
A New Linear-Time "On-Line" Algorithm for Finding the

Smallest Initial Palindrome of a String

GLENN MANACHER

University of Illinois, Chicago, Illinois

ABSTRACT. Despite significant advances in linear-time scanning algorithms, particularly those
based wholly or in par t on either Cook's linear-time simulation of two-way deterministic pushdown
automata or Weiner's algorithm, the problem of recognizing the initial leftmost nonvoid palindrome
of a string in time proportional to the length N of the palindrome, examining no symbols other than
those in the palindrome, has remained open. The present algorithm solves this problem, assuming
tha t addition of two integers less than or equal to N may be performed in a single operation. Like
th e Knuth-Morris-Prat t algorithm, i t runs in time independent of the size of the input alphabet.
T h e algorithm as presented finds only even palindromes. However, an extension allows one to recog-
nize the initial odd or even palindrome of length 2 or greater. Other easy extensions permit the recog-
nition of strings (wwR) * of even palindromes and of all the initial palindromes. I t appears possible
tha t further extension may be used to show tha t (wwR) * is in a sense recognizable in real time on a
reasonably defined random access machine.

xEv WORDS AND PHa~SES: linear-time algorithm, on-line recognition, palindrome

CR CATEGORIES: 5.22, 5.25, 5.30

In t roduc t ion

A pioneer ing t h e o r e m of Cook ' s [2] s t a t e s t h a t t he re exists a l i nea r - t ime s i m u l a t i o n of a
t w o- w ay d e t e r m i n i s t i c p u s h d o w n a u t o m a t o n (D P D A) on a r a n d o m access c o m p u t e r 1
c apab l e of s to r ing a n d r e t r i ev ing t h e n u m b e r n in one opera t ion , where n is t h e l e n g t h of
t h e i n p u t s t r ing. Brief ly, a two-way D P D A is l ike t h e well-kno~-a one :way D P D A t h a t
accep ts on e m p t y s tack , excep t t h a t a t eve ry s t age t he i n p u t h e a d ha s t h e op t ion of re-
m a i n i n g s t a t i o n a r y , a d v a n c i n g one square , or b a c k i n g up one square . E x a m p l e s of how
such m a c h i n e s ope ra t e m a y i l lu s t r a t e t h e i r power. Dan ie l C h e s t e r d i scovered t h a t such a
m a c h i n e can recognize S = {unvau}, where w a n d u are s t r ings on a f ini te a l p h a b e t , w ~ ~,
a n d R ind ica tes reversal . T h e m e t h o d is to copy t he en t i r e s t r i ng on to t h e s tack , b a c k u p
t h e i n p u t h e a d to t h e beg inn ing , a n d beg in check ing for mi sma tches . I f none a re found a n d
t h e s t ack is emp t i ed , a n in i t ia l p a l i n d r o m e ha s been found. If a m i s m a t c h occurs, t h e
in i t ia l m a t c h i n g po r t i on of t he i n p u t is used to r ecopy t he s tack . T h e n t he s t a c k is p o p p e d

Copyright © 1975, Association for Computing Machinery, Inc. General permission to republish,
but not for profit, all or part of this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of issue, and to the fact tha t reprinting
privileges were granted by permission of the Association for Computing Machinery.
Author's address: Computer Center and Department of Information Engineering, University of Il-
linois (Chicago Circle), Chicago, IL 60680.
1 Our model of a random access machine (RAM) is Cook's [2]; the reader is referred to the original
paper for a careful discussion. Only two salient points need to be discussed here. Cook calls an al-
gorithm linear-time if, given input of length n, the time required by the algorithm is of
order O(n* l(n)), where l(n) is the time needed to access a number of order n. Cook argues tha t a
reasonable model of an RAM is one for which l(n) = 0(1). He then goes on to argue tha t once this is
granted, it is consistent to postulate tha t a(n) = c(n) = 0(1), where a(n) is the time required to
add, and c(n) the time required to compare two numbers of order n. This assertion is crucial to our
scheme, in which addition, subtraction, and comparison are performed extensively.

