
DECAF: Detecting and Characterizing Ad Fraud in Mobile Apps

Bin Liu∗, Suman Nath‡, Ramesh Govindan∗, Jie Liu‡

∗University of Southern California, ‡Microsoft Research

Abstract
Ad networks for mobile apps require inspection of

the visual layout of their ads to detect certain types of
placement frauds. Doing this manually is error prone,
and does not scale to the sizes of today’s app stores. In
this paper, we design a system called DECAF to auto-
matically discover various placement frauds scalably and
effectively. DECAF uses automated app navigation, to-
gether with optimizations to scan through a large number
of visual elements within a limited time. It also includes
a framework for efficiently detecting whether ads within
an app violate an extensible set of rules that govern ad
placement and display. We have implemented DECAF
for Windows-based mobile platforms, and applied it to
1,150 tablet apps and 50,000 phone apps in order to char-
acterize the prevalence of ad frauds. DECAF has been
used by the ad fraud team in Microsoft and has helped
find many instances of ad frauds.

1 Introduction
Several recent studies have pointed out that advertising
in mobile (smartphones and tablets) apps is plagued by
various types of frauds. Mobile app advertisers are esti-
mated to lose nearly 1 billion dollars (12% of the mobile
ad budget) in 2013 due to these frauds [4]. The frauds
fall under two main categories: (1) Bot-driven frauds em-
ploy bot networks or paid users to initiate fake ad impres-
sions and clicks [4] (more than 18% impressions/clicks
come from bots [13]), and (2) Placement frauds ma-
nipulate visual layouts of ads to trigger ad impressions
and unintentional clicks from real users (47% of user
clicks are reportedly accidental [12]). Mobile app pub-
lishers are incentivized to commit such frauds since ad
networks pay them based on impression count [10, 7, 8],
click count [7, 8], or more commonly, combinations of
both [7, 8]. Bot-driven ad frauds have been studied re-
cently [4, 20, 44], but placement frauds in mobile apps
have not received much attention from the academic
community.
Contributions. In this paper, we make two contribu-
tions. First, we present the design and implementation of
a scalable system for automatically detecting ad place-
ment fraud in mobile apps. Second, using a large collec-
tion of apps, we characterize the prevalence of ad place-

Figure 1: Placement Fraud Examples

ment fraud and how these frauds correlate with app rat-
ings, app categories, and other factors.
Detecting ad fraud. In Web advertising, most fraud de-
tection is centered around analyzing server-side logs [54]
or network traffic [42, 43], which are mostly effective for
detecting bot-driven ads. These can also reveal place-
ment frauds to some degree (e.g., an ad not shown to
users will never receive any clicks), but such detection
is possible only after fraudulent impressions and clicks
have been created. While this may be feasible for mo-
bile apps, we explore a qualitatively different approach:
to detect fraudulent behavior by analyzing the structure
of the app, an approach that can detect placement frauds
more effectively and before an app is used (e.g., before it
is released to the app store). Our approach leverages the
highly specific, and legally enforceable, terms and con-
ditions that ad networks place on app developers (Sec-
tion 2). For example, Microsoft Advertising says devel-
opers must not “edit, resize, modify, filter, obscure, hide,
make transparent, or reorder any advertising” [11]. De-
spite these prohibitions, app developers continue to en-
gage in fraud: Figure 1 shows (on the left) an app in
which 3 ads are shown at the bottom of a page while ad
networks restrict developers to 1 per page, and (on the
right) an app in which an ad is hidden behind UI buttons.

The key insight in our work is that manipulation of
the visual layout of ads in a mobile app can be program-
matically detected by combining two key ideas: (a) a UI
automation tool that permits automated traversal of all
the “pages” of a mobile app, and (b) extensible fraud
checkers that test the visual layout of each “page” for

1

compliance with an ad network’s terms and conditions.
While we use the term ad fraud, we emphasize that our
work deems as fraud any violation of published terms
and conditions, and does not attempt to infer whether the
violations are intentional or not.

We have designed a system called DECAF that lever-
ages the insight discussed above (Section 3). First, it em-
ploys an automation tool called a Monkey that, given a
mobile app binary, can automatically execute it and nav-
igate to various parts of the apps by simulating user in-
teraction (e.g., clicking a button, swiping a page, etc.).
Abstractly, a Monkey traverses a state transition graph,
where pages are states, and a click or swipe triggers a
transition from one state to the next. The idea of using
a Monkey is not new [48, 37, 35]. The key optimiza-
tion goals of designing a Monkey are good coverage and
speed—the Monkey should be able to traverse a good
fraction of target states in a limited time. This can be
challenging as for many apps with dynamically varying
content (e.g., news apps), the state transition graph can
be infinitely large. Even for relatively simpler apps, re-
cent work has shown that naı̈ve state traversal based on
a UI automation framework can take several hours [35].
Combined with the size of app stores (over a million apps
on Google Play alone), this clearly motivates the need
for scalable traversal1. Recent works therefore propose
optimization techniques, many of which require instru-
menting apps [48] or the OS [37].

A key feature of DECAF is that it treats apps and un-
derlying OS as black boxes and relies on a UI automa-
tion framework. The advantage of this approach is its
flexibility: DECAF can scan apps written in multiple
languages (e.g., Windows Store apps can be written in
C#, HTML/JavaScript, and C++) and potentially from
different platforms (e.g., Windows and Android). How-
ever, the flexibility comes at the cost of very limited in-
formation from the UI automation framework. Existing
automation frameworks provide only information about
UI layout of the app’s current page and do not provide
information such as callback functions, system events,
etc. that are required by optimizations proposed in [48]
and [37]. To cope with this, DECAF employs several
novel techniques: a fuzzy matching-based technique to
robustly identify structurally similar pages with similar
ad placement (so that it suffices for the Monkey to visit
only one of them), a machine learning-based predictor to
avoid visiting equivalent pages, an app usage based tech-
nique to prioritize app navigation paths, and a resource
usage based technique for fast and reliable detection of

1 It is also possible to scale by parallelizing the exploration of apps
on a large cluster, but these resources are not free. Our efficiency
improvements are orthogonal to parallelization and enable more effi-
cient cluster usage, especially for apps that may have to be repeatedly
scanned because they contain dynamic content.

page load completion. The techniques do not need app or
OS instrumentation and greatly improves the Monkey’s
coverage and speed.

The second component of DECAF is to efficiently
identify fraudulent behavior in a given app state. We
find that, rather surprisingly, analyzing visual layout of
an app page to detect possible ad fraud is nontrivial. This
is due to complex UI layouts of app pages (especially in
tablet apps), incomplete UI layout information from the
UI automation framework (e.g., missing z-coordinate),
mismatch between device’s screen size and app’s page
size (e.g., panoramic pages), and variable behavior of ad
networks (e.g., occasionally not serving any ad due to
unavailability of specific types of ads), etc. We develop
novel techniques to reliably address these challenges.

We have implemented DECAF to run on Windows 8
(tablet) apps and Windows Phone 8 apps (Section 5). Ex-
periments show that DECAF achieves a coverage of 94%
(compared to humans) in 20 minutes of execution per
app and is capable of detecting many types of ad frauds
in existing apps (Section 6).
Characterizing Ad Fraud. Using DECAF we have also
analyzed 50,000 Windows Phone 8 apps and 1,150 Win-
dows tablet apps, and discovered many occurrences of
various types of frauds (Section 7). Many of these frauds
were found in apps that have been in app stores for
more than two years, yet the frauds remained undetected.
We have also correlated the fraud data with various app
metadata crawled from the app store and observed inter-
esting patterns. For example, we found that fraud inci-
dence appears independent of ad rating on both phone
and tablet, and some app categories exhibit higher inci-
dence of fraud than others but the specific categories are
different for phone and tablet apps. Finally, we find that
few publishers commit most of the frauds. These results
suggest ways in which ad networks can selectively allo-
cate resources for fraud checking.

DECAF has been used by the ad fraud team in Mi-
crosoft and has helped detect many fraudulent apps.
Fraudulent publishers were contacted to fix the problems,
and the apps whose publishers did not cooperate with
such notices have been blacklisted and denied ad deliv-
ery. To our knowledge, DECAF is the first tool to auto-
matically detect ad fraud in mobile app stores.

2 Background, Motivation, Goals and
Challenges

Background. Many mobile app publishers use in-app
advertisements as their source of revenue; more than
50% of the apps in major app stores show ads [30]. To
embed ads in an app, an app publisher registers with a
mobile ad network such as AdMob[6], iAd [8], or Mi-
crosoft Mobile Advertising [9]. In turn, ad networks con-

2

tract with advertisers to deliver ads to apps. Generally
speaking, the ad network provides the publisher with an
ad control (i.e., a library with some visual elements em-
bedded within). The publisher includes this ad control in
her app, and assigns it some screen real estate. When the
app runs and the ad control is loaded, it fetches ads from
the ad network and displays it to the user.

Ad networks pay publishers based on the number of
times ads are seen (called impressions) or clicked by
users, or some combination thereof. For example, Mi-
crosoft Mobile Advertising pays in proportion to total
impression count × the overall click probability.

