioned in the
previous subsection, an automated solution that combines
the fast and simple augmentation operations may be solution.
Nonetheless, how to design an efficient automated GDA
framework is still an open question.

5.3 Generalization and Regularization

On certain types of graph data such as molecule graphs,
most commonly used GDA operations would change the
underlying semantic of the graph. For example, dropping a
carbon atom from the phenyl ring of aspirin breaks the aro-
matic system and results in a alkene chain [Lee et al., 2021],
which is an entirely different chemical compound. Therefore,
domain-based regularization should be used in such situation.
So far, only Sun et al. [2021b] proposed MoCL that considers
the semantic information brought by local substructures when
augmenting the molecule graphs, leaving the domain-specific
regularization for GDA rather under-explored. Moreover, as a
generalization improving technique, GDA should be naturally
good for out-of-distribution (OOD) data. GDA techniques for
OOD graph learning are still missing.

5.4 Theoretical Foundation

GDA is a powerful technology to improve the performance
of data-driven inference on graphs without the need of extra
labeling effort or complex models. GDA is also known for
improving the generalization of graph learning and alleviat-
ing the over-smoothing problem of GNNs. Yet, there is little
rigorous understanding of how and why GDA achieves those,
especially for (semi-)supervised learning. Although several
works [Zhao et al., 2021b; Chen et al., 2020] have analyzed
the relation between graph homophily and classification per-
formance or the over-smoothing problem, we are facing lack
of a rigorous proof or theoretical bounds on those relations.

Recently, several works provided theoretical insights of
data augmentation in CV. For example, Wu et al. [2020]

theoretically analyzed the generalization effect of data
augmentation on images. They interpreted the effect of data
augmentation from bias and variance, where data augmen-
tation adds new information to model while also serving
as a regularization. Due to the irregular characteristics of
graph data, these theoretical analysis cannot be directly
used for GDA. Other than the perspective of generalization,
several recent works have studied the certified robustness of
GNNs [Zügner and Günnemann, 2020]. Improved robustness
bounds would be a desired property of GDA techniques. Re-
cent studies [Topping et al., 2022] on the topology bottleneck
and over-squashing of GNNs provide theoretical guides for
edge-based GDA techniques. Counterfactual augmentation
methods on graphs such as CFLP [Zhao et al., 2021a] can
also bring insights for analyzing GDA from the perspective of
causality.

6 Conclusions

In this paper, we presented a comprehensive and structured
survey of data augmentation techniques for graph machine
learning. We categorized existing GDA techniques, intro-
duced recent GDA approaches based on their methodologies,
and outlined current challenges as well as directions for future
research. We showed that there was much room for further
exploration on GDA. In conclusion, we hope this paper serves
as a guide for GML researchers and practitioners to study and
use GDA techniques, and inspire additional interest and work
on this topic.



References

[Bruna et al., 2013] Joan Bruna, Wojciech Zaremba, Arthur
Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. In arXiv:1312.6203, 2013.

[Chen et al., 2020] Deli Chen, Yankai Lin, Wei Li, Peng
Li, Jie Zhou, and Xu Sun. Measuring and relieving the
over-smoothing problem for graph neural networks from
the topological view. In AAAI, pages 3438–3445, 2020.

[Cubuk et al., 2019] Ekin D Cubuk, Barret Zoph, Dandelion
Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
learning augmentation strategies from data. In CVPR, 2019.

[Defferrard et al., 2016] Michaël Defferrard, Xavier Bresson,
and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. In NeurIPS,
pages 3844–3852, 2016.

[Feng et al., 2020] Wenzheng Feng, Jie Zhang, Yuxiao Dong,
Yu Han, Huanbo Luan, Qian Xu, Qiang Yang, Evgeny
Kharlamov, and Jie Tang. Graph random neural networks
for semi-supervised learning on graphs. In NeurIPS,
volume 33, pages 22092–22103, 2020.

[Feng et al., 2021] Steven Y Feng, Varun Gangal, Jason Wei,
Sarath Chandar, Soroush Vosoughi, Teruko Mitamura, and
Eduard Hovy. A survey of data augmentation approaches
for nlp. In arXiv:2105.03075, 2021.

