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Game theory has become an enormously important field of study. It is now 
a vital methodology for researchers and teachers in many disciplines, includ-
ing economics, political science, biology, and law. This book provides a thor-
ough introduction to the subject and its applications, at the intermediate level 
of instruction. It is designed for the upper-division game theory courses that are 
offered in most undergraduate economics programs and also serves graduate 
students in economics, political science, law, and business who seek a solid and 
readable introduction to the theory. The book can be a primary or secondary 
source for graduate courses that have a significant game-theoretic component.

I have designed this book in pursuit of the following three ideals:

1. Coverage of the Essential Topics, without Excess. This book covers the 
basic concepts and insights of game-theoretic reasoning, along with classic 
examples and applications, without being overblown. The entire book can 
be digested in a semester course. Thus, instructors will not have to worry 
about having their students skipping or bouncing between chapters as much 
as is the case with most other textbooks. In terms of content, the book’s 
major innovation is that it integrates an analysis of contract in the devel-
opment of the theory. Research on contract has blossomed in the past few 
decades and, in my experience, students are keenly interested in this impor-
tant game-theoretic topic. This book offers one of the first substantive treat-
ments of contract at the intermediate level, without bending too far from 
standard game theory coverage.

2. Proper Mathematics without Complication. This book does not skimp on 
mathematical precision. However, each concept and application presented 
here is developed using the simplest, most straightforward model that I 
could find. In other words, the book emphasizes mathematically rigorous 
analysis of simple examples rather than complicated or incomplete analysis 
of general models. This facilitates the reader’s understanding of key ideas 
without getting bogged down in unnecessary mathematical formalism.

3. Relaxed Style. This book is written in a style that is lively and not overly 
formal.

PREFACE
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xiv Preface

The book is also class-tested. It grew out of the undergraduate game theory 
course that I teach and has been developed and fine-tuned over the past decade. 
I used preliminary versions of the book for my game theory courses at the 
University of California, San Diego, and at Yale University. It was class-tested 
at Stanford University by Steven Tadelis, at the University of Michigan by Ennio 
Stacchetti, and at New York University by Charles Wilson. The first edition of 
the book was adopted for courses at numerous universities. I also have made 
it available as a supplemental textbook for my graduate game theory courses, 
including courses in the core microeconomics sequence. The journey to final, 
published book was carefully guided by comments from professors, reviewers, 
colleagues, and—to a significant extent—students. I am proud to report that the 
comments from students have been overwhelmingly positive.

The text is organized into four parts. Part I introduces the standard ways of 
representing games and carefully defines and illustrates the concepts of strategy 
and belief. Because the concept of strategy is so important, and because students 
who fail to grasp it inevitably sink deeper into confusion later on, I begin the 
formal part of the book with a nontechnical discussion of the extensive form. 
The material in Part I can be covered in just a couple of lectures, and it is an 
investment that pays great dividends later.

Part II presents the concepts used to analyze static settings. Part III surveys 
the refinements used to analyze dynamic settings, and Part IV looks at games 
with nature and incomplete information. In each part, I illustrate the abstract 
concepts and methodology with examples. I also discuss various “strategic 
tensions,” and I remark on the institutions that may resolve them. Several 
chapters—those whose titles appear italicized in the table of contents—are 
devoted to applications; instructors will certainly want to supplement, emphasize, 
or de-emphasize some of these in favor of their preferred ones. Applications 
in the book may be skimmed or skipped without disruption. With a couple of 
exceptions, each chapter contains a guided exercise with a complete solution, 
followed by assorted exercises for the reader to complete.

Some instructors—especially those who teach on the quarter system— may 
wish to skip a bit of the material in the book. In my own experience, I can usually 
get through most of the book in a ten-week quarter, but I normally leave out a 
few applications. I think most instructors faced with a ten-week time constraint 
can easily do the same. As noted in the preceding paragraph, any application can 
be skipped without danger of causing the students to miss an important point 
that will later be needed. Instructors who do not want to cover contract can, for 
example, skip Chapters 20, 21, and 25 For more suggestions on how to plan a 
course, please see the Instructor’s Manual posted on the publisher’s Internet site 
at www.wwnorton.com/college/econ/watson.
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1

INTRODUCTION 1

In all societies, people interact constantly. Sometimes the interaction is coop-
erative, such as when business partners successfully collaborate on a project. 

Other times the interaction is competitive, as exemplified by two or more firms 
fighting for market share, by several workers vying for a promotion that can be 
given to only one of them, or by rival politicians in an election. In either case, 
the term interdependence applies—one person’s behavior affects another per-
son’s well-being, either positively or negatively. Situations of interdependence 
are called strategic settings because, in order for a person to decide how best to 
behave, he must consider how others around him choose their actions. If partners 
want to complete a project successfully, they are well advised to coordinate their 
efforts. If a firm wishes to maximize its profit, it must estimate and analyze the 
stance of its rivals. If a worker wants to secure a promotion, she ought to consider 
the opposing efforts of her colleagues (so she can, for example, sabotage their 
work to her own benefit). If a politician wants to win an election, she should pick 
a campaign strategy that competes favorably with her opponent’s strategy.

Even on a bad-cogitation day, we can easily discover the truth that strategy 
is fundamental to the workings of society. But this realization is just the begin-
ning. For a greater challenge, we can try to develop an understanding of how 
people actually behave, and how they should be advised to behave, in strategic 
situations. A systematic study of this sort yields a theory of strategic interaction. 
The theory is useful in many ways. First, it identifies a language with which we 
can converse and exchange ideas about human endeavor. Second, it provides 
a framework that guides us in constructing models of strategic settings—a 
process that engenders insights by challenging us to be clear and rigorous in our 
thinking. Third, it helps us trace through the logical implications of assumptions 
about behavior.

Logical thinking about human behavior has proved useful for millen-
nia. In ancient times, religious and civil codes spoke directly to the methods 
and standards of negotiation, contract, and punishment, as they do today. The 
Babylonian Talmud, for example, established rules for the division of a man’s 
estate that foreshadow modern theories of apportionment. Hundreds of years 
ago, mathematicians began studying parlor games in an attempt to formulate 
optimal strategies. In 1713, James Waldegrave communicated a solution to a 
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2 1: Introduction

particular card game to his colleagues Pierre-Remond de Montmort and Nico-
las Bernoulli; Waldegrave’s solution coincides with the conclusion of modern 
theory. In the 1800s, Augustin Cournot explored equilibrium in models of 
oligopoly, and Francis Ysidro Edgeworth tackled bargaining problems in the 
context of exchange in an economy. In 1913, the first formal theorem for games 
(a result about chess) was proved by Ernest Zermelo. Emile Borel followed with 
groundbreaking work on the concept of a strategy.1

Then, in the 1920s, 1930s, and 1940s, largely through the work of the bril-
liant scholar John von Neumann, a true, rigorous, general theory of strategic 
situations was launched. It is called the theory of games. Von Neumann and 
Oskar Morgenstern wrote the seminal game theory book, which proposed in 
great detail how to represent games in a precise mathematical way and also 
offered a general method of analyzing behavior.2 But their method of analyz-
ing behavior was quite limited in that it could only be applied to a small class 
of strategic settings. Game theory became truly activated with the mid-century 
work of John Nash, who made the key distinction between “noncooperative” and 
“cooperative” theoretical models and created concepts of rational behavior—so 
called “solution concepts”—for both branches.3

In the ensuing decades, mathematicians and economists enriched the foun-
dation, gradually building one of the most powerful and influential toolboxes of 
modern social science. Currently, the theory is employed by practitioners from 
a variety of fields, including economics, political science, law, biology, inter-
national relations, philosophy, and mathematics. Research into the foundations 
and the proper application of game theory continues at a vigorous pace. Many 
components of the theory have yet to be developed; important settings await 
careful examination.

In this textbook, I introduce some of the building blocks of the theory 
and present several applications. Foremost, I wish to demonstrate the value of 
examining a strategic situation from the tight theoretical perspective. I believe 
structured, logical thinking can help anyone who finds herself in a strategic 
situation—and we all face strategic situations on a daily basis. More generally, 
game theory can help us understand how the forces of strategy influence the 
outcome of social—specifically economic—interaction. In other words, I hope 
you will find game theory useful in evaluating how the world works.

1A history of game theory appears on the Web site of Paul Walker at the University of Canterbury (www.econ
.canterbury.ac.nz/personal_pages/paul_walker/gt/hist.htm).
2J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior (Princeton, NJ: Princeton 
University Press, 1944).
3For more on von Neumann, Morgenstern, and Nash, see J. Watson, “John Forbes Nash, Jr.,” in The New 
Palgrave Dictionary of Economics (2nd ed.), ed. L. Bloom and S. Durlauf (Hampshire, England: Palgrave 
Macmillan, 2007).
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3Noncooperative Game Theory

NoNcooperative Game theory

Our tour will include a fairly complete presentation of “noncooperative game 
theory,” which is a framework that treats strategic settings as games in the every-
day sense of the word. Because the term game generally connotes a situation in 
which two or more adversaries match wits, games inherently entail interdepen-
dence in that one person’s optimal behavior depends on what he or she believes 
the others will do. We also normally associate games with sets of rules that 
must be followed by the players. Baseball, for example, features myriad codi-
fied rules that govern play: how many players are on the field and what they can 
do; how runs are scored, outs recorded, and innings completed; what must be 
done if a fan interferes with play; and so forth. As another example, the game 
of Monopoly includes a formal specification of the rules of play, from the order 
of moves to the determination of a winner. Rules are synonymous with our abil-
ity to agree on exactly what game is actually being played, and thus the careful 
specification of rules is an important part of the formal theory.

One major feature distinguishes noncooperative game theory from other 
frameworks for studying strategy: the noncooperative framework treats all of 
the agents’ actions as individual actions. An individual action is something that 
a person decides on his own, independently of the other people present in the 
strategic environment. Thus, it is accurate to say that noncooperative theories 
examine individual decision making in strategic settings. The framework does 
not rule out the possibility that one person can limit the options of another; nor 
is the theory incompatible with the prospect that players can make decisions in 
groups. In regard to group decision making, noncooperative models require the 
theorist to specify the procedure by which decisions get made. The procedure 
includes a specification of how agents negotiate options, which may include 
offers and counteroffers (taken to be individual actions). Indeed, there is a sense 
in which every decision that a person makes can be modeled as an individual 
action.

Thinking of actions as individual actions is perhaps the most realistic way 
of modeling the players’ options in a strategic setting. It also implies how one 
must go about studying behavior. In a game, each player has to make his or her 
own decisions. A player’s optimal decision depends on what he or she thinks 
the others will do in the game. Thus, to develop solution concepts—which are 
prescriptions or predictions about the outcomes of games—one must study how 
individual players make decisions in the presence of “strategic uncertainty” (not 
knowing for sure what other players will do).

One problem with noncooperative theory is that its tools are often very difficult 
to employ in applied settings. Creating a simple model necessarily entails leav-
ing quite a bit of strategic interaction outside of view. Further, even the analysis 
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4 1: Introduction

of very simple games can be prohibitively complicated. There is an art to build-
ing game-theoretic models that are simple enough to analyze, yet rich enough 
to capture intuition and serve as sources of new insights. In fact, the process of 
devising interesting models is often the most rewarding and illuminating part of 
working with theory. Not only do models provide an efficient way of parceling 
and cataloging our understanding, but also the struggle of fitting a simple math-
ematical model to a tremendously complex, real-world scenario often hastens the 
development of intuition. I try to gear the material in this book to highlight how 
useful modeling can be, in addition to developing most of the important theoreti-
cal concepts without becoming bogged down in the mathematics.

coNtract aNd cooperative Game theory

In some cases, it is helpful to simplify the analysis by abstracting from the 
idea that all decisions are treated as individual ones—that is, to depart from  
the strict noncooperative game theory mold. For example, instead of describ-
ing the complicated offers, counteroffers, and gestures available to people in 
a negotiation problem, one can sometimes find it useful to avoid modeling the 
negotiation procedure altogether and just think of the outcome of negotiation as 
a joint action. Analyzing behavior in models with joint actions requires a differ-
ent set of concepts from those used for purely noncooperative environments; 
this alternative theory is called “cooperative game theory.”

Cooperative game theory is often preferred for the study of contractual 
relations, in which parties negotiate and jointly agree on the terms of their rela-
tionship. Contractual relations form a large fraction of all strategic situations. In 
some cases, contracts are explicit and written, such as that between a worker and 
a manager, between a homeowner and a building contractor, between countries 
that have agreed on tariff levels, or between husband and wife. In other cases, 
contracts are less formal, such as when fellow employees make a verbal agree-
ment to coordinate on a project. This book considers contract as an integral part 
of strategic interaction. Contract selection and enforcement are therefore paid 
special attention.