Motivation. To be fair to advertisers, ad networks
usually impose strict guidelines (called prohibitions) on
how ad controls should be used in apps, documented
in lengthy Publisher Terms and Conditions. We call
all violations of these prohibitions frauds, regardless of
whether they are violated intentionally or unintention-
ally. There are several kinds of frauds.

Placement Fraud. These frauds relate to how and where
the ad control is placed. Ad networks impose placement
restrictions to prevent impression or click inflation, while
the advertiser may restrict what kinds of content (i.e., ad
context) the ads are placed with. For instance, Microsoft
Mobile Advertising stipulates that a publisher must not
“edit, resize, modify, filter, obscure, hide, make transpar-
ent, or reorder any advertising” and must not “include
any Ad Inventory or display any ads ... that includes ma-
terials or links to materials that are unlawful (including
the sale of counterfeit goods or copyright piracy), ob-
scene,...” [11]. Similarly, Google AdMob’s terms dictate
that “Ads should not be placed very close to or under-
neath buttons or any other object which users may ac-
cidentally click while interacting with your application”
and “Ads should not be placed in areas where users will
randomly click or place their fingers on the screen” [1].

Interaction Fraud. Ad networks impose restrictions on
fraudulent interactions with ad controls, such as us-
ing bots to increase clicks, repeatedly loading pages to
generate frequent ad requests, or offering incentives to
users. Publishers cannot cache, store, copy, distribute,
or redirect any ads to undermine ad networks’ business,
nor can they launch denial of service attacks on the ad
servers [11].

Content Fraud. This class of frauds refers to the ac-
tual contents within the ad control. Publishers should
not modify ad contents, and must comply with content
regulations on certain classes of apps (e.g., regulations
preventing adult content in apps designed for children).
So ad publishers are required to disclose to the ad net-
work what type of apps (or pages) the control is used in,
so that the ad network can filter ads appropriately.

Detecting violations of these prohibitions manually in

mobile apps can be extremely tedious and error prone.
This is because an app can have many pages (many
content-rich tablet apps have upwards of hundreds of
pages) and some violations (e.g., ads hidden behind UI
controls) cannot often be detected by visual inspection.
This, combined with the large number of apps in app
stores (over a million for both Google Play and Apple’s
App Store) clearly suggests the need for automation in
mobile app ad fraud detection.
Goals. In this paper, we focus on automated detection of
two categories of placement frauds in mobile apps.
Structural frauds: These frauds relate to how the ad con-
trols are placed. Violators may manipulate the UI lay-
out to inflate impressions, or to reduce ad’s foot print on
screen. This can be done in multiple ways:

• An app page contains too many ads (Microsoft Ad-
vertising allows at most 1 ad per phone screen and 3
ads per tablet screen [11]).
• Ads are hidden behind other controls (e.g., buttons or

images) or placed outside the screen. (This violates
the terms and conditions in [11, 1]). Developers often
use this trick to give users the feel of an “ad-free app”,
or to accommodate many ads in a page while evading
manual inspection.
• Ads are resized and made too small for users to read.
• Ads are overlapped with or placed next to actionable

controls, such as buttons, to capture accidental clicks.
Contextual frauds: These frauds place ads in inappropri-
ate contexts. For example, a page context fraud places
ads in pages containing inappropriate (e.g., adult) con-
tent. Many big advertisers, especially the ones who try
to increase brand image via display ads, do not want
to show ads in such pages. Ad networks therefore pro-
hibit displaying ads in pages containing “obscene, porno-
graphic, gambling related or religious” contents [11]
Publishers may violate these rules in an attempt to inflate
impression counts.

Beyond detecting fraud, a second goal of this paper
is to characterize the prevalence of ad fraud by type,
and correlate ad fraud with app popularity, app type, or
other measures. Such a characterization provides an ini-
tial glimpse into the incidences of ad fraud in today’s
apps, and, if tracked over time, can be used to access the
effectiveness of automated fraud detection tools.
Challenges. The basic approach to detecting placement
fraud automatically is to programmatically inspect the
visual elements and content in an app. But, because
of the large number of apps and their visual complexity
(especially on tablets), programmed visual inspection of
apps requires searching a large, potentially unbounded.
space. In this setting, inspection of visual elements thus
faces two competing challenges: accuracy, and scalabil-
ity. A more complete search of the visual elements can

3

yield high accuracy at the expense of requiring signifi-
cant computation and therefore sacrificing scalability. A
key research contribution in this paper is to address the
tension between these challenges.

Beyond searching the space of all visual elements, the
second key challenge is to accurately identify ad fraud
within a given visual element. Detecting structural frauds
in an app page requires analyzing the structure of the
page and ads in it. This analysis is more challenging than
it seems. For example, checking if a page shows more
than one ad (or k ads in general) in a screen at any given
time might seem straightforward, but can be hard on a
panoramic page that is larger than the screen size and
that the user can horizontally pan and/or vertically scroll.
Such a page may contain multiple ads without violating
the rule, as long as no more than one ad is visible in any
scrolled/panned position of the screen (this is known as
the “sliding screen” problem). Similarly whether an ad
is hidden behind other UI controls is not straightforward
if the underlying framework does not provide the depths
(or, z-coordinates) of various UI controls. Finally, detect-
ing contextual fraud is fundamentally more difficult as it
requires analyzing the content of the page (and hence not
feasible in-field when real users use the apps).

3 DECAF Overview
DECAF is designed to be used by app stores or ad net-
works. It takes a collection of apps and a set of fraud
compliance rules as input, and outputs apps/pages that
violate these rules. DECAF runs on app binaries and does
not assume any developer input.

One might consider using static analysis of an app’s
UI to detect structural fraud. However, a fraudulent app
can dynamically create ad controls or change their prop-
erties during run time and bypass such static analysis.
Static analysis also fails to detect contextual fraud. DE-
CAF therefore performs dynamic checking (analogous to
several recent works [48, 37, 35, 47]) in which it checks
the implementation of an app by directly executing it in
an emulator.

Unlike previous efforts [48, 37], DECAF uses a black-
box approach where it does not instrument the app binary
or the OS. This design choice is pragmatic: Windows 8
tablet apps are implemented in multiple languages (C#,
HTML/Javascript, C++)2, and our design choice allows
us to be language-agnostic. However, as we discuss later,
this requires novel techniques to achieve high accuracy
and high speed.

Figure 2 shows the architecture of DECAF. DECAF
runs mobile apps in an emulator and interacts with the
app through two channels: a UI Extraction channel for
extracting UI elements and their layout in the current

2In a sample of 1,150 tablet apps, we found that about 56.5% of the
apps were written in C#, 38.3% in HTML/Javascript, and 5.2% in C++.

Figure 2: The architecture of DECAF includes a Mon-
key that controls the execution and an extensi-
ble set of fraud detection policies.

page of an app (shown as a Document Object Model
(DOM) tree in Figure 2), and a UI Action channel for
triggering an action on a given UI element (such as click-
ing on a button). In Section 5, we describe how these
channels are implemented. DECAF itself has two key
components: (1) a Monkey that controls the app execu-
tion using these channels and (2) a fraud checker that
examines page contents and layout for ad fraud.

3.1 The Monkey

The execution of an app by a Monkey can be viewed
as traversal on a state-transition graph that makes tran-
sitions from one state to the next based on UI inputs,
such as clicking, swiping, and scrolling. Each state cor-
responds to a page in the app, and the Monkey is the
program that provides UI inputs (through the UI Action
channel) for each visited state.

At each state that it visits, the Monkey uses the UI
extraction channel to extract page information, which in-
cludes (1) structural metadata such as size, location, vis-
ibility, layer information (z-index) of each ad and non-ad
control in the current page, and (2) content such as the
text, images, and urls in the page. The information is ex-
tracted from the DOM tree of the page; the DOM tree
contains all UI elements on a given page along with con-
tents of the elements. The Monkey also has a dictionary
of actions associated with each UI type, such as click-
ing a button, swiping a multi-page, and scrolling a list,
and uses this dictionary to generate UI inputs on the UI
action channel.

Starting from an empty state and a freshly loaded app,
the Monkey iterates through the UI controls on the page
to the next state, until it has no transitions to make (either
because all its transitions have been already explored, or
it does not contain any actionable UI control). Before
making a transition, the Monkey must wait for the cur-
rent page to be completely loaded; page load times can
be variable due to network delays, for example. After
visiting a state, it uses one of two strategies. If a (hard-
ware or software) back button is available, it retracts to a

4

previous (in depth-first order) state. If no back button is
available (e.g., many tablets do not have a physical back
button and some apps do not provide a software back but-
ton), the Monkey restarts the app, navigates to the previ-
ous state through a shortest path from the first page, and
starts the exploration process.

In order to explore a large fraction of useful states
within a limited time, the Monkey needs various opti-
mizations. For example, it needs to determine if two
states are equivalent so that it can avoid exploring states
that have already been visited. It also needs to priori-
tize states, so that it can explore more important or use-
ful states within the limited time budget. We discuss in
Section 4 how DECAF addresses these. The Monkey
also needs to address many other systems issues such
as dealing with non-deterministic transitions and tran-
sient crashes, detecting transition to an external program
(such as a browser), etc. DECAF incorporates solutions
to these issues, but we omit the details here for brevity.