Journal of the Association for Computing Machinery, Vol. 22, No. 3, July 1975, pp. 346-351.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F321892.321896&domain=pdf&date_stamp=1975-07-01

A New Linear-Time "On-Line" Algorithm 347

one and the process is repeated. A similar mechanism can easily be found to recognize
S = {wcx}, where w and x are nonvoid strings over an alphabet not including the letter
c, and w is a substring of x. From this comes a linear-time "pattern-matching" algorithm
which is not self-evident. This algorithm was first reported by Knuth et al. [5] and later
given an appealing presentation by Hopcroft et al. [4]. The language P = (wwR) *, with w
nonvoid, is known to have a linear-time recognition algorithm, discovered by Pratt.
Pratt 's algorithm is unpublished, but mentioned in [5]. Cook's theorem is used as a lemma.
Pratt proves the follo~ng additional lemma: If T is a string of the form (wwR) *, and
T --- T ' T ' , and if T' is of the form (wwa) *, then so is T". Using this lemma, Pratt finds
T' by looking for an initial even palindrome (not necessarily the smallest) by the follo~ing
device: The first two letters of the input are first considered and examined by Chester's
method, mentioned earlier. If these fail to yield an even palindrome, four characters are
examined, then eight, and so forth. Every time an initial palindrome is found, it is "dis-
carded" and the remainder of the input string is subjected to the algorithm. This al-
gorithm is not simply a simulation of a two-way DPDA. In fact, no one has ever found a
two-way DPDA that recognizes P. The present author coniectures that one does not exist.

These algorithms, it must be clear, shed no light on the problem posed in the abstract.
Two-way DPDAs seem to have the property that it is easy to test a string for a given
property YI by examining successively shorter strings, but very difficult if not impossible to
test for II by examining successively longer strings. Intuitively, this is the reason we
doubt that two-way DPDAs are strong enough to shed light, even as lemmas, on the
problem of finding the initial shortest palindrome in time linear in the length of the palin-
drome, without considering any letters not in the pali~drome. Nor can Weiner's algorithm [7]
be of direct help, because it examines the entire input string.

The present algorithm has some of the flavor of algorithms resulting from the simulation
of two-way DPDAs in that, as in [5], information already obtained from unsuccessful
attempts to prove that a smaller initial substring was an even palindrome is kept for
further use. The algorithm maintains an auxiliary one-dimensional integer array M whose
length is one less than the length N of the input string. (If the input length is unknown at
the beginning, the algorithm will still work if M is understood to be semi-infinite. The
number of words of M actually used will still be N - 1). The ith cell of M represents
an "interstice" between the ith and (i -~- 1)-th symbol of the input string. The number
stored in M (i) is the number of symbols in the input string mirrored about this interstitial
position. Thus, for input y = 0100110, the successive values of M(i) computed in the
course of the algorithm will be 0, 0, 2, 0, 2, 0.

In order to visualize the operation of the algorithm, we will exhibit only those "special"
positions i that lie in the middle of an even "group," i.e. a stretch of identical symbols.
Such positions are necessarily the only ones that can bisect an even palindrome. Thus,
while the algorithm in fact considers every position of y, we will display only positions 3
and 5. These are displayed as blocks linked to adjoining blocks. The lines linking blocks
represent intervening "nonspecial" positions that are not exhibited. The algorithm uses a
cursor to scan the input string left to right, maintaining at all times a record of where the
ten,t ire center (TC) of the initial palindrome resides. At the beginning, there is no TC.
As the algorithm progresses, the TC gradually moves left to right, but more slowly than
the cursor; the cause of its moving forward is its failure to lie at the center of an initial
palindrome.