For the sake of studying contract, this book presents some basic elements 
of cooperative game theory and provides a framework that generalizes non-
cooperative theory to incorporate joint actions.4 Remember that incorporating 

4To some extent, a rift has developed between the cooperative and the noncooperative approaches to studying 
games. As a result, “game theory” has developed somewhat independently of “contract theory,” despite that 
the latter is, for the most part, an application of the former. (The study of contract also includes analysis of 
institutions, including law and politics.)
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5The Meaning of “Game”

joint actions into a strategic model is a shorthand device allowing one to 
represent agents negotiating over certain things, without explicitly modeling 
the negotiation process itself. The objects of negotiation are considered spot-
contractible in the sense that an agreement on a joint action commits the agents 
to take this action.

the meaNiNG of “Game”

Before we launch into the theory, a note on conflict and cooperation is in order. 
Most sports and leisure games are considered adversarial contests (in which 
someone wins and someone loses). However, as already noted, many settings 
of interdependence do not fit so neatly into this category. In fact, most situa-
tions contain elements of conflict as well as elements of potential cooperation or 
coordination or both. Consider a firm in which two managers interact to develop 
a new product. Their individual actions may affect each other’s return from the 
project, so the setting involves interdependence. But must there be a winner and 
a loser? One can certainly imagine outcomes in which both managers “win” or 
“lose” to some degree. Perhaps if the managers cooperate with each other in 
developing the product, both will be likely to gain from the project’s success. 
On the other hand, each of the managers may have an incentive to provide less 
effort than the other would prefer.

For another example having elements of both conflict and cooperation, 
consider a contracting problem between a worker and his employer. They may 
need to bargain over a wage contract prior to the production of an economic 
good. Although the interests of the parties may conflict regarding the worker’s 
wage, their interests may be more aligned on another dimension. For instance, 
the parties may both prefer that the contract include a bonus for the worker to be 
granted in the event of exceptional performance on the job, because the bonus 
may give the worker the right incentive to generate profit that they can share. 
You may recognize this “concentrate on enlarging the pie” theme as the subject 
of some fluffy management-oriented books on bargaining. It is nonetheless a 
good example of how issues of conflict and cooperation arise simultaneously in 
many settings.

Keeping in mind that conflict and cooperation overlap, I take a broad view 
of what constitutes a game. In short, games are formal descriptions of strategic 
settings. Thus, game theory is a methodology of formally studying situations 
of interdependence. By “formally” I mean using a mathematically precise and 
logically consistent structure. With the right theoretical tools in place, we can 
study behavior in a variety of contexts and come to better understand economic 
and, more generally, social interaction.
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6 1: Introduction

This book is organized by conceptual topics, from the most basic (repre-
sentations of games and simple models of behavior), to the more structured 
(equilibrium and institutions), to the most complicated (dynamic settings with 
incomplete information). Most chapters introduce a concept that builds from 
those developed in preceding chapters. In the first half of the book, I emphasize 
three major tensions of strategic interaction that are identified by the theory: 
(1) the conflict between individual and group interests, (2) strategic uncertainty, 
and (3) the specter of inefficient coordination. I highlight the institutions that 
help alleviate the tensions. I also attempt to cover a wide variety of applications 
of the theory. In each case, my presentation of applications is geared toward 
isolating their fundamental strategic and economic components. I always try to 
find the simplest model that brings out the essential intuition, rather than devel-
oping complicated and general applied models.

Some of the chapters are solely dedicated to applied examples of the 
concepts developed previously; the titles of these chapters appear in italics in 
the table of contents. There also are five appendices. The first reviews some 
basic mathematical concepts that are used throughout the book. Appendices 
B–D elaborate on the material covered in Chapters 6, 7, 9, 11, 15, 18, and 19. 
Appendix E contains solutions to exercises 1, 3, 5, and 9 from each chapter 
(except where there are no such exercises).

You will have already noticed that I prefer a relaxed style of writing. My aim 
is to engage you, rather than lecture to you. Thus, I use the pronouns “I,” “we,” 
and “you,” with their standard meanings. I also toss in light-hearted comments 
here and there; I apologize if they rub you the wrong way. Regarding references, 
I cite relevant articles and books mainly to give credit to the originators of the 
basic concepts and to note historical events. If, after reading this book, you wish 
to probe the literature more deeply, I recommend consulting one of the fine 
graduate-level textbooks on game theory.5 I view most graduate textbooks as 
good reference manuals; they are worth having nearby, but they are not much 
fun to read. Finally, to those who disapprove of my style, I can’t resist taking 
liberties with a quip of Michael Feldman to say “write your own books.” 6

With all of these introductory comments now out of the way, let the fun 
begin.

5Three popular books are D. Fudenberg and J. Tirole, Game Theory (Cambridge, MA: MIT Press, 1991); 
R. B. Myerson, Game Theory (Cambridge, MA: Harvard University Press, 1991); and M. J. Osborne and 
A. Rubinstein, A Course in Game Theory (Cambridge, MA: MIT Press, 1994).
6Michael Feldman hosts Whad’Ya Know?—a popular U.S. radio program produced by Wisconsin Public 
Radio. He urges critics to “get your own shows.”
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Representations and  
Basic Assumptions

P A R t  I

There are several different ways of describing games 
mathematically. The representations presented here have the 
following formal elements in common:

1. a list of players,
2.  a complete description of what the players can do (their pos-

sible actions),
3. a description of what the players know when they act,
4.  a specification of how the players’ actions lead to outcomes, 

and
5. a specification of the players’ preferences over outcomes.

At this level of abstraction, the mathematical representation 
of a game is similar to the description of games of leisure. For 
example, the rules of the board game chess specify elements 
1 through 4 precisely: (1) there are two players; (2) the play-
ers alternate in moving pieces on the game board, subject to 
rules about what moves can be made in any given configuration 
of the board; (3) players observe each other’s moves, so each 
knows the entire history of play as the game progresses; (4) a 
player who captures the other player’s king wins the game, 
and otherwise, a draw is declared. Although element 5 is not 
implied by the rules of chess, one generally can assume that 
players prefer winning over a draw and a draw over losing.

There are two common forms in which noncooperative 
games are represented mathematically: the extensive form 
and the normal (strategic) form. I begin with a nontechnical 
description of the extensive form.
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9

The exTensive Form 2

In the fall of 1998, moviegoers had a generous selection of animated feature 
films from which to choose. Curiously, two of the films were about bugs: Dis-

ney Studio’s A Bug’s Life and DreamWorks SKG’s Antz. Audiences marveled 
at the computer-generated, cuteness-enhanced critters, as many followed the 
rivalry that brought the twin films into head-to-head competition. Rumor has it 
that Disney executives pondered the idea of an animated bug movie in the late 
1980s, during Jeffrey Katzenberg’s term in charge of the company’s studios.1 
However, A Bug’s Life was not conceived until after Katzenberg left Disney in 
a huff (he was not given a promotion). Katzenberg resigned in August 1994; 
shortly thereafter, Pixar Animation pitched A Bug’s Life to Disney, Michael 
Eisner accepted the proposal, and the film went into production.

At about the same time, Katzenberg joined with Steven Spielberg and 
David Geffen to form DreamWorks SKG, a new studio with great expectations. 
Shortly thereafter, SKG teamed with computer animation firm PDI to produce 
Antz. The two studios may have learned about each other’s choices only after 
they had already made their own decisions. Disney chose to release A Bug’s Life 
in the 1998 Thanksgiving season, when SKG’s Prince of Egypt was originally 
scheduled to open in theaters. In response, SKG decided to delay the release of 
Prince of Egypt until the Christmas season and rushed to complete Antz so that it 
could open before A Bug’s Life and claim the title of “first animated bug movie.”

This story is intriguing because of the larger-than-life characters, the legal 
issues (did Katzenberg steal the bug idea from Disney?), and the complicated 
business strategy. In addition, there were bad feelings. Katzenberg sued Disney 
for unpaid bonuses. Eisner was embarrassed to admit in court that he may have 
said of Katzenberg, “I hate the little midget.” Word on the street was that Pixar 
CEO Steve Jobs (also of Apple fame) believed Katzenberg stole the bug movie 
concept. Someone ought to make a movie about this story.

Let us use a mathematical model to tell the story of the bug films. To convert 
it into the abstract language of mathematics, we will have to abbreviate and 

1Katzenberg was a major force in reviving the Disney animation department after being wooed from Para-
mount by Disney’s boss, Michael Eisner. For a report on the events summarized here, see Time, September 
28, 1998, p. 81.
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10 2: the Extensive Form

stylize the story quite a bit. Our goal is to isolate just one or two of the strate-
gic elements. This isolation will help us, as theorists, to understand the strate-
gic setting and, as game players (putting ourselves in Eisner’s or Katzenberg’s 
shoes), to determine the best decisions. I expect that Eisner and Katzenberg 
have done this, as I expect have most successful business people.

I suggest that we focus on the competition between the two movies and, 
to keep things simple, concentrate on just some of the major decisions that 
influenced the market outcome. Think of it as a game between Katzenberg and 
Eisner, who are the players in our model. We can use a tree to graphically repre-
sent the strategic interaction between these two people. The tree is defined by 
nodes and branches. Nodes represent places where something happens in the 
game (such as a decision by one of the players), and branches indicate the vari-
ous actions that players can choose. We represent nodes by solid circles and 
branches by arrows connecting the nodes. A properly constructed tree is called 
an extensive-form representation.2

To design the tree for the Katzenberg–Eisner game, it is useful to think 
about the chronological sequence of events as described in the story. (You will 
see, however, that not every extensive form represents the chronology of a stra-
tegic situation.) Let the game begin with Katzenberg’s decision about whether 
to leave Disney. Node a in Figure 2.1 signifies where this decision is made. 
Because this decision is the start of the game, a is called the initial node. Every 
extensive-form game has exactly one initial node. Katzenberg’s two options—
stay and leave—correspond to the two branches, which are graphed as arrows 
from node a. Note that the branches are named, and node a is labeled with 
Katzenberg’s initial, signifying that it is his move at this point in the game. 
These branches lead from node a to two other nodes.

2The extensive form was detailed in J. von Neumann and O. Morgenstern, Theory of Games and Economic 
Behavior (Princeton, NJ: Princeton University Press, 1944). Some of the material originally appeared in von 
Neumann, “Zur Theorie der Gesellschaftsspiele,” Mathematische Annalen 100(1928):295–320, translated as 
“On the Theory of Games of Strategy,” in Contributions to the Theory of Games, vol. IV (Annals of Math-
ematics Studies, 40), ed. A. W. Tucker and R. D. Luce (Princeton, NJ: Princeton University Press, 1959), pp. 
13–42. More modern definitions have been provided by H. W. Kuhn, “Extensive Games and the Problem of 
Information,” in Contributions to the Theory of Games, Vol. II (Annals of Mathematics Studies, 28), ed. H. W. 
Kuhn and A. W. Tucker (Princeton, NJ: Princeton University Press, 1953), pp. 193–216.

Figure 2.1 

Katzenberg’s first move.
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11the Extensive Form

If Katzenberg decides to stay at Disney (the lower branch from node a), 
assume that the game is over. On the other hand, if Katzenberg decides to leave, 
then other decisions have to be made. First, Eisner must decide whether to 
produce A Bug’s Life. Figure 2.2 shows how the tree is expanded to include 
Eisner’s choice. Note that, because Eisner has to make this decision only if 
Katzenberg has left Disney, Eisner’s move occurs at node b. Eisner’s two 
options—produce A Bug’s Life or not—are represented by the two branches 
leading from node b  to two other nodes, c and d.

After Eisner decides whether to produce A Bug’s Life, Katzenberg must 
choose whether to produce Antz. Katzenberg’s decision takes place at either 
node c or node d, depending on whether Eisner selected produce or not, as 
depicted in Figure 2.2. Note that there are two branches from node c and two 
from node d. Observe that Katzenberg’s initial is placed next to c and d, because 
he is on the move at these nodes.

At this point, we have to address a critical matter: information. Specifically, 
does the tree specified so far properly capture the information that players have 
when they make decisions? With the extensive form, we can represent the play-
ers’ information by describing whether they know where they are in the tree as 
the game progresses. For example, when Katzenberg decides whether to stay or 
leave, he knows that he is making the first move in the game. In other words, at 
node a Katzenberg knows that he is at node a. Further, because Eisner observes 
whether Katzenberg stays or leaves, when Eisner has to decide whether to 
produce A Bug’s Life he knows that he is at node b.

However, as the story indicates, each player has to select between produc-
ing or not producing without knowing whether the other player has decided to 
produce. In particular, Katzenberg must choose whether to produce Antz before 
learning whether Eisner is producing A Bug’s Life. The players learn about each 
other’s choices only after both are made. Referring again to the tree in Figure 
2.2, we represent Katzenberg’s lack of information by specifying that, during 

Figure 2.2 
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12 2: the Extensive Form

the game, he cannot distinguish between nodes c and d. In other words, when 
Katzenberg is on the move at either c or d, he knows that he is at one of these 
nodes but he does not know which one. Figure 2.3 captures this lack of informa-
tion with a dashed line connecting nodes c and d. Because these two nodes are 
connected with the dashed line, we need to label only one of them with Katzen-
berg’s initial.

Assume that, if either or both players chose not to produce his film proposal, 
then the game ends. If both players opted to produce, then one more decision 
has to be made by Katzenberg: whether to release Antz early (so it beats A Bug’s 
Life to the theaters). Adding this decision to the tree yields Figure 2.4. Katzen-
berg makes this choice at node e, after learning that Eisner decided to produce 
A Bug’s Life.