3.2 Fraud Checker

At each quiescent state, DECAF invokes the fraud
checker. The checker has a set of detectors, each of
which decides if the layout or page context violates a par-
ticular rule. While DECAF’s detectors are extensible, our
current implementation includes the following detectors.
Small Ads: The detector returns true if any ad in the given
page is smaller than the minimal valid size required by
the ad network. The operation is simple as the automa-
tion framework provides widths and heights of ads.
Hidden Ads: The detector returns true if any ad in the
given page is (partially) hidden or unviewable. Concep-
tually, this operation is not hard. For each ad, the detector
first finds the non-ad GUI elements, then checks if any of
these non-ad elements is rendered above the ad. In prac-
tice, however, this is nontrivial due to the fact that exist-
ing automation frameworks (e.g., for Windows and for
Android) do not provide z-coordinates of GUI elements,
complicating the determination of whether a non-ad ele-
ment is rendered above an ad. We describe in Section 4.4
how DECAF deals with this.
Intrusive Ads: The detector returns true if the distance
between an ad control and a clickable non-ad element is
below a predefined threshold or if an ad control partially
covers a clickable non-ad control. Detecting the latter
can also be challenging since the automation framework
does not provide z-coordinates of UI elements. We de-
scribe in Section 4.4 how DECAF deals with this.
Many Ads: The detector returns true if the number of
viewable ads in a screen is more than k, the maximum
allowed number of ads. This can be challenging due to
the mismatch of apps’ page size and device’s screen size.
To address the sliding screen problem discussed before, a

naı̈ve solution would check all possible screen positions
in the page and see if there is any violation at any posi-
tion. We propose a more efficient solution in Section 4.4.
Inappropriate Context: The detector returns true if an
ad-containing page has inappropriate content (e.g., adult
content) or if the app category is inappropriate. Detecting
whether or not page content is inappropriate is outside
the scope of the paper; DECAF uses an existing system3

that employs a combination of machine-classifiers and
human inputs for content classification.

4 Optimizations for Coverage and Speed
The basic system described in Section 3 can explore most
states of a given app4. However, this may take a long
time: as [35] reports, this can take several hours for apps
designed to have simple UIs for in-vehicle use, and our
work considers content-rich tablet apps for which naı̈ve
exploration can take significantly longer. This is not
practical when the goal is to scan thousands of apps. In
such cases, the Monkey will have a limited time budget,
say few tens of minutes, to scan each app; indeed, in
DECAF, users specify a time budget for each app, and
the Monkey explores as many states as it can within that
time. With limited time, naı̈ve exploration can result in
poor coverage of the underlying state transition graph,
and consequent inaccuracy in ad fraud detection. In this
section, we develop various techniques to address this
problem. The techniques fall under three general cate-
gories that we describe next.

4.1 Detecting Equivalent States

To optimize coverage, a commonly used idea is that after
the Monkey detects that it has already explored a state
equivalent to the current state, it can backtrack without
further exploring the current state (and other states reach-
able from it). Thus, a key determinant of coverage is the
definition of state equivalence. Prior work [35] points out
that using a strict definition, where two states are equiv-
alent if they have an identical UI layout, may be too re-
strictive; it advocates a heuristic for UI lists that defines
a weaker form of equivalence.

DECAF uses a different notion of state equivalence,
dictated by the following requirements. First, the equiv-
alence should be decided based on fuzzy matching rather
than exact matching. This is because even within the
same run of the Monkey, the structure and content of the
“same” state can vary due to dynamic nature of the corre-
sponding page and variability in network conditions. For
example, when the Monkey arrives at a state, a UI wid-
get in the current page may or may not appear depending

3Microsoft’s internal system, used by its online services.
4Without any human involvement, however, the Monkey can fail to

reach states that require human inputs such as a login and a password.

5

on whether the widget has successfully downloaded data
from the backend cloud service.

Second, the equivalence function should be tunable to
accommodate a wide range of fraud detection scenarios.
For detecting contextual frauds, the Monkey may want
to explore all (or as many as possible within a given time
budget) distinct pages of an app, so that it can check ap-
propriateness of all contents of the app. In such a case,
two states are equivalent only if they have the same con-
tent. For detecting structural frauds, on the other hand,
the Monkey may want to explore only the pages that have
unique structure (i.e., layout of UI elements). In such
cases, two states with the same structure are equivalent
even if their contents differ. How much fuzziness to tol-
erate for page structure and content should also be tun-
able: the ad network may decide to scan some “poten-
tially bad” apps more thoroughly than the others (e.g.,
because their publishers have bad histories), and hence
can tolerate less fuzziness on those potentially bad apps.

DECAF achieves the first requirement by using a flex-
ible equivalence function based on cosine similarity of
feature vectors of states. Given a state, it extracts vari-
ous features from the visible elements in the DOM tree
of the page. More specifically, the name of a feature is
the concatenation of a UI element type and its level in the
DOM tree, while its value is the count and total size of
element contents (if the element contains text or image).
For example, the feature (TextControl@2, 100,
2000) implies that the page contains 100 Text UI el-
ements of total size 2000 bytes at level 2 of the DOM
tree of the page. By traversing the DOM tree, DECAF
discovers such features for all UI element types and their
DOM tree depths. This gives a feature vector for the page
that looks like: [(Image@2, 10, 5000), (Text@1, 10,
400), (Panel@2, 100, null),. . .].

To compare if two states are equivalent, we com-
pute cosine similarity of their feature vectors and con-
sider them to be equivalent if the cosine similarity is
above a threshold. This configurable threshold achieves
our second requirement; it acts as a tuning parameter
to configure the strictness of equivalence. At one ex-
treme, a threshold of 1 specifies content equivalence of
two states5. A smaller threshold implies a more relaxed
equivalence, fewer states to be explored by the Mon-
key, and faster exploration of states with less fidelity in
fraud detection. To determine structural equivalence of
two states, we ignore the size values in feature vectors
and use a smaller threshold to accommodate slight vari-
ations in page structures. Our experiments indicate that
a threshold of 0.92 strikes a good balance between thor-

5On rare occasions, two pages with different content can be classi-
fied as equivalent if their text (or image) content has exactly the same
count and total size. This is because we rely on count and size, instead
of contents, of texts and images to determine equivalence of pages.

oughness and speed while checking for structural frauds.

4.2 Path Prioritization

A Monkey is a general tool for traversing the UI state
transition graph, but many (especially tablet) apps con-
tain too many states for a Monkey to explore in a lim-
ited time budget. Indeed, some apps may even contain
a practically infinite number of pages to explore. Con-
sider a cloud-based news app that dynamically updates
its content once every few minutes. In this app, new news
pages can keep appearing while the Monkey is exploring
the app, making the exploration a never-ending process.
Given that the Monkey can explore only a fraction of app
pages, without careful design, the Monkey can waste its
time exploring states that do not add value to ad fraud
detection, and so may not have time to explore useful
states. This is a well-known problem with UI traversal
using a Monkey, and all solutions to this problem lever-
age problem-specific optimizations to improve Monkey
coverage. DECAF uses a novel state equivalence predic-
tion method to prioritize which paths to traverse in the
UI graph for detecting structural fraud, and a novel state
importance assessment for detecting contextual fraud.

4.2.1 State Equivalence Prediction
To motivate state equivalence prediction, consider ex-
ploring all structurally distinct pages of a news-serving
app. Assume that the Monkey is currently in state P0,
which contains 100 news buttons (leading to structurally
equivalent states P0,0 · · ·P0,99 and one video button (lead-
ing to P0,100). The Monkey could click the buttons in
the same order as they appear in the page. It would first
recursively explore state P0,0 and its descendent states,
then visit all the P0,1−99 states, realize that that they are
all equivalent to already visited state P0,1, return to P0. Fi-
nally, it will explore P0,100 and its descendant states. This
is clearly sub-optimal, since the time required to (1) go
from P0 to each of the states P0,1−99 (forward transition)
and (2) then backtracking to P0 (backward transition) is
wasted. The forward transition time includes the time for
the equivalent page to completely load (we found this to
be as large as 30 sec in our experiments).
Backward transitions can be expensive. The naı̈ve
strategy above can also be pathologically sub-optimal in
some cases. Most mobile devices do not have a physi-
cal back button, so apps typically include software back
buttons and our Monkey uses various heuristics based on
their screen location and name to identify them. How-
ever, in many apps, the Monkey can fail to automatically
identify the back button (e.g., if they are placed in un-
usual locations in the page and are named differently). In
such cases the Monkey does not have any obvious way
to directly go back to the previous page, creating uni-
directional edges in the state graph. In our example, if

6

the transition between P0 and P0,1 is unidirectional, the
backward transition would require the Monkey to restart
the app and traverse through all states from the root to
P0, while waiting for each state to load completely be-
fore moving to the next state. Overall, the wasted time
per button is as high as 3 minutes in some of our exper-
iments, and this can add up to a huge overhead if there
are many such pathological traversals.

