arXiv:1707.06990v1 [cs.CV] 21 Jul 2017

Memory-Efficient Implementation of DenseNets

Geoff Pleiss* Danlu Chen” Gao Huang, Tongcheng Li
Cornell University Fudan University Cornell University
geoff@cs.cornell.edu dc688Q@cornell.edu {gh349,t1486}0cornell.edu

Laurens van der Maaten Kilian Q. Weinberger
Facebook Al Research Cornell University
lvdmaaten@fb.com kwq4@cornell.edu
Abstract

The DenseNet architecture [9] is highly computationally efficient as a result of
feature reuse. However, a naive DenseNet implementation can require a significant
amount of GPU memory: If not properly managed, pre-activation batch normaliza-
tion [7]] and contiguous convolution operations can produce feature maps that grow
quadratically with network depth. In this technical report, we introduce strategies
to reduce the memory consumption of DenseNets during training. By strategically
using shared memory allocations, we reduce the memory cost for storing feature
maps from quadratic to linear. Without the GPU memory bottleneck, it is now
possible to train extremely deep DenseNets. Networks with 14/ parameters can
be trained on a single GPU, up from 4M. A 264-layer DenseNet (73 parame-
ters), which previously would have been infeasible to train, can now be trained on
a single workstation with 8 NVIDIA Tesla M40 GPUs. On the ImageNet ILSVRC
classification dataset, this large DenseNet obtains a state-of-the-art single-crop
top-1 error of 20.26%.

1 Introduction

The DenseNet architecture [9] is highly efficient, both in terms of parameter use and computation
time. On the ImageNet ILSVRC-2012 dataset [[13]], a 201-layer DenseNet achieves roughly the same
top-1 classification error as a 101-layer Residual Network (ResNet) [6], while using half as many
parameters (200 vs 44M) and half as many floating point operations (80 3/image vs 1555/image).
Each DenseNet layer is explicitly connected to all previous layers within a pooling region, rather
than only receiving information from the most recent layer. These connections promote feature reuse,
as early-layer features can be utilized by all other layers. Because features accumulate, the final
classification layer has access to a large and diverse feature representation.

This inherent efficiency makes the DenseNet architecture a prime candidate for very-high capacity
networks. Huang et al. [9] report that a 161-layer DenseNet (with & = 48 features per layer and 29\
parameters) achieves a top-1 single-crop error of 22.2% on the ImageNet ILSVRC classification
dataset. It is reasonable to expect that larger networks would perform even better. However, with
most existing DenseNet implementations, model size is currently limited by GPU memory.

Each layer only produces k feature maps (where k is small — typically between 12 and 48), but uses
all previous feature maps as input. This causes the number of parameters to grow quadratically with
network depth. It is important to note that this quadratic dependency of parameters w.r.t. depth is
not an issue, as networks with more parameters perform better and in that respect DenseNets are
more competitive than alternative architectures, such as e.g. ResNets. Most naive implementations
of DenseNets do however also have a quadratic memory dependency with respect to feature maps.
This growth is responsible for the vast majority of the memory consumption, and as we argue in this
report, it is implementation issue and not an inherent aspect of the DenseNet architecture.

* Authors contributed equally.
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Figure 1: High-level illustration of the DenseNet architecture.

The quadratic memory dependency w.r.t. feature maps originates from intermediate feature maps
generated in each layer, which are the outputs of batch normalization and concatenation operations.
Intermediate feature maps are utilized both during the forward pass (to compute the next features) and
during back-propagation (to compute gradients). If they are not properly managed, and are naively
stored in memory, training large models can be expensive — if not infeasible.

In this report, we introduce a strategy to substantially reduce the training-time memory cost of
DenseNet implementations, with a minor reduction in speed. Our primary observation is that the
intermediate feature maps responsible for most of the memory consumption are relatively cheap to
compute. This allows us to introduce Shared Memory Allocations, which are used by all layers to
store intermediate results. Subsequent layers overwrite the intermediate results of previous layers, but
their values can be re-populated during the backward pass at minimal cost. Doing so reduces feature
map memory consumption from quadratic to linear, while only adding 15 — 20% additional training
time. This memory savings makes it possible to train extremely large DenseNets on a reasonable GPU
budget. In particular, we are able to extend the largest DenseNet from 161 layers (k = 48 features per
layer, 20M parameters) to 264 layers (k = 48, 7T3M parameters). On ImageNet, this model achieves
a single-crop top-1 error of 20.26%, which (to the best of our knowledge) is state-of-the-art.