Figure 2.4 describes all of the players’ actions and information in the game. 
Nodes a, b, c, d, and e are called decision nodes, because players make deci-
sions at these places in the game. The other nodes ( f, g, h, l, m, and n) are called 
terminal nodes; they represent outcomes of the game—places where the game 
ends. Each terminal node also corresponds to a unique path through the tree, 
which is a way of getting from the initial node through the tree by following 
branches in the direction of the arrows. In an extensive form, there is a one-to-
one relation between paths and terminal nodes.3

It is common to use the term information set to specify the players’ informa-
tion at decision nodes in the game. An information set describes which decision 
nodes are connected to each other by dashed lines (meaning that a player cannot 
distinguish between them). Every decision node is contained in an information 
set; some information sets consist of only one node. For example, the informa-
tion set for node a comprises just this node because Katzenberg can distinguish 

3I provide the technical details in Chapter 14.

Figure 2.3 
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13the Extensive Form

this node from his other decision nodes. Nodes b and e also are their own sepa-
rate information sets. Nodes c and d, however, are in the same information set.

The information sets in a game precisely describe the different decisions 
that players have to make. For example, Katzenberg has three decisions to make 
in the game at hand: one at the information set given by node a,  another at the 
information set containing nodes c  and d,  and a third at the information set 
given by node e. Eisner has one decision to make—at node b. Remember that 
only one decision is made at each information set. For example, because nodes c 
and d are in the same information set, Katzenberg makes the same choice at c as 
he does at d (produce or not). We always assume that all nodes in an information 
set are decision nodes for the same player.

You should check that the tree in Figure 2.4 delineates game elements  
1 through 4 noted in the introduction to this part of the book (see page 7). 
We have just one more element to address: the players’ preferences over the 
outcomes. To understand preferences, we must ask questions such as: Would 
Katzenberg prefer that the game end at terminal node f rather than at terminal 
node l? To answer such questions, we have to know what the players care about. 
We can then rank the terminal nodes in order of preference for each player. 
For example, Eisner may have the ranking h, g, f, n, l, m; in words, his favorite 
outcome is h, followed by g, and so on. It is usually most convenient to represent 
the players’ preference rankings with numbers, which are called payoffs or utili-
ties. Larger payoff numbers signify more preferred outcomes.

For many economic games, it is reasonable to suppose that the players care 
about their monetary rewards (profit). Katzenberg and Eisner probably want to 
maximize their individual monetary gains. Therefore, let us define the payoff 
numbers as the profits that each obtains in the various outcomes. (The profits 
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The full tree.
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14 2: the Extensive Form

in this example are purely fictional. Who knows what a film’s true profit is?) 
For example, in the event that Katzenberg stays at Disney, suppose he gets $35 
million and Eisner gets $100 million. Then we can say that node n yields a payoff 
vector of (35, 100). This payoff vector, as well as payoffs for the other terminal 
nodes, is recorded in Figure 2.5. Note that, relative to Figure 2.4, the terminal 
nodes are replaced by the payoff vectors. In addition, we use the convention that 
one player’s payoff is always listed first. Because Katzenberg is the first player 
to move in this game, I have listed his payoff first.4

Figure 2.5 depicts the full extensive form of the Katzenberg–Eisner game; it 
represents all of the strategic elements. A more compact representation (with all 
actions abbreviated to single letters) appears in Figure 2.6. This compact repre-
sentation is the style in which I will typically present extensive forms to you. 
Observe that I have labeled one of Katzenberg’s action choices N to differenti-
ate it from the other “Not” action earlier in the tree. Then I can simply give you 
the name of a player and the name of an action, and you will be able to figure 
out where I am referring to on the tree. It will be important that you differentiate 
actions in this way whenever you draw an extensive-form game. Incidentally, 
you should always maintain conformity in labeling branches from nodes in the 
same information set. For example, Katzenberg’s choices regarding whether to 
produce Antz are represented by actions P and N in Figure 2.6. The labels P and 
N are each used for two branches—from nodes c and d, which are in the same 
information set (refer to Figure 2.5). When Katzenberg finds himself at either 

4We might also think that the players care about other things in addition to money, such as revenge. Although 
I have left them out of the current model, these considerations can be easily included in the specification of 
preferences.
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15Other Examples and Conventions

node c or node d in the game, he knows only that he is at one of these two nodes 
and has to choose between P and N. In other words, this information set defines 
a single place where Katzenberg has to make a decision.

In the end, Antz produced a bit more than $90 million in revenue for Dream-
Works SKG, whereas A Bug’s Life secured more than $160 million. I guess 
these films each cost about $50 million to produce and market, meaning that 
Katzenberg and Eisner faired pretty well. But did they make the “right” deci-
sions? We will probably not be able to answer this question fully by using the 
simple game tree just developed, but analysis of our extensive form will yield 
some insights that are useful for instructing Katzenberg, Eisner, and other game 
players in how best to play. Indeed, designing and analyzing game models will 
help you understand a wide range of strategic issues. Do not ignore the possibil-
ity that you may be advising the likes of Katzenberg and Eisner someday. One 
thing is obvious to me: I will not get $160 million in revenue from this textbook.

OthER ExAmPlEs And COnvEntIOns

So that you get a bit more exposure to the extensive form, and so that I can regis-
ter some technical notes, consider a few abstract examples of games. Figure 
2.7(a) depicts a simple market game, where two firms compete by each select-
ing either a high (H) or low (L) price for a product that they both produce. Note 
that I have labeled the decision nodes with the player numbers; that is, firm 1 
moves first, followed by firm 2. It is often useful to refer to players by number. 
Then, when we wish to speak of a generic player, we can use the phrase “player 
i,” where i stands for any one of the player numbers; that is, in a game with n 
players, i = 1, 2, c, n. Remember to use the convention of listing the players’ 
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16 2: the Extensive Form

payoffs in the order of the players’ identifying numbers. In general, player 1’s 
payoff is written first, followed by player 2’s payoff, and so on.

Observe that in Figure 2.7(a) I have used different action labels to describe 
firm 2’s high and low price options in this firm’s two information sets (the top 
and bottom nodes). This helps us avoid ambiguous statements such as, “Firm 
2 chose a high price.” In fact, firm 2 has two decisions to make in this game, 
one at its top node and another at its bottom node. By following the labeling 
convention, we are correctly forced to say, “Firm 2 chose a high price at its top 
information set” (action H) or “Firm 2 chose a high price at its bottom informa-
tion set” (action H).

Figure 2.7(b) depicts a game in which the firms select their prices simul-
taneously and independently, so neither firm observes the other’s move before 
making its choice. In an extensive form, we must draw one player’s decision 
before that of the other, but it is important to realize that this does not neces-
sarily correspond to the actual timing of the strategic setting. In this example, 
the moves are simultaneous. The key to modeling simultaneous choice in the 

Figure 2.7 
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17Guided Exercise

extensive form is to get the information sets right. Because firm 2 moves at the 
same time as does firm 1, firm 2 does not get to observe firm l’s selection before 
making its own choice. Thus, firm 2 cannot distinguish between its two deci-
sion nodes—they are in the same information set and therefore connected with 
a dashed line. To check your understanding, you might see how one can draw 
the extensive form in Figure 2.7(b) so that firm 2’s action occurs at the initial 
node, followed by firm 1’s decision. However the game is drawn, each firm has 
just one decision to make.

For games with monetary rewards, such as the Katzenberg–Eisner game and 
the one in Figure 2.7, it is convenient to use the monetary amounts as the payoffs 
themselves—as long as the players prefer more money to less. In nonrandom 
settings, in fact, any utility numbers will work as long as they preserve the play-
ers’ preference ranking. For example, the extensive form in Figure 2.7(c) is 
the same as the extensive form in Figure 2.7(a), except that player l’s payoff 
numbers are different. Because the numbers follow the same ranking in these 
games, both correctly represent the preferences of player 1. Player 1 prefers 
the top terminal node to the bottom terminal node in both extensive forms, he 
prefers the top terminal node to the second terminal node, and so on. For now, 
either extensive form can be used. I say “for now” because, as noted earlier, 
these comments apply only to nonrandom outcomes. Later you will see that 
more than the order matters when players are uncertain of others’ behavior 
or randomize in the selection of their own actions (this is briefly addressed in 
Chapter 4 and more thoroughly discussed in Chapter 25).

GuIdEd ExERCIsE

Problem: Represent the following game in extensive form. Firm A decides 
whether to enter firm B’s industry. Firm B observes this decision. If firm A 
enters, then the two firms simultaneously decide whether to advertise. Other-
wise, firm B alone decides whether to advertise. With two firms in the market, 
the firms earn profits of $3 million each if they both advertise and $5 million if 
they both do not advertise. If only one firm advertises, then it earns $6 million 
and the other earns $1 million. When firm B is solely in the industry, it earns 
$4 million if it advertises and $3.5 million if it does not advertise. Firm A earns 
nothing if it does not enter.

Solution: Let E and D denote firm A’s initial alternatives of entering and not 
entering B’s industry. Let a and n stand for “advertise” and “not advertise,” 
respectively. Then the following extensive-form diagram represents the strate-
gic setting.
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18 2: the Extensive Form

a

n

5, 5

1, 6

6, 1

3, 3

B

E

A

D

0, 3.5

0, 4a�

n�

A
a

n

a

n

B

Note that simultaneous advertising decisions are captured by assuming that, at 
firm A’s second information set, firm A does not know whether firm B chose a 
or n. Also note that primes are used in the action labels at firm B’s lower informa-
tion set to differentiate them from the actions taken at B’s top information set.

ExERCIsEs

1. Represent the following strategic situation as an extensive-form game.  Janet 
is a contestant on a popular game show, and her task is to guess behind 
which door Liz, another contestant, is standing. With Janet out of the room, 
Liz chooses a door behind which to stand—either door A or door B. The 
host, Monty, observes this choice. Janet, not having observed Liz’s choice, 
then enters the room. Monty says to Janet either “Red” or “Green” (which 
sounds silly, of course, but it is a silly game show). After hearing Monty’s 
statement, Janet picks a door (she says either “A” or “B”). If she picks the 
correct door, then she wins $100. If she picks the wrong door, then she wins 
nothing. Liz wins $100 if Janet picks the wrong door and nothing if she 
picks the correct door. (Thus, Liz would like to hide from Janet, and Janet 
would like to find Liz.) Monty likes the letter A. If Janet selects door A, then 
this selection makes Monty happy to the tune of 10 units of utility. If she 
selects door B, then Monty receives 0 utility units.

2. Consider the following strategic situation concerning the owner of a firm 
(O), the manager of the firm (M), and a potential worker (W). The owner 
first decides whether to hire the worker, to refuse to hire the worker, or to 
let the manager make the decision. If the owner lets the manager make the 
decision, then the manager must choose between hiring the worker or not 
hiring the worker. If the worker is hired, then he or she chooses between 
working diligently and shirking. Assume that the worker does not know 
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19Exercises

whether he or she was hired by the manager or the owner when he or she 
makes this decision. If the worker is not hired, then all three players get 
a payoff of 0. If the worker is hired and shirks, then the owner and man-
ager each get a payoff of −1, whereas the worker gets 1. If the worker is 
hired by the owner and works diligently, then the owner gets a payoff of 
1, the manager gets 0, and the worker gets 0. If the worker is hired by the 
manager and works diligently, then the owner gets 0, the manager gets 1, 
and the worker gets 1. Represent this game in the extensive form (draw the 
game tree).

3. Draw the extensive form for the following game (invent your own payoff 
vectors, because I give you no payoff information). There is an industry in 
which two firms compete as follows: First, firm 1 decides whether to set a 
high price (H) or a low price (L). After seeing firm 1’s price, firm 2 decides 
whether to set a high price (H) or a low price (L). If both firms selected the 
low price, then the game ends with no further interaction. If either or both 
firms selected the high price, then the attorney general decides whether to 
prosecute (P) or not (N) for anticompetitive behavior. In this case, the attor-
ney general does not observe which firm selected the high price (or if both 
firms selected the high price).

4. The following game is routinely played by youngsters—and adults as 
well—throughout the world. Two players simultaneously throw their right 
arms up and down to the count of “one, two, three.” (Nothing strategic hap-
pens as they do this.) On the count of three, each player quickly forms his 
or her hand into the shape of either a rock, a piece of paper, or a pair of scis-
sors. Abbreviate these shapes as R, P, and S, respectively. The players make 
this choice at the same time. If the players pick the same shape, then the 
game ends in a tie. Otherwise, one of the players wins and the other loses. 
The winner is determined by the following rule: rock beats scissors, scissors 
beats paper, and paper beats rock. Each player obtains a payoff of 1 if he or 
she wins, −1 if he or she loses, and 0 if he or she ties. Represent this game 
in the extensive form. Also discuss the relevance of the order of play (which 
of the players has the move at the initial node) in the extensive form.

5. Consider the following strategic setting. There are three people: Amy, Bart, 
and Chris. Amy and Bart have hats. These three people are arranged in 
a room so that Bart can see everything that Amy does, Chris can see ev-
erything that Bart does, but the players can see nothing else. In particular, 
Chris cannot see what Amy does. First, Amy chooses either to put her hat 
on her head (abbreviated by H) or on the floor (F). After observing Amy’s 
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20 2: the Extensive Form

move, Bart chooses between putting his hat on his head or on the floor. If 
Bart puts his hat on his head, the game ends and everyone gets a payoff of 
0. If Bart puts his hat on the floor, then Chris must guess whether Amy’s hat 
is on her head by saying either “yes” or “no.” This ends the game. If Chris 
guesses correctly, then he gets a payoff of 1 and Amy gets a payoff of −1. 
If he guesses incorrectly, then these payoffs are reversed. Bart’s payoff is 
0, regardless of what happens. Represent this game in the extensive form 
(draw the game tree).