The net effect of above overheads is that the Monkey
can run out of time before it gets a chance to explore the
distinct state P0,100. A better strategy would be to first
explore pages with different UI layouts (P0,0 and P0,100 in
previous example), and then if the time budget permits,
to explore remaining pages.
Minimizing state traversal overhead using prediction.
These overheads could have been minimized if there was
a way to predict whether a unidirectional edge would
take us to a state equivalent to an already visited state.
Our state equivalence prediction leverages this intuition,
but in a slightly different way. On a given page, it de-
termines which buttons would likely lead to the same (or
similar) states, and then explores more than one of these
buttons only if the time budget permits. Thus, in our ex-
ample, if the prediction were perfect, it would click on
the button leading to the video page P0,100 before click-
ing on the second (and third and so on) news button.

One might attempt to do such prediction based on
event handlers invoked by various clickable controls, as-
suming that buttons leading to equivalent states will in-
voke the same event handler and those leading to dif-
ferent states will invoke different handlers. The event
handler for a control can be found by static analysis of
code. This, however, does not always work as event han-
dlers can be bound to controls during run time. Even if
the handlers can be reliably identified, different controls
may not be bound to different handlers; for example, we
found a few popular apps that bind most of their clickable
controls to a single event handler, which acts differently
based on runtime arguments.

DECAF uses a language-agnostic approach that only
relies on the run-time layout properties of the various UI
elements. The approach is based on the intuition that
UI controls that lead to equivalent states have similar
“neighborhoods” in the DOM tree: often their parents
and children in the UI layout hierarchy are of similar type
or have similar names. This intuition, formed by exam-
ining a number of apps, suggests that it might be possible
to use machine-classification to determine if two UI con-
trols are likely to lead to the same state.

Indeed, our approach uses supervised learning to con-
struct a binary classifier for binary feature vectors. Each
feature vector represents a pair of UI controls, and each
element in the feature vector is a Boolean answer to the
questions listed in Table 1. For any two UI controls, these

Control Do they have the same name?
Features Do they have the same ID?

Are they with the same UI element type?
Parent Do they have a same parent name path?
Features Do they have a same parent ID path?

Do they have a same parent UI element type path?
Child Do their children share a same name set?
Features Do their children share a same ID set?

Do their children share a same UI element type set?

Table 1: SVM classifier features

questions can be answered from the DOM tree of the
page(s) they are in. We construct a binary SVM classifier
from a large labelled dataset; the classifier takes as input
the feature vector corresponding to two UI controls, and
determines whether they are likely to lead to equivalent
states (if so, the UI controls are said to be equivalent).

In constructing the classifier, we explored various fea-
ture definitions, and found ones listed in Table 1 to be
most accurate. For instance, we found that features di-
rectly related to a control’s appearance (e.g., color and
size) are not useful for prediction because they may be
different even for controls leading to equivalent states.

Our Monkey uses the predictor as follows. For ev-
ery pair of UI controls in a page, the Monkey determines
whether that pair is likely to lead to the same state. If
so, it clusters the UI controls together, resulting in a set
of clusters each of which contains equivalent controls.
Then, it picks one control (called the representative con-
trol) from each cluster and explores these; the order in
which they are explored is configurable (e.g., increas-
ing/decreasing by their cluster size, or randomly). The
Monkey then continues its depth-first state exploration,
selecting only representative controls in each state tra-
versed. After all pages have been visited by exploring
only representative controls, the Monkey visits the non-
representative controls if the time budget permits. Algo-
rithm 1 shows the overall algorithm. Note that the SVM-
based clustering is also robust to dynamically chang-
ing pages—since the Monkey explores controls based on
their clusters, it can simply choose whatever control is
available during exploration and can ignore the controls
that have disappeared between the time clusters were
computed and when the Monkey is ready to click on a
control.

4.2.2 State Importance Assessment
State prediction and fuzzy state matching does not help
with state equivalence computed based on page content,
as is required for contextual fraud detection. In such
cases, the Monkey needs to visit all content-wise distinct
pages in an app, and apps may contain too many pages
to be explored within a practical time limit.

DECAF exploits the observation that not all pages
within an app are equally important. There are pages
that users visit more often and spend more time than oth-
ers. From ad fraud detection point, it is more important
to check those pages first, as those pages will show more

7

Algorithm 1 Cluster clickable controls

1: INPUT: Set C of clickable controls of a page
2: OUTPUT: Clickable controls with cluster labels
3: for i from 1 to C.Length do
4: C[i].clusterLabel =−1
5: currentClusterLabel = 1
6: for i from 1 to C.Length do
7: if C[i].clusterLabel < 0 then
8: C[i].clusterLabel = currentClusterLabel
9: currentClusterLabel ++

10: for j from i+1 to C.Length do
11: if C[j].clusterLabel < 0 then
12: {SVM predict outputs true if two input con-

trols is predicted to be in a same cluster}
13: if SVM Predict(C[i],C[j]) then
14: C[j].clusterLabel =C[i].clusterLabel

ads to users. DECAF therefore prioritizes its exploration
of app states based on their “importance”—more impor-
tant pages are explored before less important ones.

Using app usage for estimating state importance. The
importance of a state or page is an input to DECAF and
can be obtained from app usage statistics from real users,
either by using data from app analytic libraries such as
Flurry [5] and AppInsight [50] or by having users use
instrumented versions of apps.

From this kind of instrumentation, it is possible to ob-
tain a collection of traces, where each trace is a path from
the root state to a given state. The importance of a state
is determined by the number of traces that terminate at
that state. Given these traces as input, DECAF combines
the traces to generate a trace graph, which is a subgraph
of the state transition graph. Each node in the trace graph
has a value and a cost, where value is defined as the im-
portance of the node (defined above) and cost is the av-
erage time for the page to load.

Prioritizing state traversal using state importance. To
prioritize Monkey traversal for contextual fraud, DECAF
solves the following optimization problem: given a cost
budget B (e.g., total time to explore the app), it deter-
mines the set of paths that can be traversed within time B
such that total value of all nodes in the paths is max-
imized. The problem is NP-Hard, by reduction from
Knapsack, so we have evaluated two greedy heuristics
for prioritizing paths to explore: (1) Best node, which
chooses the next unexplored node with the best value to
cost ratio, and (2) Best path, which chooses the next un-
explored path with the highest total value-total cost ratio.
We evaluate these heuristics in Section 6.

Since app content can change dynamically, it is pos-
sible that a state in a trace disappears during the Mon-
key’s exploration of an app. In that case, DECAF uses

the trained SVM to choose another state similar to the
original state. Finally, traces can be useful not only to
identify important states to explore, but also to navigate
to states that require human inputs. For example, if nav-
igating to a state requires username/password or special
text inputs that the Monkey cannot produce, and if traces
incorporate such inputs, the Monkey can use them during
its exploration to navigate to those states.

4.3 Page Load Completion Detection

Mobile apps are highly asynchronous but UI extraction
channels typically do not provide any callback to an
external observer when the rendering of a page com-
pletes. Therefore, DECAF has no way of knowing when
the page has loaded in order to check state equivalence.
Fixed timeouts, or timeouts based on a percentile of the
distribution of page load times, can be too conservative
since these distributions are highly skewed. App instru-
mentation is an alternative, but has been shown to be
complex even for managed code such as C# or Java [50].

DECAF uses a simpler technique that works for apps
written in any language (including C++, html/javascript).
It uses a page load monitor which it monitors all I/O
(Networking, Disk and Memory) activities of the app
process, and maintains their sum over a sliding window
of time T . If this sum goes below a configurable thresh-
old ε , the page is considered to be loaded; the intuition
here is that as long as the page is loading, the app should
generate non-negligible I/O traffic. The method has the
virtue of simplicity, but comes at a small cost of latency,
given by sliding window length, to detect the page load.

4.4 Fraud Checker Optimizations

DECAF incorporates several scalability optimizations as
part of its fraud checkers.

Detecting too many ads. As mentioned in Section 3,
detecting whether a page contains more than k ads in
any given screen position can be tricky. DECAF uses
a more efficient algorithm whose computational com-
plexity depends only on the total number of ads in the
page and not on the page or screen size. The algorithm
uses a vertical moving window across the page whose
width is equal to the screen width and height is equal
to the page height; this window is positioned succes-
sively at the right edges of rectangles representing ads.
Within each such window, a horizontal strip of height
equal to the screen height is moved from one ad rectangle
bottom-edge to the next; at each position, the algorithms
computes the number of ads visible inside the horizontal
strip, and exits if this number exceeds a certain threshold.
The complexity of this algorithm shown in Algorithm 2,
is O(N2 log(N)), where N is the total number of ads in
the page.

8

Algorithm 2 Detect ad number violation

1: INPUT: Set D of ads in a page, where D[k]R,x and
D[k]R,y are the x and y coordinates of the bottom-
right corner of the k-th ad, and D[k]L,x and D[k]L,y
are about the top-left corner; ad number limit U

2: OUTPUT: Return true if the violation is detected
3: Dx = {QuickSort D by D[k]R,x’s of ads}
4: Dy = {QuickSort D by D[k]R,y’s of ads}
5: for i from 1 to D.Length do
6: Sx = {BinarySearch on Dx to get ads

with D[k]R,x ≥ D[i]R,x and D[k]L,x ≤
D[i]R,x + screenWidth }

7: Dy(Sx) = {the subset of Dy which is formed by
elements in Sx}

8: for j from 1 to Dy(Sx).Length do
9: Sy = {BinarySearch on Dy(Sx) to get ads

with D[k]R,y ≥ Dy(Sx)[j]R,y and D[k]L,y ≤
Dy(Sx)[j]R,y + screenHeight]}

10: if Sy.Length>U then
11: return true
12: return false

Detecting hidden and intrusive ads. As discussed in
Section 3, determining if an ad is completely hidden or
partially overlapped by other GUI elements is challeng-
ing due to missing z-coordinates of the elements. To deal
with that, DECAF uses two classifiers described below.