Our memory-efficient strategy is relatively straightforward to implement in existing deep learning
frameworks. We offer implementations in Torch|[5]], PyTorclﬂ [, MXNeﬂ [2]], and Caffeﬂ [L1].

2 The DenseNet Architecture

At a high-level, a DenseNet explicitly connects all layers with matching feature size. Huang et al.
refer to a block of directly connected layers as a dense block, which is typically followed by a pooling
layer (which reduces feature map sizes) or the final classifier. Layers in traditional neural networks
only use the most recent features; in a DenseNet, a layer has access to all preceding features within
its dense block. Mathematically, x, — the features produced by layer ¢ — are computed as

x¢ = Hy ([Xla s 7X€—1]) )

where H, denotes the operations of layer ¢ and [-] represents the concatenation operator. Huang
et al. [9] define Hy to be a composite of three operations: batch normalization [10], a rectified linear
unit (ReLU), and convolution — in that order. (H; may also include additional operations, such as
a “bottleneck”; see [9]].) In most deep learning frameworks, each of these three operations produce
intermediate feature maps.

Given a dense block with m layers, the input to its final layer is [x1,...,X,,—1] — all previous
convolutional features. Because the number of convolutional features grows linearly with network
depth, storing these in memory does not impose a significant memory burden. However, if the
network stores the intermediate feature maps as well (e.g. the batch normalization output), GPU
memory may become a limited resource. This is due to the fact that the intermediate features are
computed for each input feature map, thus incurring O(m?) memory usage if they are stored. Many
deep learning frameworks keep these intermediate feature maps allocated in GPU memory for use
during back-propagation. The gradients of convolutional features (and parameters) typically are
functions of the intermediate outputs, and therefore the intermediate outputs must remain accessible

2 Torch implementation: https://github.com/liuzhuang13/DenseNet/tree/master/models
3 PyTorch implementation: https://github.com/gpleiss/efficient_densenet_pytorch

* MxNet implementation: https://github.com/taineleau/efficient_densenet_mxnet

> Caffe implementation: https://github.com/Tongcheng/DN_CaffeScript
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Figure 2: Left: Comparison of pre-activation vs post-activation DenseNet architectures (100-layer
DenseNet-BC, k = 12). Pre-activations offer significant error reductions, but generate a quadratic
number of outputs. Right: Speed of contiguous vs non-contiguous convolution operations (measured
on a NVIDIA GTX 980). Each operation applies 3-by-3 filters to 32 x 32 feature maps (minibatch
size of 64). Contiguous operations are preferred, but generate multiple copies of each feature.

for the backward pass. In DenseNets, there are two operations which are responsible for this quadratic
growth: pre-activation batch normalization and contiguous concatenation.

Pre-activation batch normalization. The DenseNet architecture, as described in [9], utilizes pre-
activation batch normalization [7]. Unlike conventional architectures, pre-activation networks apply
batch normalization and non-linearities before the convolution operation rather than after. Though
this might seem like a minor change, it makes a big difference in DenseNet performance. Batch
normalization applies a scaling and a bias to the input features. If each layer applies its own batch
normalization operation, then each layer applies a unique scale and bias to previous features. For
example, the Layer 2 batch normalization might scale a Layer 1 feature by a positive constant, while
Layer 3 might scale the same feature by a negative constant. After the non-linearity, Layer 2 and
Layer 3 extract opposite information from Layer 1. This would not be possible if all layers shared
the same batch normalization operation, or if normalization occurred after convolution operations.
Without pre-activation, the CIFAR-10 error of a 100-layer DenseNet-BC grows from 4.51 to 5.18.
On CIFAR-100, the error grows from 22.27 to 24.30 (Figure 2]left).

Given a DenseNet with m layers, pre-activations generate up to m normalized copies of each layer.
Because each copy has different scaling and bias, naive implementations in standard deep learning
frameworks typically allocate memory for each of these (m — 1)(m — 2)/2 duplicated feature maps.

Contiguous concatenation. Convolution operations are most efficient when all input data lies in a
contiguous block of memory. Some deep learning frameworks, such as Torch, explicitly require that
all convolution operations are contiguous. While CUDNN, the most common library for low-level
convolution routines [4]], does not have this requirement, using non-contiguous blocks of memory
adds a computation time overhead of 30 — 50% right).