6. Represent the following game in the extensive form. There are three play-
ers, numbered 1, 2, and 3. At the beginning of the game, players 1 and 
2 simultaneously make decisions, each choosing between “X” and “Y.” 
If they both choose “X,” then the game ends and the payoff vector is  
(1, 0, 0); that is, player 1 gets 1, player 2 gets 0, and player 3 gets 0. If 
they both choose “Y,” then the game ends and the payoff vector is (0, 1, 0); 
that is, player 2 gets 1 and the other players get 0. If one player chooses 
“X” while the other chooses “Y,” then player 3 must guess which of the 
players selected “X”; that is, player 3 must choose between “1” and “2.” 
Player 3 makes his selection knowing only that the game did not end after 
the choices of players 1 and 2. If player 3 guesses correctly, then he and 
the player who selected “X” each obtains a payoff of 2, and the player who 
selected “Y” gets 0. If player 3 guesses incorrectly, then everyone gets a 
payoff of 0.

7. Draw the extensive-form diagram for the following strategic setting. There 
are three people: Amy, Bart, and Chris. Amy and Bart each have two cards, 
one of which has “K” (for King) written on it and the other has “Q” (for 
Queen) written on it; that is, Amy and Bart both have a King and a Queen. 
At the beginning of the game, Amy must place one of her cards (either K 
or Q) into an envelope and then give the envelope to Bart. Bart sees the 
card that Amy placed into the envelope, and then he places one of his cards 
(either K or Q) into the envelope as well. The envelope is then given to 
Chris, who has not observed the moves of Amy and Bart. Chris opens the 
envelope. Chris sees the two cards inside, but she does not know which card 
was placed there by Amy and which card was deposited by Bart. After ob-
serving the contents of the envelope, Chris selects “yes” (Y) or “no” (N). If 
Chris selects Y and Amy had put a King in the envelope, then Amy and Bart 
each get a payoff of 0 and Chris gets 1. If Chris selects N and Amy had put 
a Queen in the envelope, then, again, Amy and Bart each get a payoff of 0 
and Chris gets 1. In all other outcomes, Amy and Bart each get a payoff of 
1 and Chris gets 0.
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21Exercises

8. Consider the following strategic setting. There are three players, numbered 
1, 2, and 3. Player 1 has two cards, labeled King and Ace. At the beginning 
of the game, player 1 deals one of the cards to player 2 and the other card 
to player 3; that is, player 1 either gives the Ace to player 3 and the King to 
player 2 (call this the action A) or the King to player 3 and the Ace to player 
2 (action K). Player 2 observes the card dealt to him; player 3 does not get to 
see the card dealt to her. Player 2 then must decide between switching cards 
with player 3 (S) or not (N). Player 3 observes whether player 2 made the 
switch, but does not see her card. Finally, player 3 responds to the question 
“Is your card the Ace?” by saying either “yes” (Y) or “no” (N). If player 3 
correctly states whether her card is the Ace, then she obtains a payoff of 1 
and the other players get 0; otherwise, players 1 and 2 both get a payoff of 
1 and player 3 obtains 0. Represent this game in the extensive form.
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3 StrategieS and the normal Form

The most important concept in the theory of games is the notion of a strategy. 
The formal definition is simple:

A strategy is a complete contingent plan for a player in the game.

The “complete contingent” part of this definition is what makes it powerful 
and, to some people, a bit confusing. By complete contingent plan I mean a full 
specification of a player’s behavior, which describes the actions that the player 
would take at each of his possible decision points. Because information sets 
represent places in the game at which players make decisions, a player’s strat-
egy describes what he will do at each of his information sets.

Consider the Katzenberg–Eisner game depicted in Figure 2.5, and put your-
self in Katzenberg’s shoes. Your strategy must include what to do at the infor-
mation set given by node a ,  what action you would pick at the c–d information 
set, and what your choice would be at the information set given by node e. Your 
strategy must specify all of these things even if you plan to select “Stay” at 
node a .  (This point is elaborated later in this chapter.) As another example, in 
the game depicted in Figure 2.7(a), player 2’s strategy tells us what this player 
will do at his top node (an information set) and at his bottom node (another 
information set). In words, in this game, a strategy for player 2 specifies what 
price to pick in response to H selected by player 1 as well as what price to pick 
in response to player l’s selection of L.

The easiest way of writing strategies is to put together the labels corre-
sponding to the actions to be chosen at each information set. For example, for 
the game shown in Figure 2.7(a), one strategy for player 2 is to select the high 
price (H) in the top information set and the low price (L) in the bottom infor-
mation set; this strategy can be written HL. Note that there are four strate-
gies for player 2 in this game: HH, HL, LH, and LL. Also note that writing 
strategies in this way would be difficult if we did not use different labels for a 
player’s various information sets. For example, if I wrote H and L instead of H
and Lin the bottom information set of player 2, “HL” would be ambiguous (is 
it H in the top information set and L in the bottom one, or vice versa?).
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TermiNology aNd NoTaTioN for STraTegieS

It is now time to get acquainted with some standard notation. If you need help 
understanding the basic mathematical symbols and concepts used here, please 
consult Appendix A. We must be formal and precise going forward.

Given a game, we let Si denote the strategy space (also called the strat-
egy set) of player i. That is, Si is a set comprising each of the possible strat-
egies of player i in the game. For the game shown in Figure 2.7(a), the 
strategy space of player 1 is S1 = {H, L}, and the strategy space of player 2 is 
S2 = {HH, HL, LH, LL}. We use lowercase letters to denote single strate-
gies (generic members of these sets). Thus, si ∈ Si  is a strategy for player i in the 
game. We could thus have s1 = L and s2 = LH, for instance.

A strategy profile is a vector of strategies, one for each player. In other 
words, a strategy profile describes strategies for all of the players in the game. 
For example, suppose we are studying a game with n players. A typical strategy 
profile then is a vector s = (s1, s2, c, sn), where si is the strategy of player i, 
for i = 1, 2, c, n. Let S denote the set of strategy profiles. Mathematically, we 
write S = S1 × S2 ×c× Sn. Note that the symbol “×” denotes the Cartesian 
product.1

Given a single player i ,  we often need to speak of the strategies chosen by 
all of the other players in the game. As a matter of notation, it will be convenient 
to use the term − i to refer to these players. Thus, s−i is a strategy profile for 
everyone except player i:

s−i = (s1, s2, c, si−1, si+1, c, sn).

Separating a strategy profile s into the strategy of player i and the strategies of 
the other players, we write s = (si , s−i ). For example, in a three-player game 
with the strategy profile s = (B, X, Y), we have s−2 = (B, Y).2 Incidentally, 
sometimes I refer to the “− i ” players as player i’s opponents, but note that this 
expression is not literally descriptive for all strategic situations because many 
games have cooperative elements.

Consider the examples pictured in Figures 3.1 and 3.2. The game in Figure 
3.1(a) models a setting in which a firm may or may not exit a competitive indus-
try. Firm 1 decides whether to be aggressive in the market (A), to be passive in 
the market (P), or to leave the market (O). If firm 1 leaves, then firm 2 enjoys 
a monopoly. Otherwise the firms compete and firm 2 selects whether or not to 
assume an aggressive stance. Furthermore, when firm 2 makes its decision, it 

1For example, if S1 = {A, B} and S2 = {X, Y}, then S = S1 × S2 = {(A, X), (A, Y), (B, X), (B, Y)}.
2Note that expressions such as s = (s2, s−2) can create some ambiguity because they reorder the players’ 
individual components; the ambiguity can usually be avoided with clarifying remarks.
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knows only whether firm 1 is in or out of the market; firm 2 does not observe 
firm l’s competitive stance before taking its action. In this game, there is one 
information set for firm 1 (the initial node) and one for firm 2. The strategy sets 
are S1 = {A, P, O} and S2 = {A, P}.

In the game in Figure 3.1(b), player 1 decides between “out” (O) and “in” 
(I). If he chooses O, then the game ends with a payoff vector of (2, 2). If he 
selects I, then player 2 is faced with the same two choices. If player 2 then 
chooses O, the game ends with the payoff vector (1, 3). If she picks I, then 
player 1 has another choice to make, between A and B (ending the game with 
payoffs (4, 2) and (3, 4), respectively). Player 1 has two information sets, and 
player 2 has one information set. Note that in this game, player l’s strategy must 
specify what he will do at the beginning of the game (O or I) and what action he 
would take at his second information set (A or B). There are four combinations 
of the two actions at each information set, and so there are four different strate-
gies for player 1: OA, OB, IA, and IB.

At this point, you can see that “complete contingent plan” means more than 
just a “plan” for how to play the game. Indeed, why, you might wonder, should 
player 1 in the game shown in Figure 3.1(b) need a plan for his second infor-
mation set if he selects O at the first? Can’t we just say that player 1 has three 
different strategies, O, IA, and IB? In fact, no. The definition of a strategy (a 
complete contingent plan) requires a specification of player l’s choice at his 
second information set even in the situation in which he plans to select O at his 

Figure 3.1 Some 

extensive-form games i.
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Figure 3.2 

Some extensive-form games ii.

first information set. Furthermore, we really will need to keep track of behavior 
at all information sets—even those that would be unreached if players follow 
their strategies—to fully analyze any game. That is, stating that player l’s plan is 
“O” does not provide enough information for us to conduct a thorough analysis.

One reason for this is that our study of rationality will explicitly require the 
evaluation of players’ optimal moves starting from arbitrary points in a game. 
This evaluation is connected to the beliefs that players have about each other. 
For example, in the game depicted in Figure 3.1(b), player l’s optimal choice at 
his first information set depends on what he thinks player 2 would do if put on 
the move. Furthermore, to select the best course of action, perspicacious player 
2 must consider what player 1 would do at his second information set. Thus, 
player 2 must form a belief about player l’s action at the third node. A belief is 
a conjecture about what strategy the other player is using; therefore, player l’s 
strategy must include a prescription for his second information set, regardless of 
what this strategy prescribes for his first information set.
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Another reason why it is important to specify a complete contingent plan 
is that players may make mistakes in the course of play. For example, suppose 
that you are player 1 in the game shown in Figure 3.1(b). Further suppose that 
I am instructing you on how to play this game. I might write instructions on 
a piece of paper, hand the paper to you, and then leave town before the game 
begins. I could write “select O,” but, even though that instruction seems to be 
enough information in advance, it does not give you sufficient guidance. You 
might make a mistake and select I instead of O at the beginning of the game. 
What if player 2 then picks I? There you are, red faced and indignant, yelling at 
the sky, “Now what am I supposed to do?”

Examine the other examples in Figure 3.2 to solidify your understanding 
of strategy. Note that, as required, I have used different labels to describe the 
actions that can be taken at different information sets.

For another example to help you grasp the notion of complete contingent 
plan, consider a setting in which two players have to decide how much to 
contribute to a charitable project. Suppose it is known that the project will be 
successful if and only if the sum of the players’ contributions is at least $900. 
Further, the players know that they each have $600 available to contribute. The 
players make contributions sequentially. In the first stage, player 1 selects her 
contribution x ∈ [0, 600], and player 2 observes this choice. Then, in the second 
stage, player 2 selects his contribution y ∈ [0, 600]. If the project is successful, 
player l’s payoff is 800 − x and player 2’s payoff is 800 − y. Here, 800 is the 
benefit each player derives from the successful project. If the project is unsuc-
cessful, then player 1 gets −x and player 2 gets −y.

Note how many information sets each player has in this contribution game. 
Player 1 has just one information set (the initial node), and this player’s strat-
egy is simply a number between 0 and 600. Thus, S1 = [0, 600]. Player 2, 
on the other hand, has an infinite number of information sets, each associated 
with a different value of x selected by player 1. At each of these information 
sets (each one a singleton node), player 2 must choose a contribution level. 
For instance, player 2’s strategy must describe the amount he would contrib-
ute conditional on player 1 choosing x = 500, the amount he would contribute 
conditional on x = 400,  and so on—for every value of x between 0 and 600. 
There is a simple mathematical way of expressing player 2’s strategy. It is a function 
s2: [0, 600] S [0, 600], such that, for any given x, player 2 selects y = s2(x).

The Normal form

The extensive form is one straightforward way of representing a game. Another 
way of formally describing games is based on the idea of strategies. It is called 
the normal form (or strategic form) representation of a game. This alternative 
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27The Normal form

representation is more compact than the extensive form in some settings. As we 
develop concepts of rationality for games, you will notice the subtle differences 
between the two representations.

For any game in extensive form, we can describe the strategy spaces 
of the players. Furthermore, notice that each strategy profile fully describes 
how the game is played. That is, a strategy profile tells us exactly what path 
through the tree is followed and, equivalently, which terminal node is reached 
to end the game. Associated with each terminal node (which we may call an 
outcome) is a payoff vector for the players. Therefore, each strategy profile 
implies a specific payoff vector.