To show how the algorithm works, the follox~ing illustration should suffice. Let the
input string x = 01001100001100110000110010011010. Let c be the cursor position. The
algorithm being iterative, we show just one step. Suppose c = 12. The even groups thus
far discovered are the 00 at positions 3 and 4, the 11 at 5 and 6, the 0000 at 7 through 10,
and the 11 at 11 and 12. (The 00 at 13 and 14 has not yet been "discovered," because
positions 13 and 14 are beyond the cursor.)

The structure built so far by the algorithm for purposes of its internal calculation is

348 GLENN MANACHER

shown in Figure 1. By a process that ~ill become clear presently, suppose that we have
already chosen the four zeros at positions 7 through l0 at the TC. Every new input letter
is compared with the letter on the opposite side of the TC. If a match occurs, the next
letter is considered. If matches continue to the beginning of the string, the TC is the center
of the shortest initial palindrome. Clearly the most difficult part of the algorithm is its
handling of mismatches.

To show what we do in the case of a mismatch, return to our example. The letters at
positions 9 through 12 match their duals on the other side of the TC. Now advance the
cursor to position 13. Again a match is found. Now set c = 14. Again a match is found.
Setting c to 15, we once again obtain a match. Moreover, since letter 15 is different from
letter 14, we have a new group of zeros, those at positions 13 and 14. This group is even,
so it is added to the even groups, which now have the form shown in Figure 2. Advancing
the cursor to 16, we obtain a matching failure; the letter at position 16 fails to match
letter 1, its symmetric dual about the TC. Now we must determine which even group to
choose as a new TC. Clearly, the algorithm ~ill be linear if both (1) the array 21I needs to
be scanned only to the right of the current TC and (2) the amount of work done at each
position of 211 is constant, because the algorithm in effect scans the input once and each
cell of M once, performing only a constant amount of work at each step. Our algorithm
satisfies requirement (1) because it guarantees that all the even groups to the left of the
TC have already been rejected as possible leftmost-palindrome centers. We now show how
requirement (2) may be satisfied. The essential idea is to associate with each even group
that has "failed," i.e. is not the center of a leftmost palindrome, an integer "failure num-
ber," tha t is, the number of letters to its right that match the letters to its left. This
number is inserted as soon as it is discovered that the node has failed. The situation can be
visualized by continuing our example after moving the cursor to 16 and discovering a
failure. The situation is shown in Figure 3, in which the list has been "bent" in order to
show the TC as a "vertex."

In Figure 3, the inverted triangle means "beginning of input string" and the double line
indicates a matching failure. The number m, as shown, is the failure number, ~n(i). Upon
failure, the algorithm enters m into a field in the node representing the TC. In the present
example, the TC has just failed, and its failure number has been entered into it. Since the
nodes to its left have also failed (i.e. nodes ~ and ~ in Figure 3), they also contain failure
numbers. We now consider the nodes to the right of TC in left-to-right order. (I t is clear
that each such node must have a symmetric image about the just rejected TC, i.e. ~ for
a' and f~ for jS' in Figure 3.) Define an integer n for each such node, defined as the number
of letters just beyond it up to the double line. In our example, the first such node is a ' ,
and ha, = 3, indicating the length of the substring commencing at position 13 and ending

FzG. 1

FIG. 2

A New Linear-Time "On-Line" Algorithm 349

at 15. The critical part of the algorithm is to compare no, with m o, the failure number for
ce. Three cases may occur.

Case 1. no, > ms. (See Figure 4.) In this case, the initial matching strings of length
m ~, together with the nonmatching letters on either side, are both faithfully reproduced
around a ' , by symmetry about the just rejected TC and because n., > ms. Consequently,
a r cannot be a TC and can be summarily rejected. In this case it is clear, moreover, that
rno, = ms; the assignment ma, 4-'- m . is now made.

Case 2. n. , <: ma. (See Figure 5.) In this case, it is known by symmetry about the
just rejected TC that the initial n., letters on either side of a ' match. The fact that a
mismatch occurs just beyond (see Figure 5) must mean that a ' is not a TC and that,
moreover, rna, = ha, .