To make a contiguous input, each layer must copy all previous features into a contiguous memory
block. Given a network with m layers, each feature may be copied up to m times. If these copies are
stored separately, the concatenation operation would also incur quadratic memory cost.

It is worth noting that we cannot simply assign filter outputs to a pre-allocated contiguous block of
memory. Features are represented as tensors in R?*@*wWx% (or Rn*wxhxd) where n is the number
of mini-batch samples, d is the number of feature maps, and w and h are the width and height. GPU
convolution routines, such as from the CUDNN library, assume that feature data is stored with the
minibatch as the outer dimension. Assigning two features next to each other in a contiguous block
therefore concatenates along the minibatch dimension, and not the intended feature map dimension.

3 Naive Implementation

In modern deep learning libraries, layer operations are typically represented by edges in a computation
graph. Computation graph nodes represent intermediate feature maps stored in memory. We show the
computation graph for a naive implementation of a DenseNet layer (without bottleneck operations) in
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Figure 3: DenseNet layer forward pass: original implementation (left) and efficient implementation
(right). Solid boxes correspond to tensors allocated in memory, where as translucent boxes are
pointers. Solid arrows represent computation, and dotted arrows represent memory pointers. The
efficient implementation stores the output of the concatenation, batch normalization, and ReLU layers
in temporary storage buffers, whereas the original implementation allocates new memory.

(top left)E] The inputs to each layer are features from previous layers (the colored boxes). As
these features originate from different layers, they are not stored contiguously in memory. The first
operation of the naive implementation therefore copies each of these features and concatenates them
into a contiguous block of memory (center left). If each of the ¢ previous layers produces k features,
the contiguous block of memory must accommodate ¢ x k feature maps. These concatenated features
are input to the batch normalization operation (center right), which similarly allocates a new ¢ x k
contiguous block of memory. (The ReLU non-linearity occurs in-place in memory, and therefore
we choose to exclude it from the computation graph for simplicity.) Finally, a convolution operation
(far right) generates k new features from the batch normalization output. From (top left),
it is easy to visualize the quadratic growth of memory. The two intermediate operations require a
memory block which can fit all O(¢k) previously computed features. By comparison, the output
features require only a constant O (k) memory per layer.

In some deep learning frameworks, such as LuaTorch, even more memory may be allocated during
back-propagation. (bottom left) displays a computation graph for gradients. The output
feature gradients (far right) and the normalized feature maps from the forward pass (dotted line) are
used to compute the batch normalization gradients (center right). Storing these gradients requires an
additional ¢ x k feature maps worth of memory allocation. Similarly, a ¢ X k memory allocation is
necessary to store the concatenated feature gradients.

4 Memory-Efficient Implementation

To circumvent this issue we exploit that concatenation and normalization operations are computa-
tionally extremely cheap. We propose two pre-allocated Shared Memory Storage locations to avoid
the quadratic memory growth. During the forward pass, we assign all intermediate outputs to these
memory blocks. During back-propagation, we recompute the concatenated and normalized features
on-the-fly as needed.

This recomputation strategy has previously been explored on other neural network architectures.
Chen et al. [3] exploit recomputation to train 1, 000-layer ResNets on a single GPU. Additionally,

% The computation graph is based roughly on the original implementation: https://github.com/
liuzhuang13/DenseNets/|
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Chen et al. [2] have developed recomputation support for arbitrary networks in the MxNet deep
learning framework. In general, recomputing intermediate outputs necessarily trades-off memory for
computation. However, we have discovered that this strategy is very practical for DenseNets. The
concatenation and batch normalization operations are responsible for most memory usage, yet only
incur a small fraction of the overall computation time. Therefore, recomputing these intermediate
outputs yields substantial memory savings with little computation time overhead.

Shared storage for concatenation. The first operation — feature concatenation — requires O (¢k)
memory storage, where ¢ is the number of previous layers and k is the number of features added
each layer. Rather than allocating memory for each concatenation operation, we assign the outputs
to a memory allocation shared across all layers (“Shared Memory Storage 17 in [Figure 3 right).
The concatenation feature maps (center left) are therefore pointers to this shared memory. Copying
to pre-allocated memory is significantly faster than allocating new memory, so this concatenation
operation is extremely efficient. The batch normalization operation, which takes these concatenated
features as input, reads directly from Shared Memory Storage 1. Because Shared Memory Storage 1
is used by all network layers, its data is not permanent. When the concatenated features are needed
during back-propagation, we assume that they can be recomputed efficiently.