For each player i, we can define a function ui : S S R (a function whose 
domain is the set of strategy profiles and whose range is the real numbers) so 
that, for each strategy profile s ∈ S that the players could choose, ui (s) is player 
i’s payoff in the game. This function ui is called player i’s payoff function. As 
an example, take the game pictured in Figure 3.1(b). The set of strategy profiles 
in this game is

S = {(OA, O), (OA, I), (OB, O), (OB, I), (IA, O), (IA, I), (IB, O), (IB, I)}.

The players’ payoff functions are defined over S. To determine ui (s) for any 
strategy profile s, simply start at the initial node and trace through the tree 
according to the actions specified by this strategy profile. For instance, 
u1(OA, O) = 2, u1(IA, I) = 4, u2(IA, O) = 3, and so forth.3

A convenient way of describing the strategy spaces of the players and their 
payoff functions for two-player games in which each player has a finite number 
of strategies is to draw a matrix. Each row of the matrix corresponds to a strategy 
of player 1, and each column corresponds to a strategy of player 2. Thus each 
cell of the matrix (which designates a single row and column) corresponds to a 
strategy profile. Inside a given cell, we write the payoff vector associated with 
the strategy profile. For example, the game shown in Figure 3.1(b) is described 
by the matrix in Figure 3.3. In the matrix representation, we maintain the prac-
tice of putting player l’s payoff first.

The strategy sets and payoff functions of the players fully describe a strate-
gic situation, without reference to an extensive form. In other words, strategies 
and payoffs can be taken as a fundamental representation of a game.4 Here is 
the formal definition of this representation: A game in normal form (also called 
strategic form) consists of a set of players, {1, 2, c, n}, strategy spaces for the 

3Because we use notational conventions such as s = (s1, s2),  it is more proper to write ui (s) = ui ((s1, s2)) 
than to write ui (s) = ui (s1, s2). However, the latter is completely standard in mathematical discourse, so 1 
refrain from using the double parentheses except where it helps prevent confusion. You will see their use a 
few times in the textbook.
4In fact, it is often easier to analyze a game without having to consider a tree structure.
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players, S1 , S2 , c, Sn , and payoff functions for the players, u1 , u2 , c, un .5 As 
noted earlier, two-player normal-form games with finite strategy spaces can be 
described by matrices. Thus, such games are sometimes called “matrix games.”6

ClaSSiC Normal-form gameS

Some classic normal-form games are depicted in Figure 3.4. In the game of 
matching pennies, two players simultaneously and independently select “heads” 
or “tails” by each uncovering a penny in his hand. If their selections match, then 
player 2 must give his penny to player 1; otherwise, player 1 gives his penny to 
player 2.

In the coordination game, both players obtain a positive payoff if they select 
the same strategy; otherwise they get nothing. The “Pareto coordination” game 
has the added feature that both players prefer to coordinate on strategy A rather 
than on strategy B.7

The prisoners’ dilemma is a well-known example and is motivated by the 
following story. The authorities have captured two criminals who they know are 
guilty of a certain crime. However, the authorities have only enough evidence 
to convict them of a minor offense. If neither crook admits to the crime, then 
both will be charged with the minor offense and will pay a moderate fine. The 
authorities have put the prisoners into separate rooms, where each prisoner is 
asked to squeal on the other. Squealing corresponds to strategy D (defect), and 
not squealing corresponds to strategy C (cooperate with the other prisoner). 

5The normal form was first denned by J. von Neumann and O. Morgenstern, Theory of Games and Economic 
Behavior (Princeton, NJ: Princeton University Press, 1944). Incidentally, one can also look at games with an 
infinite number of players, in which case the players are in some general set N.
6Games with an infinite number of strategies are difficult to represent with a diagram, even in the extensive 
form. A recommendation appears in Chapter 14.
7Outcome (A, A) is said to “Pareto dominate” (B, B). This criterion is defined in Chapter 6.
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29Classic Normal-form games

Each is told that if he squeals and the other prisoner does not, then he will 
be granted immunity and be released; his testimony, however, will be used to 
convict the other prisoner of the crime. If each squeals on the other, then they 
both get sent to jail, but their term is reduced because of their cooperation. The 
best outcome for a prisoner is to defect while the other cooperates (payoff 3); 
the next-best outcome occurs when neither defects (payoff 2); then comes the 
outcome in which both defect (payoff 1); the worst outcome for a prisoner is 
when he cooperates while the other defects.8

The ill-titled “battle of the sexes” is a game in which two friends have to 
decide whether to see a movie or go to the opera. Unfortunately, they work 

8Those who first described this game called it the “prisoner’s dilemma.” I prefer the plural form to highlight 
that it is a strategic situation. For an early account of this game and the battle of the sexes, see R. D. Luce and 
H. Raiffa, Games and Decisions (New York: Wiley, 1957).

Figure 3.4 Classic normal-form games.
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in different parts of the city and, owing to a massive outage of the telephone 
system, find themselves incommunicado. They must simultaneously and inde-
pendently select an event to attend. There is only one movie theater and only 
one opera venue, so the friends will meet each other if they manage to coordi-
nate their decisions. Both prefer to be together, regardless of which event they 
attend. However, player 1 prefers the opera and player 2 prefers the movie.

The game of chicken you will recognize from several movies, in particular 
the 1955 James Dean film Rebel Without a Cause. Two players drive automo-
biles toward each other at top speed. Just before they reach each other, each 
chooses between maintaining course (H) and swerving (D). If both swerve, they 
both save face and are satisfied. If only one swerves, then he is proved to be a 
wimp, whereas the other is lauded as a tough guy with steely nerves. If both 
maintain course, they crash and are each horribly disfigured (and, needless to 
say, their girlfriends dump them).9

The pigs game refers to a situation in which a dominant and a submissive pig 
share a pen. On one side of the pen is a large button, which if pushed releases food 
into a dish at the other side of the pen. Each pig has the option of pushing the button 
(P) or not (D). If neither pushes, the pigs go hungry. If the submissive pig pushes 
the button and the dominant one does not, the released food is eaten entirely by 
the dominant pig because it gets to the food first. (Here the submissive pig is even 
worse off than if neither played P, because it expended the effort to push the button 
but got no food.) If the dominant pig pushes the button, then the submissive pig can 
enjoy some of the food before the dominant one reaches the dish.10

iNTerpreTaTioN of The Normal form

One way of viewing the normal form is that it models a situation in which 
players simultaneously and independently select complete contingent plans for 
an extensive-form game. Theorists sometimes view selection of strategies in 
this fashion as equivalent to real-time play of the extensive form, but there are 
some subtleties to consider, which we will do in the third part of this book. On 
a more tangible level, because you have seen how to convert an extensive-form 
game into the normal form, you may ask if there is a procedure for converting 
normal-form games into the extensive form. To see why this conversion is not 
so straightforward, consider the normal form and extensive forms contained in 
Figure 3.5. Both extensive forms yield the same normal form (a fact that you 

9In Rebel Without a Cause, the players actually drive toward a cliff. My description of the chicken game more 
accurately describes the chicken scene in the 1984 Kevin Bacon film Footloose.
10The pigs game is inspired by B. A. Baldwin and G. B. Meese, “Social Behaviour in Pigs Studied by Means 
of Operant Conditioning,” Animal Behaviour 27(1979):947–957.
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should check). This demonstrates that, although there may be only one way 
of going from the extensive form to the normal form, the reverse is not true. 
Furthermore, the extensive forms in Figure 3.5 have different informational 
structures. In one, player 2 knows that player 1 did not select A when player 2 
has to decide between C and D. In the other, player 2 has no such information.

Game theorists have debated whether the normal form contains all of the 
relevant information about strategic settings. Without reviewing the arguments, 
you should realize that there is no discrepancy between the normal and exten-
sive forms in settings in which the players make all of their decisions before 
observing what other players do, as is the case with simultaneous and indepen-
dent moves. Such games are called “one-shot” or “static” games, and they are 
obviously well modeled in the normal form.

guided exerCiSe

Problem: Describe the strategy spaces for the Katzenberg–Eisner game 
discussed in Chapter 2. Also draw the normal-form representation.

Solution: Recall that a strategy for player i  must describe the action to be taken 
at each of player i’s information sets. Examining Figure 2.6, which displays 
the extensive form of the Katzenberg–Eisner game, we see that Katzenberg 
(player K) has three information sets. At his first information set (the initial 
node), player K selects between actions L and S. At his second information set, 

Figure 3.5 Corresponding extensive and normal forms.
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he chooses between P and N. At his third information set, he chooses between 
R and N. Thus, a strategy for player K is a combination of three actions, one 
for each of his information sets. An example of a strategy is LNR, which is a 
useful strategy to consider because it illustrates that even if player K is to select 
N at his second information set (which precludes his third information set from 
being reached), his strategy still must describe what he would do at his third 
information set. Because player K has two alternatives at each of three infor-
mation sets, there are 2 # 2 # 2 = 8 different combinations—thus eight different 
strategies. Player K’s strategy space is

SK = {LPR, LPN, LNR, LNN, SPR, SPN, SNR, SNN}.

Observe that player E has just one information set. His strategy space is

SE = {P, N}.

To draw the normal-form matrix, you should first note that it must have 
eight rows (for the eight different strategies of player K) and two columns (for 
the two strategies of player E). Looking at each individual strategy profile, you 
can trace through the extensive form to find the associated payoff vector. For 
example, consider strategy profile (LNN, P). With this strategy profile, play 
proceeds from the initial node to node b, then node c (see Figure 2.5), and ends 
at the terminal node with payoff vector (0, 140). The complete normal-form 
matrix is

P N

LPR

LPN�

LNR

LNN�

SPN�

SNR

SNN�

SPR

40, 110 80, 0

13, 120 80, 0

0, 140 0, 0

0, 140 0, 0

35, 100 35, 100

35, 100 35, 100

35, 10035, 100

35, 10035, 100

E
K

Watson_c03_022-036hr.indd   32 11/12/12   9:26 AM
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exerCiSeS

1.  Describe the strategy spaces of the players for the extensive-form games in 
Exercises 1 and 4 of Chapter 2. Also, draw the normal-form matrices.

2.  Suppose a manager and a worker interact as follows. The manager decides 
whether to hire or not hire the worker. If the manager does not hire the 
worker, then the game ends. When hired, the worker chooses to exert either 
high effort or low effort. On observing the worker’s effort, the manager 
chooses to retain or fire the worker. In this game, does “not hire” describe a 
strategy for the manager? Explain.

3.  Draw the normal-form matrix of each of the following extensive-form 
games.

A

B

3, 4

1, 1

2, 2

0, 0

1

2

2

C

D

E

F(a)

1, 1 -1, -1 3, 2

4, 0

(b)

1 2

O O D

1 UII

A

U

D

B

3, 3

5, 4

2

1

(c)

C

D

2

1

2, 6

2, 2

6, 2E

F
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34 3: Strategies and the Normal form

A

U

D

B

3, 3

2

1

(d)

A

B

1

9, 0

2, 2

4, 2W

Z

1

3, 6

5, 1X

Y

A

C

B

4, 3

1, 2

6, 8

2, 1

1

(e)

U

D

U

D

8, 7

2, 1U

D

2

A

U

D

B

2, 1

8, 1

1, 2

3, 8

2

1

(f)

1

1

X

Y

X

Y

A

B

0, 0

5, 5

6, 6

P

Q

4.  In the extensive-form game that follows, how many strategies does player 
2 have?
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c

d
0, 3

8, 0

2

1

c

d 0, 2

f

g
1, 2

4, 1

2

a

b

5.  Consider a version of the Cournot duopoly game, which will be thoroughly 
analyzed in Chapter 10. Two firms (1 and 2) compete in a homogeneous 
goods market, where the firms produce exactly the same good. The firms 
simultaneously and independently select quantities to produce. The quantity 
selected by firm i is denoted qi and must be greater than or equal to zero, for 
i = 1, 2. The market price is given by p = 2 − q1 − q2. For simplicity, as-
sume that the cost to firm i of producing any quantity is zero. Further, assume 
that each firm’s payoff is defined as its profit. That is, firm i’s payoff is pqi , 
where j denotes firm i’s opponent in the game. Describe the normal form of 
this game by expressing the strategy spaces and writing the payoffs as func-
tions of the strategies.

6.  Consider a variation of the Cournot duopoly game in which the firms move 
sequentially rather than simultaneously. Suppose that firm 1 selects its quan-
tity first. After observing firm l’s selection, firm 2 chooses its quantity. This 
is called the von Stackelberg duopoly model. For this game, describe what a 
strategy of firm 2 must specify. An exercise in Chapter 16 asks you to analyze 
this game.

7.  Consider the normal-form games pictured here. Draw an extensive-form 
representation of each game. Can you think of other extensive forms that 
correspond to these normal-form games?

HC HD LC LD

H

L 

3, 3 3, 3

4, 0 1, 1

0, 4 0, 4

4, 0 1, 1

2
1C D

AY

AN

BY

BN

0, 3 0, 0

2, 0

0, 1 1, 1

0, 1 1, 1

2
1

-1, 0

(a)

(b)
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36 3: Strategies and the Normal form

8.  Consider the following strategic setting involving a cat named Baker, a 
mouse named Cheezy, and a dog named Spike. Baker’s objective is to catch 
Cheezy while avoiding Spike; Cheezy wants to tease Baker but avoid get-
ting caught; Spike wants to rest and is unhappy when he is disturbed.