Proof. I f the next letter had not caused a mismatch about the just reiected TC, then
by symmetry the initial n~, ~ 1 letters on either side of ~' would have matched. The fact
tha t a mismatch did occur indicates that a different letter was chosen, and this must
therefore produce a mismatch of letters just beyond the initial n~, letters. []

In cases 1 and 2, our algorithm rejects d and passes on to/3', assigning min(m~, no,)
to m ~,. If/3' fails, it passes on to the node beyond/3', etc.

Case 3. n~, = m~. In this case, it is possible for the new node to be the TC. I t then
becomes the TC, with the assurance that all nodes to the left have been rejected and have
been assigned a failure number.

In the present example, a ' b-ill be summarily rejected because n,, = 3 while m~ = 2;
its failure number will be set to 2. /3' will not be rejected because n~, = 2 and m~ = 2;
in fact, it turns out to be the center of the initial palindrome.

The algorithm is encoded in ALGOL. D is the input string, and its symbols are repre-
sented as integers.

(~ m=5 (string 11001, commencing
at position 11)

®

4
lho. 3

®

inHiol port of mcI

FIG. 5

FIo. 4

350 GLENN MANACHER

INTEGER PROCEDURE P A L (D , N); VALUE N; INTEGER N; INTEGER ARRAY D;
BEGIN INTEGER COUNT, ENP, MDP, BP; INTEGER ARRAY M(I:N - 1);
COMMENT N is the length of the input string. E N P (end pointer) is the cursor, M D P (middle

pointer) is the temporary center, and BP (beginning pointer) is the element of D that is the mirror
image of the cursor about the TC. All of these of course are indexes. The procedure P A L returns
either the index just beyond the initial even palindrome, if there is one, or else 0 if there is none;

E N P := 1; P A L := 0;
LI: E N P := E N P -~ 1; IF E N P = N + 1 THEN GOTO DONE;
M D P := B P :--- E N P -- 1; COUNT := 0;
L2: WHILE D (E N P) = D(BP) DO

BEGIN
COUNT := COUNT -}- 1; E N P := E N P -I- 1; B P := B P -- 1;
IF B P = 0 THEN

BEGIN
P A L := E N P ; GOTO DONE
E ND;

IF E N P = N -}- 1 THEN GOTO DONE
END;

M(MDP) := COUNT; COMMENT Filling in # of symbols mirrored about MDP;
FOR F := 1 STEP 1 UNTIL COUNT DO
IF M (M D P - F) -~= COUNT - F THEN
M (M D P -}- F) := M I N (C O U N T - F, M (M D P - F)) ELSE

BEGIN
M D P := M D P -}- F; COUNT := COUNT - F;
B P := M D P - COUNT; GOTO L2
END;

GOTO L1;
DONE:
END

The extensions of this algorithm to other closely related problems are straightforward.
To find the initial odd palindrome of length greater than or equal to 3 (the general case

of length 1 or greater being tr ivial) , associate the cells of M with the symbol positions of
D, ra ther than the interstices, and disallow "pal indrome" solutions with m = 0.

To find the initial even or odd palindrome of length greater than or equal to 2, combine
the original algori thm ~ i th the above variant , running the two " in parallel ."

To test whether the original string is of the form (w w R)*, obeying the s ta ted constraints
of the original algorithm, apply the algori thm repeatedly, removing the leftmost palin-
drome found on the previous iteration. Stop when only the void string is left. (P ra t t ' s
lemma, mentioned a t the beginning of this paper, assures the success of this scheme.)