[Gao et al., 2021] Zhan Gao, Subhrajit Bhattacharya, Leim-
ing Zhang, Rick S Blum, Alejandro Ribeiro, and Brian M
Sadler. Training robust graph neural networks with topol-
ogy adaptive edge dropping. In arXiv:2106.02892, 2021.

[Grover and Leskovec, 2016] Aditya Grover and Jure
Leskovec. node2vec: Scalable feature learning for
networks. In KDD, pages 855–864, 2016.

[Guo and Mao, 2021] Hongyu Guo and Yongyi Mao.
ifmixup: Towards intrusion-free graph mixup for graph
classification. In arXiv:2110.09344, 2021.

[Hamilton et al., 2017] Will Hamilton, Zhitao Ying, and
Jure Leskovec. Inductive representation learning on large
graphs. In NeurIPS, pages 1024–1034, 2017.

[Hassani and Khasahmadi, 2020] Kaveh Hassani and
Amir Hosein Khasahmadi. Contrastive multi-view
representation learning on graphs. In ICML, 2020.

[Hassani and Khasahmadi, 2022] Kaveh Hassani and
Amir Hosein Khasahmadi. Learning graph augmentations
to learn graph representations. In arXiv:2201.09830, 2022.

[Jiao et al., 2020] Yizhu Jiao, Yun Xiong, Jiawei Zhang, Yao
Zhang, Tianqi Zhang, and Yangyong Zhu. Sub-graph
contrast for scalable self-supervised graph representation
learning. In ICDM, pages 222–231. IEEE, 2020.

[Jin et al., 2020] Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng
Tang, Suhang Wang, and Jiliang Tang. Graph structure
learning for robust graph neural networks. In KDD, 2020.

[Kipf and Welling, 2016] Thomas N Kipf and Max Welling.
Semi-supervised classification with graph convolutional
networks. In arXiv:1609.02907, 2016.

[Klicpera et al., 2018] Johannes Klicpera, Aleksandar Bo-
jchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In
arXiv:1810.05997, 2018.

[Klicpera et al., 2019] Johannes Klicpera, Stefan Weißen-
berger, and Stephan Günnemann. Diffusion improves
graph learning. In NeurIPS, volume 32, 2019.

[Kong et al., 2020] Kezhi Kong, Guohao Li, Mucong Ding,
Zuxuan Wu, Chen Zhu, Bernard Ghanem, Gavin Taylor,
and Tom Goldstein. Flag: Adversarial data augmentation
for graph neural networks. In arXiv:2010.09891, 2020.

[Kose and Shen, 2022] O Deniz Kose and Yanning Shen.
Fair node representation learning via adaptive data
augmentation. In arXiv:2201.08549, 2022.

[Lee et al., 2021] Namkyeong Lee, Junseok Lee, and Chany-
oung Park. Augmentation-free self-supervised learning on
graphs. In AAAI, 2021.

[Levie et al., 2018] Ron Levie, Federico Monti, Xavier
Bresson, and Michael M Bronstein. Cayleynets: Graph
convolutional neural networks with complex rational spec-
tral filters. IEEE Transactions on Signal Processing, 2018.

[Liu et al., 2021] Songtao Liu, Hanze Dong, Lanqing Li,
Tingyang Xu, Yu Rong, Peilin Zhao, Junzhou Huang,
and Dinghao Wu. Local augmentation for graph neural
networks. In arXiv:2109.03856, 2021.

[Luo et al., 2021] Dongsheng Luo, Wei Cheng, Wenchao
Yu, Bo Zong, Jingchao Ni, Haifeng Chen, and Xiang
Zhang. Learning to drop: Robust graph neural network via
topological denoising. In WSDM, 2021.

[Ma et al., 2021] Yao Ma, Xiaorui Liu, Tong Zhao, Yozen
Liu, Jiliang Tang, and Neil Shah. A unified view on graph
neural networks as graph signal denoising. In CIKM, 2021.

[Park et al., 2021] Hyeonjin Park, Seunghun Lee, Sihyeon
Kim, Jinyoung Park, Jisu Jeong, Kyung-Min Kim, Jung-
Woo Ha, and Hyunwoo J Kim. Metropolis-hastings data
augmentation for graph neural networks. In NeurIPS,
volume 34, 2021.