In the morning, Baker and Cheezy simultaneously decide what activity 
to engage in. Baker can either nap (N) or hunt (H), where hunting involves 
moving Spike’s bone. Cheezy can either hide (h) or play (p). If nap and 
hide are chosen, then the game ends. The game also will end immediately 
if hunt and play are chosen, in which case Baker captures Cheezy. On the 
other hand, if nap and play are chosen, then Cheezy observes that Baker is 
napping and must decide whether to move Spike’s bone (m) or not (n). If he 
chooses to not move the bone, then the game ends. Finally, in the event that 
Spike’s bone was moved (either by Baker choosing to hunt or by Cheezy 
moving it later), then Spike learns that his bone was moved but does not 
observe who moved it; in this contingency, Spike must choose whether to 
punish Baker (B) or punish Cheezy (J). After Spike moves, the game ends.

In this game, how many information sets are there for Cheezy? How 
many strategy profiles are there in this game?

Watson_c03_022-036hr.indd   36 11/12/12   9:26 AM



37

Beliefs, Mixed strategies, and 
expected payoffs 4

It is important for players to think about each other’s strategic choices. We use 
the term belief for a player’s assessment about the strategies of the others in 

the game. For example, consider the prisoners’ dilemma game, in which each 
player chooses between strategies C and D. Player 1 may say to himself, “I 
think the other guy is likely to play strategy D” or “I think the other guy will 
surely play strategy C.” These are two alternative beliefs that player 1 could 
have. Unfortunately, a statement such as “I think the other guy is likely to play 
strategy D” is somewhat ambiguous. Because we aim to model decision making 
mathematically, we need a precise way of representing a player’s beliefs. The 
key is to use probabilities.

Here is an illustration. Continuing with the prisoners’ dilemma example, 
suppose we let p represent the likelihood that player 1 thinks the other player 
will select strategy C in the game. Formally, p is a probability—a number 
between zero and one—where p = 1 means that player 1 is certain that player 
2 will select strategy C, and p = 0 means that player 1 is sure player 2 will not 
choose C. The probability that player 1 believes the other player will select D is 
1 − p. Thus, if p = 1>2, then player 1 believes that the other player is equally 
likely to select C and D. The numbers p and 1 − p constitute a probability 
distribution over the set {C, D}. For a more detailed review of the basic defini-
tions of probability, please read Appendix A.

Note that if p ∈ (0, 1), then player 1 thinks it is possible that player 2 will 
play strategy C and also thinks it is possible that player 2 will play D. Under-
stand that player 1 might not believe that player 2 actually randomizes (by, say, 
flipping a coin). It’s just that player 1 may be uncertain about what strategy 
player 2 will choose, and so he associates probabilities with player 2’s strate-
gies. Furthermore, player l’s belief may not be accurate; he could be certain that 
player 2 will select C when in fact player 2 selects D.

I next formally define beliefs for general normal-form games. Mathemati-
cally, a belief of player i is a probability distribution over the strategies of 
the other players. Let us denote such a probability distribution u−i and write 
u−i ∈ S−i , where S−i is the set of probability distributions over the strategies 
of all the players except player i .  (We often use Greek letters, such as theta, 
here, to represent probability distributions.)
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38 4: Beliefs, Mixed Strategies, and Expected Payoffs

For example, take a two-player game (so that − i = j) and suppose each 
player has a finite number of strategies. The belief of player i  about the behavior 
of player j  is a function uj ∈ Sj such that, for each strategy sj ∈ Sj of player 
j, uj(sj) is interpreted as the probability that player i  thinks player j will play sj . 
As a probability distribution, uj has the property that uj(sj) Ú 0 for each sj ∈ Sj , 
and g sj∈Sj

uj(sj) = 1.
Related to a belief is the notion of a mixed strategy. A mixed strategy for a 

player is the act of selecting a strategy according to a probability distribution. 
For example, if a player can choose between strategies U and D, we can imagine 
her selecting U with some probability and D with some probability. She might 
flip a coin and select U if the coin lands with the head up and D if the coin lands 
with the tail up. Formally, a mixed strategy is just like a belief in that they are 
both probability distributions. We will denote a generic mixed strategy of player 
i by si ∈ Si . To prevent confusion, we sometimes call a regular strategy a pure 
strategy to distinguish it from a mixed strategy. Notice that the set of mixed 
strategies includes the set of pure strategies (each of which is a mixed strategy 
that assigns all probability to one pure strategy).

If a player uses a mixed strategy and/or assigns positive probability to multi-
ple strategies of the other player, then this player cannot expect to get a particu-
lar payoff for sure. We can extend the definition of a payoff function to mixed 
strategies and beliefs by using the concept of expected value. When player i, 
for example, has a belief u−i about the strategies of the others and plans to 
select strategy si , then her expected payoff is the “weighted average” payoff that 
she would get if she played strategy si and the others played according to u−i . 
Mathematically,

ui(si , u−i) = a
s−i∈S−i

u−i(s−i)ui(si , s−i).

Take the game in Figure 4.1 and suppose that player 1 believes with probability 
1>2 that player 2 will play strategy L, with probability 1>4 that she will play M, 
and with probability 1>4 that she will play R. That is, her belief u2 is such that 

figure 4.1 

expected payoffs. L M R

U

C

D

8, 1 0, 2

3, 3 1, 2

5, 0 2, 3

4, 0

0, 0

8, 1

2
1
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39Guided Exercise

u2(L) = 1>2, u2(M) = 1>4, and u2(R) = 1>4. An often used, shorthand way of 
writing this belief is (1>2, 1>4, 1>4). If player 1 selects U, then she expects to 
get 8 with probability 1>2, 0 with probability 1>4, and 4 with probability 1>4. 
Thus, her expected payoff is

u1(U, u2) = (1>2)8 + (1>4)0 + (1>4)4 = 5.

When I began to formulate games in Chapter 2, payoff numbers were meant 
to describe the players’ preferences over outcomes. I noted that any numbers 
can be used as long as they preserve the order describing the players’ pref-
erences over outcomes. At this point, we must observe that more is required. 
Payoff numbers also represent the players’ preferences over probability distri-
butions over outcomes. As an example, take the game in Figure 4.1. According 
to the payoff numbers in the matrix, player 1 is indifferent between the outcome 
in which he plays U and his opponent plays the mixed strategy (1>2, 1>4, 1>4) 
and the outcome of the strategy profile (D, L). Both yield an expected payoff 
of 5. If we raise or lower player l’s payoff from (D, L) to, say, 5.5 or 4.5, player 
l’s preferences over individual cells of the matrix do not change. But his pref-
erences over uncertain outcomes do indeed change. Thus, there is more to the 
payoff numbers than simple order.1

For games with monetary outcomes, we will generally assume that the play-
ers seek to maximize their expected monetary gain. We can thus use the mone-
tary amounts as the utility numbers themselves. Note that we can also multiply 
all of a player’s payoffs by a positive number or add a number to all of them 
without affecting the player’s preferences over certain or uncertain outcomes. 
We will take a closer look at various payoff functions when we get to the subject 
of risk in Chapter 25.

GuidEd ExErciSE

Problem: Consider the game in Figure 4.1. Suppose that player 2 believes that 
player 1 will select U with probability 1>2, C with probability 1>4, and D with 
probability 1>4. Also suppose that player 2 plans to randomize by picking M 
and R each with probability 1>2. What is player 2’s expected payoff?

Solution: To calculate player 2’s expected payoff, note that, according to player 
2’s belief, six strategy profiles occur with positive probability: (U, M), (U, R), 

1Two books that established this area of study are J. von Neumann and O. Morgenstern, Theory of Games 
and Economic Behavior (Princeton, NJ: Princeton University Press, 1944), and L. Savage, The Foundations 
of Statistics (New York: Wiley, 1954; revised and enlarged edition, New York: Dover Publications, 1972).
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40 4: Beliefs, Mixed Strategies, and Expected Payoffs

(C, M), (C, R), (D, M), and (D, R). Profile (U, M) occurs with probability 1>4 
(that is, 1>2 probability that player 1 selects U, times 1>2 probability that player 
2 selects M). Profile (U, R) also occurs with probability 1>4. Each of the other 
four profiles occurs with probability 1>8. Note that the six probability numbers 
sum to one. Multiplying the individual probabilities by player 2’s payoff in each 
case, we get a sum of

1

4
# 2 +

1

4
# 0 +

1

8
# 2 +

1

8
# 0 +

1

8
# 3 +

1

8
# 1 =

10

8
= 1.25.

Therefore, player 2’s expected payoff is 1.25.

ExErciSES

1.  Evaluate the following payoffs for the game given by the normal form pic-
tured here. [Remember, a mixed strategy for player 1 is s1 ∈ {U, M, D}, 
where s1(U) is the probability that player 1 plays strategy U, and so forth. For 
simplicity, we write s1 as (s1(U), s1(M), s1(D)), and similarly for player 2.]

L C R

U

M

D

10, 0 0, 10

2, 10 10, 2

3, 3 4, 6

3, 3

6, 4

6, 6

2
1

(a) u1(U, C)
(b) u2(M, R)
(c) u2(D, C)
(d) u1(s1, C) for s1 = (1>3, 2>3, 0)
(e) u1(s1, R) for s1 = (1>4, 1>2, 1>4)
(f) u1(s1, L) for s1 = (0, 1, 0)
(g) u2(s1, R) for s1 = (1>3, 2>3, 0)
(h) u2(s1, s2) for s1 = (1>2, 1>2, 0) and s2 = (1>4, 1>4, 1>2).

2.  Suppose we have a game where S1 = {H, L} and S2 = {X, Y}. If player 
1 plays H, then her payoff is z regardless of player 2’s choice of strategy; 
player 1’s other payoff numbers are u1(L, X) = 0 and u1(L, Y) = 10. You 
may choose any payoff numbers you like for player 2 because we will only 
be concerned with player l’s payoff.
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(a) Draw the normal form of this game.
(b)  If player 1’s belief is u2 = (1>2, 1>2), what is player 1’s expected payoff of 

playing H? What is his expected payoff of playing L? For what value of z 
is player 1 indifferent between playing H and L?

(c) Suppose u2 = (1>3, 2>3). Find player l’s expected payoff of playing L.

3. Evaluate the following payoffs for the game pictured here:
(a) u1(s1, I) for s1 = (1>4, 1>4, 1>4, 1>4)
(b) u2(s1, O) for s1 = (1>8, 1>4, 1>4, 3>8)
(c) u1(s1, s2) for s1 = (1>4, 1>4, 1>4, 1>4), s2 = (1>3, 2>3)
(d) u1(s1, s2) for s1 = (0, 1>3, 1>6, 1>2), s2 = (2>3, 1>3)

I O

OA

OB

IA

IB

2, 2 2, 2

2, 2 2, 2

4, 2 1, 3

3, 4 1, 3

2
1

4.  For each of the classic normal-form games (see Figure 3.4), find u1(s1, s2) 
and u2(s1, s2) for s1 = (1>2, 1>2) and s2 = (1>2, 1>2).

5.  Consider a version of the Cournot duopoly game, where firms 1 and 2 simul-
taneously and independently select quantities to produce in a market. The 
quantity selected by firm i is denoted qi and must be greater than or equal 
to zero, for i = 1, 2. The market price is given by p = 100 − 2q1 − 2q2. 
Suppose that each firm produces at a cost of 20 per unit. Further, assume 
that each firm’s payoff is defined as its profit. (If you completed Exercise 5 
of Chapter 3, then you have already dealt with this type of game.) Suppose 
that player 1 has the belief that player 2 is equally likely to select each of 
the quantities 6, 11, and 13. What is player l’s expected payoff of choosing 
a quantity of 14?

6.  Suppose you know that ui(si , u− i) = 5 for a particular mixed strategy 
si ∈ Si and belief u− i ∈ S− i. Must it be true that there is a pure strategy 
si ∈ Si such that ui(si , u− i) Ú 5? Prove this or find an example showing that 
the statement is false.
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5 General assumptions  
and methodoloGy

The objective of game-theoretic modeling is to precisely sort through the 
logic of strategic situations—to explain why people behave in certain ways 

and to predict and prescribe future behavior. Game theory also gives us a lan-
guage for recording and communicating ideas. You are now familiar with part 
of the language—that which is used to describe games.

In formulating an extensive form or normal form, we must balance the 
goal of realism with the need for manageable mathematics (as the Katzenberg–
Eisner game illustrated; see Chapter 2). A simple model is more easily analyzed, 
whereas a complex model has room to incorporate more realistic features. The 
best theoretical models isolate a few key strategic elements and, by exploring 
their relation, develop new insights that can be broadly applied. Model develop-
ment is often the most important part of game-theoretic analysis; sometimes it 
is a trial-and-error process.

Here is an example of the kind of trade-offs that we face in designing games. 
Suppose you are interested in modeling the interaction between my wife and 
me regarding how we will divide evening chores. You might think of this as a 
negotiation problem that you can describe with an extensive form. At the initial 
node, you might specify several branches to represent various verbal offers that 
I can make, such as, “Why don’t you bathe the kids while I clean the kitchen?” 
or “I’ll bathe the kids if you’ll clean the kitchen and tidy the living room.” In 
the extensive form, my offer would be followed by various alternative actions 
for my wife, such as saying “okay” or making a counteroffer. Because there are 
many such alternatives, you have a choice as to which to include in the extensive 
form and how precisely to describe them.