Shared storage for batch normalization. Similarly, we assign the outputs of batch normalization
(which also requires O(m) memory) to a shared memory allocation (“Shared Memory Storage
2”). The convolution operation reads from pointers to this shared storage (center right). As with
concatenation, we must recompute the batch normalization outputs during back-propagation, as
the data in Shared Memory Storage 2 is not permanent and will be overwritten by the next layer.
However, batch normalization consists of scalar multiplication and addition operations, which are
very efficient in comparison with convolution math. Computing Batch Normalized features accounts
for roughly 5% of one forward-backward pass, and therefore is not a costly operation to repeat.

Shared storage for gradients. The concatenation, batch normalization, and convolution operations
each produce gradients tensors during back-propagation. In LuaTorch, it is straight forward to ensure
that this tensor data is stored in a single shared memory allocation. This strategy prevents gradient
storage from growing quadratically. We use a memory-sharing scheme based on of Facebook’s
ResNet implementation|’| The PyTorch and MxNet frameworks share gradient storage out-of-the-box.

Putting these pieces together, the forward pass (Figure 3right) is similar to the naive implementation
(Figure 3|top left), with the exception that intermediate feature maps are stored in Shared Memory
Storage 1 or Shared Memory Storage 2. The backward pass requires one additional step: we first
re-compute the concatenation and batch normalization operations (center left and center right) in order
to re-populate the shared memory storage with the appropriate feature map data. Once the shared
memory storage contains the correct data, we can perform regular back-propagation to compute
gradients. In total, this DenseNet implementation only allocates memory for the output features (far
right), which are constant in size. Its overall memory consumption for feature maps is linear in
network depth.

5 Results

We compare the memory consumption and computation time of three DenseNet implementations
during training. The naive implementation is based on the original LuaTorch implementatiorﬂ
of Huang et al. [9]. As described in this implementation allocates memory for the
concatenation and batch normalization outputs. Additionally, each of these operations uses additional
memory to store gradients of the intermediate features. Therefore, this implementation has four
operations with quadratic memory growth (two forward-pass operations and two backward-pass
operations).

We then test two memory-efficient implementations of DenseNets. The first implementation shares
gradient storage so that there are no new memory allocations during back-propagation. All gradients
are instead assigned to shared memory storage. The LuaTorch gradient memory-sharing code is
based on Facebook’s ResNet implementation’| PyTorch automatically performs this optimization

"https://github.com/facebook/fb.resnet.torch
8https://github.com/liuzhuang13/DenseNet
*https://github.com/facebook/fb.resnet.torch
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Figure 4: GPU memory consumption as a function of network depth. Each model is a bottlenecked
Densenet (Densenet-BC) with £ = 12 features added per layer. The efficient implementations enables
training much deeper models with less memory.

out-of-the-box. The second implementation includes all optimizations described in[Section 4} shared
storage for batch normalization, concatenation, and gradient operations (shared gradient + B.N. +
concat storage). The concatenated and normalized feature maps are recomputed as necessary during
back-propagation. The only tensors which are stored in memory during training are the convolution
feature maps and the parameters of the network.

Memory consumption of the three implementations (in LuaTorch and PyTorch) is shown in|Figure 4

(There is no PyTorch naive implementation because PyTorch automatically shares gradient storage.)
With four quadratic operations, the naive implementation becomes memory intensive very quickly.
The memory usage of a 160 layer network (k = 12 features per layer, 1.8 M parameters) is roughly
10 times as much as a 40 layer network (¥ = 12, 160K parameters). Training a larger network with
more than 160 layers requires over 12 GB of memory, which is more than a typical single GPU.
While sharing gradients reduces some of this memory cost, memory consumption still grows rapidly
with depth. On the other hand, using all the memory-sharing operations significantly reduces memory
consumption. In LuaTorch, the 160-layer model uses 22% of the memory required by the Naive
Implementation. Under the same memory budget (12 GB), it is possible to train a 340-layer model,
which is 2.5 x as deep and has 6 x as many parameters as the best naive implementation model.