Exploiting DOM-tree structure. This classifier predicts
relative z-coordinates of various GUI elements based on
their rendering order. In Windows, rendering order is the
same as the depth-first traversal order of the DOM tree;
i.e., if two elements have the same x- and y-coordinates,
the one at the greater depth of the DOM tree will be ren-
dered over the one at the smaller depth. The classifier
uses this information, along with x- and y-coordinates of
GUI elements as reported by the automation framework,
to decide if an ad element is hidden or partially over-
lapped by a non-ad element.

This classifier, however, is not perfect. It can occasion-
ally classify a visible ad as hidden (i.e., false positives)
when the GUI elements on top of the ad are invisible and
the visibility status is not available from the DOM tree
information.

Analyzing screenshots. This approach uses image pro-
cessing to detect if a target ad is visible in the app’s
screenshots. It requires addressing two challenges: (1)
knowing what the ad looks like, so that the image pro-
cessing algorithm can search for target ad, and (2) refo-
cusing, i.e., making sure that the screenshot captures the
region of the page containing the ad.

To address the first challenge, we use a proxy that

serves the apps with fiducials: dummy ads with eas-
ily identifiable patterns such as a checker-board pattern.
The proxy intercepts all requests to ad servers and replies
with fiducials without affecting normal operations of the
app. The image processing algorithm then looks for the
specific pattern in screenshots. To address the refocusing
challenge, the Monkey scrolls and pans app pages and
analyzes screenshots only when the current screen of the
page contains at least one ad.

The classifier, like the previous one, is not perfect ei-
ther. It can classify hidden ads as visible and vice versa
due to imperfections in the image processing algorithm
(especially when the background of the app page is sim-
ilar to the image pattern in the dummy ad) and to the
failure of the Monkey to refocus.
Combining the classifiers. The two classifiers described
above can be combined. In our implementation, we take
a conservative approach and declare an ad to be hidden
if it is classified as hidden by both the classifiers.

4.5 Discussion

Parallel Execution. DECAF can scan multiple apps in
parallel. We did not investigate scanning a single app
with multiple Monkeys in parallel. This is because scan-
ning at the granularity of an app is sufficient in practice
(See Section 6.3) and scanning at any finer granularity
introduces significant design complexity (e.g., to coordi-
nate Monkeys scanning the same app and to share states
among them).
Smarter Ad Controls. DECAF’s fraud checker op-
timizations can be implemented within the ad control.
Such a “smart” ad control would perform all the DECAF
checks while users use an app and take necessary actions
if ads are to be shown in fraudulent ways (e.g., not serv-
ing ad to or disregarding clicks from the app or the page).
This, however, introduces new challenges such as per-
mitting communication among ad controls on the same
app page, preventing modification of the ad control li-
brary through binary code injection, permitting safe ac-
cess to the entire app page from within the ad control6,
etc., so we have left an exploration of this to future work.

5 Implementation
Tablet/Phone differences. We have implemented DE-
CAF for Windows Phone apps (hereafter referred to as
phone apps) and Windows Store apps (referred to as
tablet apps). One key difference between our proto-
types for these two platforms is how the Monkey inter-
acts with apps. Tablet apps run on Windows 8, which
provides Windows UI automation framework (similar to

6Especially for HTML apps, an ad control is not able to access con-
tent outside its frame due to the same origin policy.

9

Android MonkeyRunner [2]); DECAF uses this frame-
work directly. Tablet apps can be written in C#,
HTML/JavaScript, or C++ and the UI framework allows
interacting with them in a unified way. On the other
hand, DECAF runs phone apps in Windows Phone Emu-
lator, which does not provide UI automation, so we use
techniques from [48] to extract UI elements in current
page and manipulate mouse events on the host machine
running the phone emulator to interact with apps.
Other implementation details. As mentioned earlier,
tablets have no physical back buttons, and apps incorpo-
rate software back buttons. DECAF contains heuristics to
identify software back buttons, but these heuristics also
motivate state equivalence prediction. Furthermore, we
use Windows performance counter [16] to implement the
page load monitor.

To train the SVM classifier for state equivalence, we
manually generated 1,000 feature vectors from a collec-
tion of training apps and used grid search with 10-fold
cross validation to set the model parameters. The chosen
parameter set had a highest cross-validation accuracy of
98.8%. Finally, for our user study reported in the next
section, we use Windows Hook API [14] and Windows
Input Simulator [15] to record and replay user interac-
tions.

6 Evaluation
In this section, we evaluate the overall performance of
DECAF optimizations. For lack of space, we limit the
results to tablet apps only, since they are more complex
than phone apps. Some of our results are compared with
ground truth, which we collect from human users, but
since the process is not scalable, we limit our study to
the 100 top free apps (29 HTML/JavaScript apps and 71
C# apps) from the Windows Store. In the next section,
we run DECAF on a larger set of phone and mobile apps
to characterize ad frauds.

6.1 State Equivalence Prediction

To measure accuracy of our SVM model and its effec-
tiveness in exploring distinct states, we need ground truth
about distinct pages in our app set. We found that static
analysis is not very reliable in identifying distinct states,
as an app can include 3rd party libraries containing many
page classes but actually use only a handful of them.
We therefore use humans to find the ground truth. We
gave all the 100 apps to real users, and asked them to ex-
plore as many unique pages as possible7. For each app,
we combined all pages visited by users and counted the
number of structurally distinct pages in the app. Since
apps typically have relatively small number of struc-
turally distinct pages (mean 9.15, median 5), we found

7This also mimics manual app inspection for frauds.

humans to be effective in discovering all of them.
Accuracy of SVM model. We evaluated our SVM
model on the ground truths and found that it has a false
positive rate of 8% and false negative rate of 12%8. Note
that false negatives do not affect the accuracy of the Mon-
key; it only affects the performance of the Monkey by
unnecessarily sending it to equivalent states. However,
false positives imply that the Monkey ignores some dis-
tinct states by mistakenly assuming they are equivalent
states. To deal with that, we keep the Monkey running
and let it explore the remaining states in random order
until the time budget is exhausted. This way, the Mon-
key gets a chance to explore some of those missed states.
Benefits of using equivalence prediction. To evaluate
the effectiveness of SVM-based state equivalence predic-
tion, we use an SVM Monkey, with prediction enabled,
and a Basic Monkey, that does not do any prediction and
hence realizes a state is equivalent only after visiting it.
We run each app twice, once with each version of the
Monkey for 20 minutes.

We measure the Monkey’s state exploration perfor-
mance using a structural coverage metric, defined as the
fraction of structurally distinct states the Monkey visits,
compared with the ground truth found from real users. A
Monkey with a structural coverage value of 1 is able to
explore all states required to find all structural frauds.

Figure 3(a) shows the structural coverage of the ba-
sic and the SVM Monkey, when they are both given 20
minutes to explore each app. In this graph, lower is bet-
ter: the SVM Monkey achieves less than perfect cover-
age only for about 30% of the apps, while the basic Mon-
key achieves less than perfect coverage for over 70% of
the apps. Overall, the mean and median coverages of the
SVM Monkey are 92% and 100% respectively, and its
mean and median coverage improvements are 20.37%
and 26.19%, respectively. The SVM Monkey achieves
perfect coverage for 71 apps.

Figure 3(b) shows median coverage of the SVM and
the basic Monkey as a function of exploration time per
app (the graph for mean coverage looks similar, and
hence is omitted). As shown, the SVM monkey achieves
better coverage for other time limits as well, so for
a given target coverage, the SVM Monkey runs much
faster than the basic Monkey. For example, the basic
Monkey achieves a median coverage of 66% in 20 min-
utes, while the SVM Monkey achieves a higher median
coverage of (86%) in only 5 mins.

The SVM Monkey fails to achieve perfect coverage for
29 of the 100 apps we tried, for several reasons: the Win-
dows Automation Framework occasionally fails to rec-
ognize a few controls; some states require app-specific

8We emphasize that these rates are not directly for fraudulent ads
but for predicting whether or not two clickable controls have the same
click handler.

10

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Structural coverage

C
D

F

Basic Monkey
SVM Monkey

(a) Structural coverage in 20
minutes of exploration per app

5 10 15 20
0

0.2

0.4

0.6

0.8

1

Execution time, in minutes, per app

M
ed

ia
n

st
ru

ct
ur

al
 c

ov
er

ag
e

Basic Monkey
SVM Monkey

(b) Median coverage as a func-
tion of exploration time

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Page crawling time (second)

C
D

F

(c) Page crawling speed

0 300 600 900 1200
0

0.2

0.4

0.6

0.8

1

SVM mode finish time (second)

C
D

F

(d) App crawling speed

Figure 3: CDF of evaluation result

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

V
al

ue
 C

ov
er

ag
e

Execution time, in minutes, per app

Random Node
Best Node
Random Path
Best Path

Figure 4: Value coverage as a function of exploration
time per app, with various prioritization al-
gorithms.

text inputs (e.g., a zipcode for location-based search) that
our Monkey cannot handle; and some apps just have a
large state transition graph. Addressing some of these
limitations is left to future work, but overall we are en-
couraged by the coverage achieved by our optimizations.
In the next section, we demonstrate that DECAF can be
scaled to a several thousand apps, primarily as a result of
these optimizations.