A coarse description of my wife’s feasible responses would be simply 
“okay” or “no, you take care of everything.” A more refined description might 
include whether my wife smiles or gives me the evil eye as she speaks. Whether 
you should adopt the more refined description in your model depends on your 
assessment of its strategic importance and how complicated it is to analyze. For 
instance, if you viewed my wife’s countenance as something of no meaning that 
could be ignored, it would seem unnecessary to include it in your description of 
my wife’s alternatives. On the other hand, you might rightly think that my wife 
communicates mainly by facial expression rather than with words. Further, you 
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43Rationality

might know that my payoff depends on her affect and that I am terrified of the 
evil eye. Then perhaps you ought to use the refined description of her response 
in your model. I am starting to realize who has the upper hand in my marriage.

This book contains many examples of simple games that capture useful 
insights. Each example involves an abstraction from reality, but each also retains 
important realistic features that are illuminated with careful study. The exam-
ples will give you a taste of, and appreciation for, the exercise of modeling.

Rationality

Once we have specified a game, our task becomes studying the players’ behav-
ior. Game-theoretic analysis generally rests on the assumption that each player 
behaves according to his preferences. More precisely, we can assume that, if a 
player’s action will determine which of several outcomes will occur in a game, 
then this player will select the action that leads to the outcome he most prefers. 
This is the mathematical definition of rationality. The nice thing about payoff 
numbers is that, because they represent preferences (with larger numbers asso-
ciated with more preferred outcomes), rationality simply means maximizing 
one’s expected payoff. Thus, we should assume that each player acts to maxi-
mize his own expected payoff.

Rationality is a weak assumption in the sense that any coherent preferences 
can be accommodated by the theory. For instance, rationality does not necessar-
ily imply that the players seek to maximize their own monetary gains. Consider, 
for example, an altruistic player who prefers to increase the amount of money 
that the other players get. The appropriate representation of this player’s prefer-
ences calls for a payoff that is increasing in the others’ money. Then rationality, 
in terms of payoff maximization, means acting to increase the other players’ 
monetary gains.1

Throughout much of the history of game theory, practitioners used fairly 
simple assumptions about preferences and reserved their scarce energy for the 
complex analysis of behavior in games. For instance, for settings with mone-
tary rewards, it is common to assume that players care about only their own 
monetary gains. The same approach has been taken in the economics discipline 
where, for example, researchers typically assume that people care about only 
their own consumption of goods and services. In many applications, these kinds 
of assumptions are valid, at least as reasonable approximations of people’s true 
preferences. Thus, for most of the examples with monetary rewards in this book, 

1The phrase “coherent preferences” is not a formal term. The key property for preferences to have a meaning-
ful mathematical representation is transitivity, which means that if a player prefers outcome A to outcome 
B and also prefers outcome B to outcome C, then this player must further prefer outcome A to outcome C.
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44 5: General assumptions and Methodology

I take the simple route of assuming that players care only about their own mone-
tary gains. Furthermore, I often define players’ payoffs as their monetary gains, 
at least until Chapter 26 where I incorporate risk aversion.

In some settings, however, players are highly motivated by other factors. 
They may care about each other’s money and consumption. They may be driven 
by altruism, a sense of fairness, envy, greed, or other psychological consider-
ations. In these cases, it is important to accurately describe their preferences 
by including the nontraditional elements in the description of payoffs. I give a 
few examples in this book but generally leave the topic for you to study after-
ward. The field of behavioral economics, which studies the nontraditional 
aspects of preferences, is very active—essentially blossoming in the past two 
decades. Behavioral economics rests on the foundation of game theory, which 
provides all of the analytical tools. Behavioral economics is also closely linked 
to the important fields of experimental economics and experimental psychology, 
which seek to determine what people’s preferences and cognitive limitations 
really are, at least in the laboratory.

The key point to remember is that game theory can accommodate any 
preferences that have a mathematical representation. So, if you aspire to take 
your game-theory studies further than this book, you might explore alterna-
tive assumptions about preferences as you work through some of the examples 
presented here.

CoMMon KnowledGe

As you have already seen from the development of the extensive-form represen-
tation, it is critical that we precisely model the players’ information throughout 
the game being played. In particular, players may have different information at 
various points in the game. But conventional analysis of behavior requires that 
players have a shared understanding of the entire game. In other words, the 
players know the extensive-form (or normal-form) game that they are playing, 
which includes the recognition that, in the course of play, individual players will 
not be able to distinguish between nodes in the same information set.

To express the idea that the players have a shared understanding of the game 
being played, we can take advantage of the notion of common knowledge, which 
can be defined as follows:

A particular fact F is said to be common knowledge between the play-
ers if each player knows F, each player knows that the others know F, 
each player knows that every other player knows that each player knows 
F, and so on.
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A simpler way of stating this is that the players gather around a table where F is 
displayed, so that each player can verify that the others observe F and also can 
verify the same about everyone else.

Putting the notion of common knowledge to work, the assumption that under-
lies conventional analysis of games—an assumption that I maintain throughout 
this book—is that the game is common knowledge between the players. In other 
words, each player knows the game being played, each player knows that the 
others know this, each player knows that every other player knows that each 
player knows the game being played, and so on. It is as if, before the game is 
played, the players gather around a table on which the game has been depicted 
(in extensive or normal form, whichever is relevant).

Keep in mind that common knowledge of the game does not imply that, 
during the play of the game, players have common knowledge of where they 
are in the extensive form. There will still generally be asymmetric information 
between the players as represented by nontrivial information sets (that is, infor-
mation sets comprising multiple nodes).

oveRview of Solution ConCeptS

The rest of this book is dedicated to the analysis of rational behavior in games. 
This endeavor separates roughly into two components that are interwoven 
throughout the book. The first component entails precisely defining concepts of 
rational behavior, which leads to theories of how games are or should be played. 
The standard term for these theories is solution concepts. The second compo-
nent involves applying the concepts to study specific examples and applications.

Part II focuses on a definition of rationality that operates on the normal 
form of a game. A player is thought to be rational if (1) through some cognitive 
process, he forms a belief about the strategies of the others, and (2) given this 
belief, he selects a strategy to maximize his expected payoff. The rationalizabil-
ity solution concept combines this definition of rationality with the assumption 
that the game and the players’ rationality are common knowledge. The Nash 
equilibrium solution concept adds the assumption that a social institution helps 
to coordinate the players so that their beliefs and actual behavior are consistent.

Part III presents refinements of the rationality concept that are sensitive to 
individual information sets in the extensive-form representation of the game: 
backward induction, subgame-perfect equilibrium, and a variant for games 
with a negotiation component. Part IV expands the analysis to look at games 
with exogenous random events (moves of nature), where the solution concepts 
are called Bayesian rationalizability, Bayesian Nash equilibrium, and perfect 
Bayesian equilibrium.
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the iSSue of RealiSM

Rational decision making may require complex calculations and a sophisticated 
understanding of the other players’ motivations. Standard game theory assumes 
that the players are sophisticated and that they can handle whatever difficult 
calculations are needed for payoff maximization. But in reality, behavior some-
times diverges from this rationality ideal and it does so in systematic ways. 
Sometimes real players do not have a shared understanding of the game they 
are playing. Sometimes a cognitive bias warps how they develop beliefs about 
each other. Sometimes real players are unable to perform all of the complicated 
calculations that would be required to determine an optimal strategy. Sometimes 
players do not fully understand each other’s rationality or lack thereof.

For these reasons, we do not expect the outcome of our theoretical models 
to be perfect indicators of the real world. Thus, the relevant question is how 
closely the theory approximates reality. Where the approximation is poor, there 
might be an opportunity for the theory, in a normative sense, to play an instruc-
tive role in helping people to better understand the strategic settings they face 
(and to select better strategies). Alternatively, in a descriptive sense, there may 
be a need to enrich the theory to incorporate real bounds on rationality. Econ-
omists and game theorists have studied many theoretical enrichments in the 
category of cognitive biases, bounded rationality, and bounds on the degree to 
which players understand and internalize each other’s rationality. Although this 
book concentrates on the conventional notion of full rationality, hints of how 
one might depart from this notion can be found here and there.
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Analyzing Behavior  
in Static Settings

P A r t  I I

This part of the text introduces the basic tools for studying 
rational behavior. The tools treat strategies and payoffs 
as fundamental; that is, they address the normal-form 
specification of a game. Because extensive-form games can be 
easily translated into the normal form, the analysis developed 
here applies equally well to extensive-form representations. 
The theory presented in this part is most appropriately 
applied to games in which all of the players’ actions are 
taken simultaneously and independently—so-called one-shot, 
or static, games. Most of the examples covered in this part 
are one-shot strategic settings. As noted earlier, normal and 
extensive forms model these games equally well.
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Dominance anD Best Response 6

This chapter covers the two most basic concepts in the theory of strategic 
interaction: dominance and best response. These concepts form the founda-

tion of most theories of rational behavior, so it is important to understand them 
well.1

DomInAnce

Examine the game shown in Figure 6.1(a), and suppose that you are player 1. 
Regardless of your decision-making process, player 2 selects a strategy inde-
pendently of your choice. She will pick either L or R, and you cannot affect 
which she will choose. Of course, player 2 may base her choice on an assess-
ment of what strategy you are likely to pick, but this is a matter of reason in the 
mind of player 2. Her decision-making process is independent of yours.2 A good 
way of thinking about this is to imagine that player 2 has already chosen her 
strategy but you have not observed it. You must select your own strategy.

In the game shown in Figure 6.1(a), strategy U has an interesting property. 
Regardless of player 2’s choice, U gives you a strictly higher payoff than does 
D. If player 2 plays L, then you obtain 2 from playing U and 1 from playing 
D. Obviously, U is better in this case. Furthermore, if player 2 selects R, then 
you obtain 5 by playing U and 4 by playing D. Again, U is better. Technically, 
we say that strategy D is dominated by strategy U, and thus D should never be 
played by a rational player 1. Note that neither of player 2’s strategies is domi-
nated. Strategy L is better than R if player 1 selects U, but the reverse is true if 
player 1 selects D.

1These concepts were introduced by John Nash in “Non-Cooperative Games,” Annals of Mathematics 54 
(1951): 286–295; building from J. von Neumann and O. Morgenstern, Theory of Games and Economic Behav-
ior (Princeton, NJ: Princeton University Press, 1944).
2There are some wacky theories of decision making that do not assume that players’ decision-making 
processes are independent. To be precise, the wacky theories presume some metaphysical correlation between 
one’s own decision and the decisions of others. For example, player 2 may think, “If I am the kind of person 
who would select R, then the world must be a kind place and, in such a world, there are only people who select 
D as player 1.” We will not study such theories.
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50 6: Dominance and Best response

Take another example, the game depicted in Figure 6.1(b). In this game, 
player 1’s strategy D is dominated by strategy M. Regardless of what player 2 
does, M yields a higher payoff for player 1 than does D. Strategy U is not domi-
nated by M, however, because, if player 2 were to play L, then U would give 
player 1 a higher payoff than would M.

Finally, examine the game shown in Figure 6.1(c). This game has a more 
complicated dominance relation. Note that for player 1 no pure strategy is domi-
nated by another pure strategy. Obviously, neither U nor M dominates the other, 
and D does not dominate these strategies. In addition, neither U nor M domi-
nates D. For instance, although U is better than D when player 2 selects L, D 
performs better than U when player 2 selects R. However, a mixed strategy 
dominates D. Consider player 1’s mixed strategy of selecting U with probability 
1>2, M with probability 1>2, and D with probability zero. We represent this 
mixed strategy as (1>2, 1>2, 0). If player 2 selects L, then this mixed strategy 
yields an expected payoff of 2 to player 1; that is,

2 = 4(1>2) + 0(1>2) + 1(0) .

Player 1 does worse by playing D. The same is true when player 2 selects R. 
Therefore, strategy D is dominated by the mixed strategy (1>2, 1>2, 0). 

The formal definition of dominance is as follows:

A pure strategy si of player i is dominated if there is a strategy (pure 
or mixed) si ∈ Si such that ui (si , s−i) > ui (si , s−i), for all strategy 
profiles s−i ∈ S−i of the other players.

The best method for checking whether a strategy is dominated is first to decide 
whether it is dominated by another pure strategy. This procedure can be easily 
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performed if the game is represented as a matrix. For example, to check if one 
of player 1’s strategies dominates another, just scan across the two rows of the 
payoff matrix, column by column. You do not have to compare the payoffs of 
player 1 across columns. If the payoff in one row is greater than the payoff in 
another, and this is true for all columns, then the former strategy dominates the 
latter. If a strategy is not dominated by another pure strategy, you then must 
determine whether it is dominated by a mixed strategy.

Checking for dominance can be tricky where mixed strategies are concerned, 
but a few guidelines will help. First, note that there are many different mixed 
strategies to try. For example, in the game shown in Figure 6.1(c), (1>2, 1>2, 0), 
(3>5, 2>5, 0), (2>5, 3>5, 0), and (1>3, 1>3, 1>3) are four of the infinite number 
of mixed strategies for player 1. In fact, all four dominate strategy D. (Check 
this yourself for practice.) Second, when you are looking for a mixed strategy 
that dominates a pure strategy, look for alternating patterns of large and small 
numbers in the payoff matrix. This will help you find strategies that may be 
assigned positive probability by a dominating mixed strategy. Third, to demon-
strate that a strategy is dominated, remember that you need to find only one 
strategy (pure or mixed) that dominates it. If, for example, you find that strategy 
X is dominated by pure strategy Y, your job is done; you do not need to check 
for mixed-strategy dominance. Finally, make sure that you check the correct 
payoff numbers. When evaluating the strategies of player i, you must look at 
player i ’s payoffs and no others.