Final ly, we mention a few general points.
(1) We have called our algorithm "on-line" because i t does not examine any symbols

beyond the initial string it is looking for. Fischer [3] has posed the problem of finding all

the prefix palindromes as follows. Given a string X -- X 1 X 2 . . . X n , compute the Boolean
vector Z = Z1Z2. • .Z~, where Z~+I = 1 if X1X2 . • .X~ -- X ~ X , _ I . . .X1, and 0 otherwise.
Thus Z~+I is 1 if i is the index of the end of an initial palindrome and 0 other~ise. I t is
clear t ha t a small adapta t ion of our algori thm will compute this function on-line in linear
time. The adapta t ion consists of (a) inserting 0 into Z for those positions of the cursor
where a pal indrome is not discovered, (b) inserting 1 into Z for the positions in which a
pal indrome is discovered, and then proceeding as if a failure had occurred. (The value of
m inserted into the TC is of course half the length of the discovered palindrome.) Com-
bining the algorithm, thus adapted, with its odd-length analogue, as explained in the last
paragraph, solves this problem.

(2) I t appears possible tha t the ideas described can be adapted or extended to pro-
vide real-time recognition of (w w R) * on an RASI , where by real-t ime we mean tha t there
is one left- to-right scan of the input and a bounded number of legal operations (in Cook's

A New Linear-Time "On-Line" Algorithm 351

sense) between examinations of each symbol and between examination of the last symbol
and issuance of a yes-or-no answer. This is perhaps not altogether surprising, as a Russian
author [6] claims to have proven an even stronger result, namely, that one may examine
a string ~ith a multitape Turing machine that will determine in real time, upon reaching
the ith symbol, whether that symbol is the end of the shortest initial even pahndrome.'

(3) The remarks of the two preceding paragraphs indicate that reasonably defined
on-line and real-time RAMs are computational models deserving serious study; we believe
that their properties are nontrivial and ~ill prove not to be analogous to results obtained
for on-line and real-time Turing machines.

(4) The language (ww R)* may be of interest in another connection. I t is an open ques-
tion [1] whether two-way DPDA languages include context-free languages. We feel
strongly that the answer is no, and that a good way to prove it is to show that (wwR) *
is not a two-way DPDA language. If that can be proven, it follows that two-way DPDA
languages do not include on-line-recognizable languages either.

ACKNOWLEDGMENTS. The author would like to thank the referee for his sharp and timely
comments, which materially aided the preparation of this paper. Dr. Alfred Aho also
provided useful guidance.

REFERENCES

1. AHo, A. Currents in the Theory of Computing. Prentice-Hall, Englewood Cliffs, N. J., 1973.
2. COOK, S.A. Linear time simulation of deterministic two-way pushdown automata. Information

Processing 71, North~Holland Pub. Co., Amsterdam, 1972, pp. 75-80.
3. FISCHER, M. String matching add other products. Project MAC Memo. 41, M.I.T., Cambridge,

Mass., Jan. 1974.
4. HOPCROFT, J., AHO, A., AND ULLMAN, J. The Design and Analysis of Computer Algorilhms.

Addison-Wesley, Reading, Mass., 1974.
5. KNUTH, D. E., MORRm, J. H., ANB PRX~r, V .R . Fast pat tern matching in strings. Tech. Rep.

CS 440, Computer Sci. Dep., Stanford U., Stanford, Calif., 1974.
6. SI.ISENEO, A.O. Recognition of palindromes by multihead Turing machines. Proc. of the Stek-

lov Math. Inst., Aead. of Sciences of the USSR, Vol. 129, 1973, pp. 30--202.
7. WEISER, P. Linear pat tern matching algorithms. IEEE Symp. on Switching and A u t o m a t a

Theory, Vol. 14, 1973, pp. 1-11.

RECEIVED DECEMBER 1973; REVISED NOVEMBER 1974

This paper, of some 200 pages, is still untranslated and the proof apparently in some doubt. The
best reliable result on an on-line Turing machine is due to Fischer [3]; i t requires time n log n, where
rt is the length of the input string.

Journal of the Association for Computing Machinery, Vol. 22, No. 3, July 1975