6.2 Assessing State Importance

We now evaluate the best node and the best path strate-
gies (Section 4.2.2) with two baselines that do not ex-
ploit app usage statistics: random node, where the Mon-
key chooses a random unexplored next state and random
path, where the Monkey chooses a random path in the
state graph.

To assign values and costs of various app states, we
conducted a user study to obtain app usage information.
We picked five random apps from five different cate-
gories and for each app, we asked 16 users to use it for
5 minutes each. We instrumented apps to automatically
log which pages users visit, how much time they spend
on each page, how long each page needs to load, etc.
Based on this log, we assigned each state a value pro-
portional to the total number of times the page is visited
and a cost proportional to the average time the page took
to load. To compare various strategies, we use the met-
ric value coverage, computed as the ratio of the sum of
values of visited states and that of all states.

We ran the Monkey with all four path prioritization
strategies for total exploration time limits of 5, 10, 20

and 40 minutes. As Figure 4 shows, value coverage in-
creases monotonically with exploration time. More im-
portantly, path-based algorithms outperform node-based
algorithms, as they can better exploit global knowledge
of values of entire paths; the best-path algorithm signif-
icantly outperforms the random-path algorithm (average
improvement of 27%), highlighting the value of exploit-
ing app usage. Furthermore, exploring all (content-wise)
valuable states of an app can take longer than exploring
only structurally distinct states. For the set of apps we
use in this experiment, achieving a near-complete cover-
age takes the Monkey 40 minutes.

6.3 Overall Speed and Throughput

Figure 3(c) shows the CDF of time the Monkey needs
to explore one app state, measured across all 100 apps.
This time includes all the operations required to process
the corresponding page: waiting for the page to be com-
pletely loaded, extracting the DOM tree of the page, de-
tecting structural fraud in the state, and deciding the next
transition. The mean and median times to explore a page
is 13.5 and 12.1 sec respectively; a significant compo-
nent of this time is the additional 5-second delay in de-
tecting page load completion as discussed in Section 4.3.
We are currently exploring methods to reduce this de-
lay. Figure 3(d) shows the CDF of time DECAF needs
to explore one app. The CDF is computed over 71 apps
that the Monkey could finish exploring within 20 min-
utes. The mean and median time for an app is 11.8 min-
utes and 11.25 minutes respectively; at this rate, DECAF
can scan around 125 apps on a single machine per day.

7 Characterizing Ad Fraud
In this section, we characterize the prevalence of ad
frauds, compare frauds by type across phone and tablet
apps, and explore how ad fraud correlates with app rat-
ing, size, and several other factors. To obtain these re-
sults, we ran DECAF on 50,000 Windows Phone apps
(phone apps) and 1,150 Windows 8 apps (tablet apps).9

9 For Windows Phone, we consider SilverLight apps only. Some
apps especially games are written in XNA that we ignore. Also, the
Monkey is not yet sophisticated enough to completely traverse games
such as Angry Birds. For Tablet apps, we manually sample simple
games from the Games category.

11

Table 2: Occurrences of various fraud types among all
fraudulent apps

Fraud type Phone Apps Tablet Apps
Too many (Structural/impression) 13% 4%
Too small (Structural/impression) 40% 54%
Outside screen (Structural/impression) 19% 4%
Hidden (Structural/impression) 39% 32%
Structural/Click 11% 18%
Contextual 2% 20%

The Windows 8 App Store prevents programmatic app
downloads, so we had to manually download the apps
before running them through DECAF, hence the limit of
1,150 on tablet apps. Phone apps are randomly chosen
from all SilverLight apps in the app store in April 2013.
Microsoft Advertising used DECAF after April 2013 to
detect violations in apps and force publishers into com-
pliance, and our results include these apps. Tablet apps
were downloaded in September 2013, and were taken
from top 100 free apps in 15 different categories.

We did not evaluate state equivalence prediction and
state traversal prioritization with these apps. The sheer
scale of these apps, and our lack of access to app ana-
lytics, made it infeasible to collect the ground truth and
usage traces from users required for this evaluation.

Fraud by Type. Our DECAF-based analysis reveals that
ad fraud is widespread both in phone and in tablet apps.
In the samples we have, we discovered more than a thou-
sand phone apps, and more than 50 tablet apps, with at
least one instance of ad fraud; the precise numbers are
proprietary, and hence omitted.

Table 2 classifies the frauds by type (note that an app
may include multiple types of frauds). Apps exhibit all
of the fraud types that DECAF could detect, but to vary-
ing degrees; manipulating the sizes of ads, and hiding ads
under other controls seem to be the most prevalent both
on the phone and tablet. There are, however, interest-
ing differences between the two platforms. Contextual
fraud is significantly more prevalent on the tablet, be-
cause tablet apps are more content-rich (due to the larger
form factor). Ad count violations are more prevalent on
the phone, which has a stricter limit (1 ad per screen)
compared to the tablet (3 ads per screen).

Fraud by App Category. App stores classify apps by
category, and Figure 5 depicts distribution of ad fraud
frequency across app categories for both phone and tablet
apps. In some cases, fraud is equally prevalent across
the two platforms, but there are several instances where
fraud is more prevalent in one platform than the other.
For instance, navigation and entertainment (movie re-
views/timings) based apps exhibit more fraud on the
phone, likely because they are more frequently used on
these devices and publishers focus their efforts on these
categories. For a similar reason, tablets show a signif-

0%

5%

10%

15%

20%

Bo
ok
s &

 R
ef
er
en

ce
Bu

sin
es
s

Ed
uc
at
io
n

En
te
rt
ai
nm

en
t

Fi
na
nc
e

Fo
od

 &
 D
in
in
g

G
am

es
G
ov
er
nm

en
t

He
al
th
 &
 F
itn

es
s

Ki
ds
 +
 F
am

ily
Li
fe
st
yl
e

M
us
ic
+V

id
eo

N
ew

s &
 W

ea
th
er

Ph
ot
o

So
ci
al

Sp
or
ts

Pr
od

uc
tiv

ity
 +
 T
oo

ls
Tr
av
el

%
 F
ra
ud

ul
en
t a

pp
s

Phone Tablet

Figure 5: Distribution of fraudulent apps over various
categories

0%
10%
20%
30%
40%
50%
60%
70%

Rating 1 Rating 2 Rating 3 Rating 4 Rating 5

Fraud (phone)
NoFraud (Phone)
Fraud (Tablet)
NoFraud (Tablet)

Figure 6: Distribution of ratings for fraudulent and non-
fraudulent phone and tablet apps

icantly higher proportion of fraud than phones in the
Health, News and Weather, and Sports categories.

Frauds by rating. We also explore the prevalence of
fraud by two measures of the utility of an app. The first
measure is its rating value, rounded to a number from
1-5, and we seek to understand if fraud happens more of-
ten at one rating level than at another. Figure 6 plots the
frequency of different rating values across both fraudu-
lent and non-fraudulent apps, both for the phone and the
tablet. One interesting result is that the distribution of
rating values is about the same for fraudulent and non-
fraudulent apps; i.e., for a given rating, the proportion of
fraudulent and non-fraudulent apps is roughly the same.
Fraudulent and non-fraudulent phone apps have average
ratings of 1.8 and 1.98. For tablet apps, the average rat-
ings are 3.79 and 3.8, for fraudulent and non-fraudulent
apps respectively10. If rating is construed as a proxy for
utility, this suggests that the prevalence of fraud seems to
be independent of the utility of an app.

A complementary aspect of apps is popularity. While
we do not have direct measures of popularity, Figure 7
plots the cumulative distribution of rating counts (the
number of ratings an app has received) for phone apps,
which has been shown to be weakly correlated with
downloads [22] and can be used as a surrogate for
popularity (the graphs look similar for tablet apps as
well). This figure suggests that there are small distri-
butional differences in rating counts for fraudulent and
non-fraudulent apps; the mean rating counts for phone

10Average ratings for tablet apps are higher than that for phone apps
because we chose top apps for tablet.

12

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000

CD
F

Rating Count

FraudApp
NoFraudApp

Figure 7: CDF of of rating counts
for phone apps

0%

20%

40%

60%

80%

100%

0 500 1000

Co
m
pl
ia
nc
e

Publisher ID

Phone
0%

20%

40%

60%

80%

100%

0 50 100
Publisher ID

Tablet

Figure 8: Compliance rate of publishers
with multiple apps

1

10

100

1000

1 10 100 1000

Fr
au
du

le
nt
 a
pp

s

Publisher ID

Figure 9: Fraudulent app count
per phone app publisher

apps is 83 and 118 respectively, and for tablet apps is 136
and 157 respectively. However, these differences are too
small to make a categorical assertion of the relationship
between popularity and fraud behavior.