[Park et al., 2022] Joonhyung Park, Hajin Shim, and Eunho
Yang. Graph transplant: Node saliency-guided graph
mixup with local structure preservation. In AAAI, 2022.

[Perozzi et al., 2014] Bryan Perozzi, Rami Al-Rfou, and
Steven Skiena. Deepwalk: Online learning of social
representations. In KDD, pages 701–710, 2014.

[Rong et al., 2019] Yu Rong, Wenbing Huang, Tingyang
Xu, and Junzhou Huang. Dropedge: Towards deep
graph convolutional networks on node classification. In
arXiv:1907.10903, 2019.

[Shorten and Khoshgoftaar, 2019] Connor Shorten and Taghi
Khoshgoftaar. A survey on image data augmentation for
deep learning. Journal of big data, 2019.

[Song et al., 2021] Rui Song, Fausto Giunchiglia, Ke Zhao,
and Hao Xu. Topological regularization for graph neural
networks augmentation. In arXiv:2104.02478, 2021.



[Spinelli et al., 2021] Indro Spinelli, Simone Scardapane,
Amir Hussain, and Aurelio Uncini. Fairdrop: Biased edge
dropout for enhancing fairness in graph representation
learning. IEEE TAI, 2021.

[Sun et al., 2021a] Junwei Sun, Bai Wang, and Bin Wu. Auto-
mated graph representation learning for node classification.
In IJCNN, 2021.

[Sun et al., 2021b] Mengying Sun, Jing Xing, Huijun Wang,
Bin Chen, and Jiayu Zhou. Mocl: data-driven molecular
fingerprint via knowledge-aware contrastive learning from
molecular graph. In KDD, pages 3585–3594, 2021.

[Suresh et al., 2021] Susheel Suresh, Pan Li, Cong Hao,
and Jennifer Neville. Adversarial graph augmentation to
improve graph contrastive learning. In NeurIPS, 2021.

[Thakoor et al., 2022] Shantanu Thakoor, Corentin Tallec,
Mohammad Gheshlaghi Azar, Mehdi Azabou, Eva L Dyer,
Remi Munos, Petar Veličković, and Michal Valko. Large-
scale representation learning on graphs via bootstrapping.
In ICLR, 2022.

[Topping et al., 2022] Jake Topping, Francesco Di Gio-
vanni, Benjamin Paul Chamberlain, Xiaowen Dong, and
Michael M Bronstein. Understanding over-squashing and
bottlenecks on graphs via curvature. In ICLR, 2022.

[Veličković et al., 2017] Petar Veličković, Guillem Cucu-
rull, Arantxa Casanova, Adriana Romero, Pietro Lio,
and Yoshua Bengio. Graph attention networks. In
arXiv:1710.10903, 2017.

[Velickovic et al., 2019] Petar Velickovic, William Fedus,
William L Hamilton, Pietro Liò, Yoshua Bengio, and
R Devon Hjelm. Deep graph infomax. In ICLR, 2019.

[Verma et al., 2019] Vikas Verma, Meng Qu, Alex Lamb,
Yoshua Bengio, Juho Kannala, and Jian Tang. Graphmix:
Improved training of gnns for semi-supervised learning. In
arXiv:1909.11715, 2019.

[Wang et al., 2020a] Yiwei Wang, Wei Wang, Yuxuan Liang,
Yujun Cai, and Bryan Hooi. Graphcrop: Subgraph crop-
ping for graph classification. In arXiv:2009.10564, 2020.

[Wang et al., 2020b] Yiwei Wang, Wei Wang, Yuxuan Liang,
Yujun Cai, Juncheng Liu, and Bryan Hooi.Nodeaug: Semi-
supervised node classification with data augmentation. In
KDD, pages 207–217, 2020.

[Wang et al., 2021a] Yiwei Wang, Yujun Cai, Yuxuan Liang,
Henghui Ding, Changhu Wang, Siddharth Bhatia, and
Bryan Hooi. Adaptive data augmentation on temporal
graphs. In NeurIPS, volume 34, 2021.

[Wang et al., 2021b] Yiwei Wang, Wei Wang, Yuxuan Liang,
Yujun Cai, and Bryan Hooi. Mixup for node and graph
classification. In The WebConf, 2021.