It is worth noting that the fotal memory con-
sumption of the most efficient implementation Computation time using different implementations
does not grow linearly with depth, as the num- (DenseNet-BC, 100-layers, k=12)

ber of parameters is inherently a quadratic func- 'S

tion of the network depth. This is a function of %:

the architectural design and part of the reason 3

why DenseNets are so efficient. The memory B Naive Implementation

required to store the parameters is far less than [ Shared Gradient Storage

the memory consumed by the feature maps and < IS Shared Gradient + B.N. + Concat Storage
the remaining quadratic term does not impede 8

model depth g .
Finally, we see in[Figure 4] that PyTorch is more 0.0 0.05 0.10 0.15 0.20 0.25
memory efficient than LuaTorch. Using the ef- Time per minibatch (s)

ficient PyTorch implementation, we can train  p; 5. C tation ti d
DenseNets with nearly 500 layers (13)/ param- I\Il\g,lllgl A Maxzvrgﬁqf?t:lﬁ?x;me (measured on a

eters) on a single GPU. The “autograd” library
in PyTorch performs memory optimizations dur-
ing training, which likely contribute to this implementation’s efficiency.

Training time is not significantly affected by the memory optimizations. In[Figure 3| we plot the
time per minibatch of a 100-layer DenseNet-BC (kK = 12) on a NVIDIA Maxwell Titan-X. Shared
gradient storage does not incur any time cost. Sharing batch normalization and concatenation
storage adds roughly 15% time overhead on LuaTorch, and 20% on PyTorch. This extra cost is
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Figure 6: Top-1 classification error on ImageNet. The DenseNet models were trained on 8 NVIDIA
Tesla M40 GPUs. Results in stars were not possible to train without the efficient implementation.

a result of recomputing operations during back-propagation. For DenseNets of any size, it makes
sense to share gradient storage. If GPU memory is limited, the time overhead from sharing batch
normalization/concatenation storage constitutes a reasonable trade-off.

ImageNet results. We test the new memory efficient LuaTorch implementation (shared memory
storage for gradients, batch normalization, and concatenation) on the ImageNet IVLSRC classi-
fication dataset [13]. The deepest model trained by Huang et al. [9]] using the original LuaTorch
implementation was 161 layers (k = 48 features per layer, 290 parameters). With the efficient
LuaTorch implementation however, it is possible to train a 264-layer DenseNet (k = 48, 73M
parameters) using 8 NVIDIA Tesla M40 GPUs.

We train two new DenseNet models with the efficient implementation, one with 264 layers (k =
32, 33M parameters) and one with 232 layers (k = 48, 55 M parameters)m These models are
trained for 100 epochs following the same procedure described in [9]. Additionally, we train two
DenseNets models with a cosine learning-rate schedule (DenseNet cosine), similar to what was
used by [[12] and [8]. The model is trained for 100 epochs, with the learning rate of epoch ¢ set to
0.05 cos(t(m/100)) + 1. Intuitively, this learning rate schedule starts off with a large learning rate,
and quickly (but smoothly) anneals the learning rate to a small value. Both of the cosine DenseNets
have 264 layers — one with & = 32 (33 M parameters) and one with k = 48 (73 M parameters). Given
a fixed GPU budget, these DenseNet models can only be trained with the efficient implementation.

We display the top-1 error performance of these DenseNets in The models trained with
the efficient implementation are denoted as green points (squares for standard learning rate schedule,
stars for cosine). We compare the performance of these models to shallower DenseNets trained with
the original implementation. Additionally, we compare against ResNet models introduced in [6] and
ResNeXt models introduced in [14]]. Results were obtained with single centered test-image crops.

The new DenseNet models (standard training procedure) achieve nearly 1 percentage point better
error than the deepest ResNet model, while using fewer parameters. Additionally, the deepest cosine
DenseNet achieves a top-1 error of 20.26%, which outperforms the previous state-of-the-art model
[14]. It is clear from these results that DenseNet performance continues to improve measurably as
more layers are added.

6 Conclusion

In this report, we describe a new implementation strategy for DenseNets. Previous DenseNet
implementations store all intermediate feature maps during training, causing feature map memory
usage to grow quadratically with depth. By employing a shared memory buffer and recomputing

19 There are four dense blocks in this model. In the 264-layer model, the dense blocks have 6, 32, 64, and 48
layers respectively. In the 232-layer model, the dense blocks have 6, 32, 48, and 48 layers.



some cheap transformations, models utilize significantly less memory, with only a small increase
in computation time. With this new implementation strategy, memory no longer impedes training
extremely deep DenseNets. As a result, we are able to double the depth of prior models, which results
in a measurable drop in top-1 error on the ImageNet dataset.
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