We had expected to find at least that lower popularity
apps, or apps with less utility would more likely exhibit
fraud behavior, since they have more incentive to do so.
These results are a little inconclusive and either suggest
that our intuitions are wrong, or that we need more di-
rect measures of popularity (actual download counts) to
establish the relationship.

The propensity of publishers to commit fraud. Each
app in an app store is developed by a publisher. A sin-
gle publisher may publish more than one app, and we
now examine how the instances of fraud are distributed
across publishers. Figure 8 plots the compliance rate for
phone and tablet apps for publishers who have more than
one app in the app store. A compliance rate of 100%
means that no frauds were detected across all of the pub-
lisher’s apps, while a rate of 0% means all the publisher’s
apps were fraudulent. The rate of compliance is much
higher in tablet apps, but that may also be because our
sample is much smaller. The phone app compliance may
be more reflective of the app ecosystem as a whole: a
small number of publishers never comply, but a signifi-
cant fraction of publishers commit fraud on some of their
apps. More interesting, the distribution of the number
of frauds across publishers who commit fraud exhibits a
heavy tail (Figure 9): a small number of publishers are
responsible for most of the fraud.

Takeaways. These measurement results are actionable
in the following way. Given the scale of the problem,
an ad network is often interested in selectively invest-
ing resources in fraud detection, and taken together, our
results suggest ways in which the ad network should,
and should not, invest resources wisely. The analysis
of fraud prevalence by type suggests that ad networks
could preferentially devote resources to different types
of fraud on different platforms; for instance, the ad count
and contextual frauds constitute the lion’s share of frauds
on tablets, so an ad network may optimize fraud detec-
tion throughput by running only these checkers. Sim-

ilarly, the analysis of fraud by categories suggests cat-
egories of apps to which ad networks can devote more
resources, and points out that these categories may de-
pend on the platforms. The analysis also points out that
ad networks should not attempt to distinguish by rating
or rating count. Finally, and perhaps most interesting, the
distribution of fraud counts by publisher suggests that it
may be possible to obtain significant returns on invest-
ment by examining apps from a small set of publishers.

8 Related Work
DECAF is inspired by prior work on app automation and
ad fraud detection.

App Automation. Today, mobile platforms like Android
provide UI automation tools [3, 2] to test mobile apps.
But these tools rely on the developer to provide automa-
tion scripts, and do not provide any visibility into the app
runtime so are inefficient and cannot be easily used for
detecting ad frauds.

Recent research efforts have built upon these tools to
provide full app automation, but their focus has been on
different applications: automated testing [37, 53, 18, 19,
28, 32, 45] and automated privacy and security detec-
tion [26, 29, 38, 49]. Automated testing efforts evalu-
ate their system only on a handful of apps and many of
their UI automation techniques are tuned to those apps.
Systems that look for privacy and security violations ex-
ecute on a large collection of apps but they only use ba-
sic UI automation techniques. Closest to our work is
AMC [35], which uses automated app navigation to ver-
ify UI properties for vehicular Android apps, but reported
exploration times of several hours per app and has been
evaluated on 12 apps. In contrast to all of these, DE-
CAF is designed for performance and scale to automat-
ically discover ad frauds violations in several thousand
apps. Symbolic and concolic execution [25, 21] are al-
ternative techniques for verifying properties of code, and
have been applied to mobile apps [19, 45]. For discov-
ering UI properties, UI graph traversal is a more natural
technique than concolic execution, but it may be possi-
ble to detect ad fraud using concolic execution, which we
have left to future work.

13

Tangentially relevant is work on crowdsourcing GUI
testing, and automated execution frameworks for Ajax
Web apps (Crawljax [41], AjaxTracker [36] and ATUSA
[40]). DECAF can use crowdsourcing to obtain state
importance, and Ajax-based frameworks don’t deal with
mobile app specific constraints.

Ad Fraud. Existing works on ad fraud mainly focus on
the click-spam behaviors, characterizing the features of
click-spam, either targeting specific attacks [17, 20, 44,
46], or taking a broader view [23]. Some work has ex-
amined other elements of the click-spam ecosystem: the
quality of purchased traffic [52, 55], and the spam profit
model [34, 39]. Very little work exists in exploring click-
spam in mobile apps. From the controlled experiment,
authors in [23] observed that around one third of the mo-
bile ad clicks may constitute click-spam. A contempo-
raneous paper [27] claimed that they are not aware of
any mobile malware in the wild that performs advertising
click fraud. Unlike these, DECAF focuses on detecting
violations to ad network terms and conditions, and even
before potentially fraudulent clicks have been generated.

With regard to detection, most existing works focus on
bot-driven click spam, either by analyzing search engine
query logs to identify outliers in query distributions [54],
characterizing networking traffic to infer coalitions made
by a group of bot-driven fraudsters [42, 43], or authen-
ticating normal user clicks to filter out bot-driven clicks
[31, 33, 51]. A recent work, Viceroi [24], designed a
more general framework that is possible to detect not
only bot-driven spam, but also some non-bot driven ones
(like search-hijacking). DECAF is different from this
body of work and focuses on user-based ad fraud in the
mobile app setting rather than the click-spam fraud in the
browser setting – to the best of our knowledge, ours is the
first work to detect ad fraud in mobile apps.

9 Conclusion
DECAF is a system for detecting placement fraud in mo-
bile app advertisements. It efficiently explores the UI
state transition graph of mobile apps in order to detect
violations of terms and conditions laid down by ad net-
works. DECAF has been used by Microsoft Advertising
to detect ad fraud and our study of several thousand apps
in the wild reveals interesting variability in the preva-
lence of fraud by type, category, and publisher. In the
future, we plan to explore methods to increase the cover-
age of DECAF’s Monkey, expand the suite of frauds that
it is capable of detecting, evaluate other metrics for de-
termining state importance, and explore attacks designed
to evade and DECAF and develop countermeasures for
these attacks.

Acknowledgements. We thank the anonymous referees
and our shepherd Aruna Balasubramanian for their com-

ments. We are grateful to Michael Albrecht, Rich Chap-
ler and Navneet Raja from Microsoft for their feedback
on early design of DECAF.

References
[1] AdMob Publisher Guidelines and Policies.

http://support.google.com/admob/answer/
1307237?hl=en&ref topic=1307235.

[2] Android Monkeyrunner. http://developer.android.
com/tools/help/monkeyrunner concepts.html.

[3] Android UI/Application Exerciser Monkey. http:
//developer.android.com/tools/help/monkey.html.

[4] Bots Mobilize. http://www.dmnews.com/
bots-mobilize/article/291566/.

[5] Flurry. http://www.flurry.com/.

[6] Google Admob. http://www.google.com/ads/
admob/.

[7] Google Admob: What’s the Difference Between
Estimated and Finalized Earnings? http://support.
google.com/adsense/answer/168408/.

[8] iAd App Network. http://developer.apple.com/
support/appstore/iad-app-network/.

[9] Microsoft Advertising. http://advertising.
microsoft.com/en-us/splitter.

[10] Microsoft Advertising: Build your business. http:
//advertising.microsoft.com/en-us/splitter.

[11] Microsoft pubCenter Publisher Terms and
Conditions. http://pubcenter.microsoft.com/
StaticHTML/TC/TC en.html.

[12] The Truth About Mobile Click Fraud. http://www.
imgrind.com/the-truth-about-mobile-click-fraud/.

[13] Up To 40% Of Mobile Ad Clicks May
Be Accidents Or Fraud? http://www.
mediapost.com/publications/article/182029/
up-to-40-of-mobile-ad-clicks-may-be-accidents-or.
html#axzz2ed63eE9q.

[14] Windows Hooks. http://msdn.microsoft.com/
en-us/library/windows/desktop/ms632589(v=vs.
85).aspx.

[15] Windows Input Simulator. http://inputsimulator.
codeplex.com/.

[16] Windows Performance Counters. http:
//msdn.microsoft.com/en-us/library/windows/
desktop/aa373083(v=vs.85).aspx.