[Wu et al., 2020] Sen Wu, Hongyang Zhang, Gregory
Valiant, and Christopher Ré. On the generalization effects
of linear transformations in data augmentation. In ICML,
pages 10410–10420, 2020.

[Xu et al., 2018] Keyulu Xu, Chengtao Li, Yonglong Tian,
Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie

Jegelka. Representation learning on graphs with jumping
knowledge networks. In arXiv:1806.03536, 2018.

[Xu et al., 2021] Dongkuan Xu, Wei Cheng, Dongsheng Luo,
Haifeng Chen, and Xiang Zhang. Infogcl: Information
aware graph contrastive learning. In NeurIPS, 2021.

[Ying et al., 2018] Rex Ying, Ruining He, Kaifeng Chen,
Pong Eksombatchai, William L Hamilton, and Jure
Leskovec. Graph convolutional neural networks for
web-scale recommender systems. In KDD, 2018.

[You et al., 2020] Yuning You, Tianlong Chen, Yongduo Sui,
Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. In NeurIPS, 2020.

[You et al., 2021] Yuning You, Tianlong Chen, Yang Shen,
and Zhangyang Wang. Graph contrastive learning
automated. In ICML, pages 12121–12132, 2021.

[Yuan et al., 2021] Jinliang Yuan, Hualei Yu, Meng Cao,
Ming Xu, Junyuan Xie, and Chongjun Wang. Semi-
supervised and self-supervised classification with multi-
view graph neural networks. In CIKM, 2021.

[Zhang et al., 2018] Hongyi Zhang, Moustapha Cisse,
Yann N Dauphin, and David Lopez-Paz. mixup: Beyond
empirical risk minimization. In ICLR, 2018.

[Zhao et al., 2021a] Tong Zhao, Gang Liu, Daheng Wang,
Wenhao Yu, and Meng Jiang. Counterfactual graph
learning for link prediction. In arXiv:2106.02172, 2021.

[Zhao et al., 2021b] Tong Zhao, Yozen Liu, Leonardo Neves,
Oliver Woodford, Meng Jiang, and Neil Shah. Data
augmentation for graph neural networks. In AAAI, 2021.

[Zhao et al., 2021c] Tong Zhao, Bo Ni, Wenhao Yu, Zhichun
Guo, Neil Shah, and Meng Jiang. Action sequence
augmentation for early graph-based anomaly detection. In
CIKM, pages 2668–2678, 2021.

[Zheng et al., 2020] Cheng Zheng, Bo Zong, Wei Cheng,
Dongjin Song, Jingchao Ni, Wenchao Yu, Haifeng Chen,
and Wei Wang. Robust graph representation learning via
neural sparsification. In ICML, pages 11458–11468, 2020.

[Zhou et al., 2020] Jiajun Zhou, Jie Shen, and Qi Xuan. Data
augmentation for graph classification. In CIKM, 2020.

[Zhu et al., 2020] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang
Liu, Shu Wu, and Liang Wang. Deep graph contrastive
representation learning. In arXiv:2006.04131, 2020.

[Zhu et al., 2021] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang
Liu, Shu Wu, and Liang Wang. Graph contrastive learning
with adaptive augmentation. In The WebConf, 2021.

[Zügner and Günnemann, 2020] Daniel Zügner and Stephan
Günnemann. Certifiable robustness of graph convolutional
networks under structure perturbations. In KDD, 2020.


	1 Introduction
	2 Background
	2.1 Graph Neural Networks
	2.2 Data Augmentation
	2.3 Graph Data Augmentation

	3 Graph Data Augmentation Techniques for Supervised Learning
	3.1 Node-level Tasks
	3.2 Graph-level Tasks
	3.3 Edge-level Tasks

	4 Graph Data Augmentation Techniques for Self-supervised Learning Objectives
	4.1 Contrastive Learning
	4.2 Consistency Learning

	5 Challenges and Directions
	5.1 Automation and Domain Adaptation
	5.2 Scalability for Large-Scale Graphs
	5.3 Generalization and Regularization
	5.4 Theoretical Foundation

	6 Conclusions