14

http://support.google.com/admob/answer/1307237?hl=en&ref_topic=1307235
http://support.google.com/admob/answer/1307237?hl=en&ref_topic=1307235
http://developer.android.com/tools/help/monkeyrunner_concepts.html
http://developer.android.com/tools/help/monkeyrunner_concepts.html
http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/monkey.html
http://www.dmnews.com/bots-mobilize/article/291566/
http://www.dmnews.com/bots-mobilize/article/291566/
http://www.flurry.com/
http://www.google.com/ads/admob/
http://www.google.com/ads/admob/
http://support.google.com/adsense/answer/168408/
http://support.google.com/adsense/answer/168408/
http://developer.apple.com/support/appstore/iad-app-network/
http://developer.apple.com/support/appstore/iad-app-network/
http://advertising.microsoft.com/en-us/splitter
http://advertising.microsoft.com/en-us/splitter
http://advertising.microsoft.com/en-us/splitter
http://advertising.microsoft.com/en-us/splitter
http://pubcenter.microsoft.com/StaticHTML/TC/TC_en.html
http://pubcenter.microsoft.com/StaticHTML/TC/TC_en.html
http://www.imgrind.com/the-truth-about-mobile-click-fraud/
http://www.imgrind.com/the-truth-about-mobile-click-fraud/
http://www.mediapost.com/publications/article/182029/up-to-40-of-mobile-ad-clicks-may-be-accidents-or.html#axzz2ed63eE9q
http://www.mediapost.com/publications/article/182029/up-to-40-of-mobile-ad-clicks-may-be-accidents-or.html#axzz2ed63eE9q
http://www.mediapost.com/publications/article/182029/up-to-40-of-mobile-ad-clicks-may-be-accidents-or.html#axzz2ed63eE9q
http://www.mediapost.com/publications/article/182029/up-to-40-of-mobile-ad-clicks-may-be-accidents-or.html#axzz2ed63eE9q
http://msdn.microsoft.com/en-us/library/windows/desktop/ms632589(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms632589(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms632589(v=vs.85).aspx
http://inputsimulator.codeplex.com/
http://inputsimulator.codeplex.com/
http://msdn.microsoft.com/en-us/library/windows/desktop/aa373083(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa373083(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa373083(v=vs.85).aspx

[17] S. Alrwais, A. Gerber, C. Dunn, O. Spatscheck,
M. Gupta, and E. Osterweil. Dissecting Ghost
Clicks: Ad Fraud Via Misdirected Human Clicks.
In ACSAC, 2012.

[18] D. Amalfitano, A. Fasolino, S. Carmine,
A. Memon, and P. Tramontana. Using GUI
Ripping for Automated Testing of Android
Applications. In IEEE/ACM ASE, 2012.

[19] S. Anand, M. Naik, M. Harrold, and H. Yang. Au-
tomated Concolic Testing of Smartphone Apps. In
ACM FSE, 2012.

[20] T. Blizard and N. Livic. Click-fraud monetizing
malware: A survey and case study. In MALWARE,
2012.

[21] S. Bugrara and D. Engler. Redundant State Detec-
tion for Dynamic Symbolic Execution. In USENIX
ATC, 2013.

[22] P. Chia, Y. Yamamoto, and N. Asokan. Is this App
Safe? A Large Scale Study on Application Permis-
sions and Risk Signals. In WWW, 2012.

[23] V. Dave, S. Guha, and Y. Zhang. Measuring and
Fingerprinting Click-Spam in Ad Networks. In
ACM SIGCOMM, 2012.

[24] V. Dave, S. Guha, and Y. Zhang. ViceROI: Catch-
ing Click-Spam in Search Ad Networks. In ACM
CCS, 2013.

[25] C. Cadar D. Dunbar and D. Engler. Klee: Unas-
sisted and Automatic Generation of High-coverage
Tests for Complex Systems Programs. In USENIX
OSDI, 2008.

[26] W. Enck, P. Gilbert, B. Chun, L. Cox, J. Jung,
P. McDaniel, and A. Sheth. Taintdroid: an
Information-flow Tracking System for Realtime
Privacy Monitoring on Smartphones. In USENIX
OSDI, 2010.

[27] A. Felt, Porter, M. Finifter, E. Chin, S. Hanna, and
D. Wagner. A Survey of Mobile Malware in the
Wild. In ACM SPSM, 2011.

[28] S. Ganov, C. Killmar, S. Khurshid, and D. Perry.
Event Listener Analysis and Symbolic Execution
for Testing GUI Applications. In ICFEM, 2009.

[29] P. Gilbert, B. Chun, L. Cox, and J. Jung. Vision:
Automated Security Validation of Mobile apps at
App Markets. In MCS, 2011.

[30] M. Grace, W. Zhou, X. Jiang, and A. Sadeghi. Un-
safe Exposure Analysis of Mobile In-App Adver-
tisements. In ACM WiSec, 2012.

[31] H. Haddadi. Fighting Online Click-Fraud Using
Bluff Ads. ACM Computer Communication Re-
view, 40(2):21–25, 2010.

[32] C. Hu and I. Neamtiu. Automating GUI Testing for
Android Applications. In AST, 2011.

[33] A. Juels, S. Stamm, and M. Jakobsson. Combat-
ing Click Fraud via Premium Clicks. In USENIX
Security, 2007.

[34] C. Kanich, C. Kreibich, K. Levchenko, B. Enright,
G. Voelker, V. Paxson, and S. Savage. Spamalytics:
An Empirical Analysis of Spam Marketing Conver-
sion. In ACM CCS, 2008.

[35] K. Lee, J. Flinn, T. Giuli, B. Noble, and C. Peplin.
AMC: Verifying User Interface Properties for Ve-
hicular Applications. In ACM MobiSys, 2013.

[36] M. Lee, R. Kompella, and S. Singh. Ajax-
tracker: Active Measurement System for High-
fidelity Characterization of AJAX Applications. In
USENIX WebApps, 2010.

[37] A. MacHiry, R. Tahiliani, and M. Naik. Dynodroid:
An Input Generation System for Android Apps. In
ACM FSE, 2013.

[38] R. Mahmood, N. Esfahani, T. Kacem, N. Mirzaei,
S. Malek, and A. Stavrou. A Whitebox Approach
for Automated Security Testing of Android Appli-
cations on the Cloud. In AST, 2012.

[39] D. McCoy, A. Pitsillidis, G. Jordan, N. Weaver,
C. Kreibich, B. Krebs, G. Voelker, S. Savage, and
K. Levchenko. PharmaLeaks: Understanding the
Business of Online Pharmaceutical Affiliate Pro-
grams. In USENIX Security, 2012.

[40] A. Mesbah and A. van Deursen. Invariant-based
Automatic Testing of AJAX User Interfaces. In
ICSE, 2009.

[41] Ali Mesbah, Arie van Deursen, and Stefan
Lenselink. Crawling AJAX-based Web Applica-
tions through Dynamic Analysis of User Interface
State Changes. ACM Transactions on the Web,
6(1):1–30, 2012.

[42] A. Metwally, D. Agrawal, and A. El Abbadi. DE-
TECTIVES: DETEcting Coalition hiT Inflation at-
tacks in adVertising nEtworks Streams. In WWW,
2007.

15

[43] A. Metwally, F. Emekci, D. Agrawal, and A. El Ab-
badi. SLEUTH: Single-pubLisher attack dEtection
Using correlaTion Hunting. In PVLDB, 2008.

[44] B. Miller, P. Pearce, C. Grier, C. Kreibich, and
V. Paxson. What’s Clicking What? Techniques and
Innovations of Today’s Clickbots. In IEEE DIMVA,
2011.

[45] N. Mirzaei, S. Malek, C. Pasareanu, N. Esfahani,
and R. Mahmood. Testing Android Apps through
Symbolic Execution. ACM SIGSOFT Software En-
gineering Notes, 37(6):1–5, 2012.

[46] T. Moore, N. Leontiadis, and N. Christin. Fashion
Crimes: Trending-Term Exploitation on the Web.
In ACM CCS, 2011.

[47] M. Musuvathi, D. Park, A. Chou, D. Engler, and
D. Dill. CMC: a Pragmatic Approach to Model
Checking Real Code. In USENIX OSDI, 2002.

[48] Suman Nath, Felix Lin, Lenin Ravindranath, and
Jitu Padhye. SmartAds: Bringing Contextual Ads
to Mobile Apps. In ACM MobiSys, 2013.

[49] V. Rastogi, Y. Chen, and W. Enck. Appsplay-
ground: Automatic Security Analysis of Smart-
phone Applications. In ACM CODASPY, 2013.

[50] L. Ravindranath, J. Padhye, S. Agarwal, R. Maha-
jan, I. Obermiller, and S. Shayandeh. AppInsight:
Mobile App Performance Monitoring in the Wild.
In USENIX OSDI, 2012.

[51] F. Roesner, T. Kohno, A. Moshchuk, B. Parno,
H. Wang, and C. Cowan. User-Driven Access Con-
trol: Rethinking Permission Granting in Modern
Operating Systems. In IEEE S & P, 2012.

[52] K. Springborn, , and P. Barford. Impression Fraud
in Online Advertising via Pay-Per-View Networks.
In USENIX Security, 2013.

[53] W. Yang, M. Prasad, and T. Xie. A Grey-box Ap-
proach for Automated GUI-model Generation of
Mobile Applications. In FASE, 2013.

[54] F. Yu, Y. Xie, and Q. Ke. SBotMiner: Large Scale
Search Bot Detection. In ACM WSDM, 2010.

[55] Q. Zhang, T. Ristenpart, S. Savage, and G. Voelker.
Got Traffic? An Evaluation of Click Traffic
Providers. In WebQuality, 2011.

16

	Introduction
	Background, Motivation, Goals and Challenges
	DECAF Overview
	The Monkey
	Fraud Checker

	Optimizations for Coverage and Speed
	Detecting Equivalent States
	Path Prioritization
	State Equivalence Prediction
	State Importance Assessment

	Page Load Completion Detection
	Fraud Checker Optimizations
	Discussion

	Implementation
	Evaluation
	State Equivalence Prediction
	Assessing State Importance
	Overall Speed and Throughput

	Characterizing Ad Fraud
	Related Work
	Conclusion