An important component of the definition of dominance is the “strict” inequal-
ity. That is, in mathematical terms, we have the expression ui (si , s−i ) > ui (si , s−i ) 
rather than ui (si , s−i ) Ú ui (si , s−i ). Thus, for one strategy to dominate another, 
the former must deliver strictly more than does the latter. One strategy does 
not dominate another if they yield the same payoff against some strategy of the 
other players. As an example, take the game shown in Figure 6.1(b). We have 
already seen that D is dominated by M for player 1. Examine player 2’s strate-
gies and payoffs. Is R dominated by C? The answer is “no.” For player 2, C 
yields a strictly higher payoff than does R against strategies M and D of player 
1. However, against U, these strategies yield the same payoff. Because of this 
“tie,” C does not dominate R. To emphasize the strict inequality in the defini-
tion, we sometimes use the expression “strict dominance.”3

The most simple and compelling theory of behavior is that players do not 
play dominated strategies. As noted earlier, playing a dominated strategy is not 
rational in the sense that one’s payoff can be increased by using another strategy, 
regardless of what the other players do in the game.

3By associating the term “dominance” with the strict inequality condition, I am utilizing John Nash’s original 
terminology, which is common. But some people insist on saying “strict dominance.”
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the FIrSt StrAtegIc tenSIon AnD the PrISonerS’ DIlemmA

Before enriching the theory, let’s use the concept of dominance to identify ratio-
nal play in a simple application. Consider the prisoners’ dilemma game pictured 
in Figure 3.4 on page 29. For both players, strategy C is dominated by strategy 
D. We would therefore predict that neither player would select C. However, both 
players would be better off if they each selected C.

The prisoners’ dilemma illustrates one of the major tensions in strategic 
settings: the clash between individual and group interests. The players realize 
that they are jointly better off if they each select C rather than D. However, each 
has the individual incentive to defect by choosing D. Because the players select 
their strategies simultaneously and independently, individual incentives win. 
One can even imagine the players discussing at length the virtues of the (C, C) 
strategy profile, and they might even reach an oral agreement to play in accord 
with that profile. But when the players go their separate ways and submit their 
strategies individually, neither has the incentive to follow through on the agree-
ment. Strong individual incentives can lead to group loss.

While we’re on the subject of conflicting interests, briefly consider two 
related issues. First, remember the meaning of payoff numbers. We take them 
to be utilities, as used generally in economics. As utilities, these numbers iden-
tify the players’ preferences. They do not necessarily signify profit or money. 
For example, all we mean by the payoff numbers 2 and 5 is that the player in 
question prefers the outcome yielding the payoff 5 to the outcome yielding the 
payoff 2.4

In the prisoners’ dilemma, a player might be deterred from selecting D 
by the threat of his partner chastising him after play occurs. Certainly such 
considerations enter the minds of decision makers. As game theorists, we must 
insist that all such considerations be manifest in the payoffs. Suppose we have a 
setting like that portrayed by the prisoners’ dilemma, except that the payoffs are 
in dollar terms. Further suppose that player 1 prefers not to play D for fear of 
retribution by his opponent after the game ends. If we were to draw the “actual” 
matrix describing this game, player 1’s payoffs from selecting D should be less 
than those from selecting C (against each of player 2’s strategies). The actual 
game, in this case, is not a prisoners’ dilemma. Indeed, if retribution were possi-
ble after the players choose between C and D, then we ought to model the option 
for retribution formally as a part of the game.5

4Remember that we are also assuming that the utility numbers represent preferences over random outcomes 
via expected payoff calculations.
5Remember that modeling strategic situations by using game theory is an art. The best models capture the 
essence of the strategic environment without bowing so much to reality as to make analysis impossible.
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The second issue to recognize is that, in the real world, the players some-
times have the opportunity to form legally binding contracts. For example, in 
a prisoners’ dilemma-like situation, the players may have the option of writ-
ing a contract that binds them to select strategy C. As noted in the preceding 
paragraph, if such options are a critical part of the strategic setting, we should 
include them in our models. Theorists do in fact pursue this angle; we shall pick 
up the topic in Chapter 13. At this point, we can at least identify where binding 
contracts might be most valuable. Specifically, they are helpful when individual 
incentives interfere with group incentives.

The prisoners’ dilemma is a widely discussed game and has proved to be a 
source of insight in the fields of economics, sociology, political science, inter-
national relations, and philosophy. In economics, it is ubiquitous. Settings in 
which workers interact to produce in a firm often have the same flavor, although 
the models are richer and more complicated. In the same vein are some models 
of international trade. So, too, are settings of industrial organization. You will 
recognize the Cournot model (analyzed later in Chapter 10) as having the basic 
prisoners’ dilemma form. Firms have an individual incentive to “overproduce,” 
but profits are low when all firms do so. When firms compete by selecting prices, 
the same kind of tension surfaces. Check your understanding by looking again 
at the game shown in Figure 2.7(b) on page 16, which is just another prisoners’ 
dilemma.

the concePt oF eFFIcIency

The first strategic tension relates to the economic concept of efficiency, which is 
an important welfare criterion by which to judge behavior in a game. Suppose 
we wish to compare the outcomes induced by two strategy profiles, s and s. 
We say that s is more efficient than s if all of the players prefer the outcome 
of s to the outcome of s and if the preference is strict for at least one player. In 
mathematical terms, s is more efficient than s if ui (s) Ú ui (s) for each player i 
and if the inequality is strict for at least one player.6

A strategy profile s is called efficient if there is no other strategy profile 
that is more efficient; that is, there is no other strategy profile s such that 
ui (s) Ú ui (s) for every player i and uj (s) > uj (s) for some player j. The 
expression Pareto efficient is used to mean the same thing. Note that, in 
the prisoners’ dilemma, (C, C) is more efficient than (D, D). Furthermore,  

6In this case, we can also say that strategy s is Pareto dominated, invoking the name of Wilfredo Pareto (who 
first introduced this concept of efficiency). I shall avoid using the expression “Pareto dominated” because I do 
not want it to be confused with the individual dominance criterion defined in this chapter.
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(C, C), (C, D), and (D, C) are all efficient strategy profiles. In the game pictured 
in Figure 6.1(c), (D, R) is more efficient than both (M, L) and (U, R). In this 
game, (U, L) and (D, L) are the only efficient strategy profiles.

BeSt reSPonSe

It seems reasonable that rational people refrain from using dominated strate-
gies. Dominance is a good descriptive and prescriptive concept. But it is just the 
beginning of our development of a theory of behavior. Indeed, in most games, 
players have more than one undominated strategy. Take, as an example, some of 
the simple games in Figure 3.4. Matching pennies, the battle of the sexes, and 
the coordination games have no dominated strategies, so one cannot predict how 
people should or will play these games on the basis of the dominance criterion. 
We must move on to explore the process by which players actually select their 
strategies, at least among those that are not dominated.

Rational folks think about the actions that the other players might take; that 
is, people form beliefs about one another’s behavior. In games, it is wise to form 
an opinion about the other players’ behavior before deciding your own strategy. 
For example, if you were to play the coordination game pictured in Figure 3.4 
and you thought that the other player would definitely play strategy B, it would 
be prudent for you to play B as well. If you thought he would select A, then you 
should follow suit. To maximize the payoff that you expect to obtain—which 
we assume is the mark of rational behavior—you should select the strategy that 
yields the greatest expected payoff against your belief. Such a strategy is called 
a best response (or best reply). Formally,

Suppose player i has a belief u−i ∈ S−i about the strategies played 
by the other players. Player i ’s strategy si ∈ Si is a best response if 
ui (si , u−i ) Ú ui (s=i , u−i ) for every s=i ∈ Si .

As the example described next shows, there may be more than one best response 
to a given belief. It is not difficult to show that, in a finite game, every belief has 
at least one best response. For any belief u−i of player i, we denote the set of best 
responses by BRi (u−i ).

As an example, take the game in Figure 6.2. Suppose player 1, on delibera-
tion, believes with probability 1>3 that player 2 will play L, with probability 
1>2 that player 2 will play C, and with probability 1>6 that player 2 will play R. 
Recall that we can write this belief as (1>3, 1>2, 1>6). Then if player 1 selects 
strategy U, he expects a payoff of

(1>3)2 + (1>2)0 + (1>6)4 = 8>6.
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If he plays M, he expects

(1>3)3 + (1>2)0 + (1>6)1 = 7>6.

If he plays D, he obtains

(1>3)1 + (1>2)3 + (1>6)2 = 13>6.

Thus, his best response is strategy D, the strategy that yields the greatest expected 
payoff given his belief. Strategy D is his only best response. We thus have

BR1 (1>3, 1>2, 1>6) = {D}.

Remember that, because BRi is a set of strategies, we enclose its elements in 
brackets, even if it has only one element.7

To continue with the game of Figure 6.2, suppose that player 2 has the belief 
(1>2, 1>4, 1>4) regarding the strategy that player 1 employs. That is, player 2 
believes with probability 1>2 that player 1 will select U and that player 1’s other 
two strategies are equally likely. Player 2 then expects

(1>2)6 + (1>4)3 + (1>4)1 = 4

from playing L. He expects

(1>2)4 + (1>4)0 + (1>4)5 = 13>4
from playing C. He expects

(1>2)4 + (1>4)5 + (1>4)3 = 4

from playing R. With this belief, player 2 has two best responses, strategies L 
and R. Thus,

BR2 (1>2, 1>4, 1>4) = {L, R}.

7We will depart from this rule for a few examples in which it is useful to think of BRi as a function from strate-
gies to strategies.
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Understand that playing a best response to one’s belief about the moves 
of others is not in itself a strategic act. One can think of it as merely a compu-
tational exercise associated with rationality. Forming one’s belief is the more 
important component of strategy. For example, suppose you are to play the 
game pictured in Figure 6.3 as player 2 and you are discussing your intentions 
with a friend. You might explain to your friend that, on the basis of your knowl-
edge of player 1, you think that player 1 will certainly choose strategy B in the 
game. Therefore you plan to select B as well. Upset with your statement, he 
criticizes you for “giving in.” You should demand the best outcome for yourself 
by playing A, he asserts. Should you follow the advice of your friend?

In fact, you should not. Tell your friend he is just plain crazy, moonstruck 
perhaps. Your actual choice in the game has no direct effect on the other 
player’s thought process or action. Remember, players select their strategies 
simultaneously and independently. You cannot directly influence how the other 
player will act in a game such as this one. The best you can do is to form a well-
reasoned opinion about what strategy he will take and then play a best response 
to this belief. The rules of the game do not allow you to signal your intentions 
to the other player by your choice of strategy.8 So perform whatever mental 
gymnastics are necessary for you to settle on a belief about player 1’s behavior 
and then play a best response. Of course, if your friend has information about 
player 1’s tendencies, then you might incorporate your friend’s information 
into your belief; but, when your belief has been set, then a best response is in 
order. Incidentally, don’t be too hard on your friend; he is just trying to lend 
some support.

I am trying to convince you that the most substantive component of behavior 
is the formation of beliefs. Indeed, herein lies the real science of game theory. 
Success in games often hinges on whether you understand your opponent better 
than he understands you. We often speak of someone “outfoxing” others, after 
all. In fact, beliefs are subject to scientific study as well. The bulk of our work 
in the remainder of this text deals with determining what beliefs are rational in 
games. With the important concepts of dominance and best response under our 

8If such a signal were physically possible, it would have to be formally included in the specification of the 
game (yielding a game that is different from that pictured in Figure 6.3).
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57Dominance and Best response compared

belts, we can continue our study of strategic behavior by placing the beliefs of 
players at the center of attention. Before doing so, however, it is important to 
understand the relation between dominance and best response.

DomInAnce AnD BeSt reSPonSe comPAreD

There is a precise relation between dominance and best response, the latter of 
which underpins the theories of behavior to come. For a given game, let UDi be 
the set of strategies for player i that are not strictly dominated. Let Bi be the set 
of strategies for player i that are best responses, over all of the possible beliefs 
of player i. Mathematically,

Bi = {si  there is a belief u−i ∈ S−i such that si ∈ BRi (u−i )}.

That is, if a strategy si is a best response to some possible belief of player i, 
then si is contained in Bi . As heretofore noted, the notion of best response will 
be of primary importance. Unfortunately, determining the set Bi is sometimes a 
greater chore than determining UDi . Fortunately, the two sets are closely related.

To build your intuition, examine the game in Figure 6.4. Note first that R 
is dominated for player 2.9 Thus, UD2 = {L} in this game. Also note that strat-
egy R can never be a best response for player 2, because L yields a strictly 
higher payoff regardless of what player 1 does. In other words, for any belief of 
player 2 about player 1’s behavior, player 2’s only best response is to select L. 
Therefore B2 = {L}. Obviously, B2 = UD2 and, for this game, dominance and 
best response yield the same conclusion about rational behavior for player 2.

9Remember that when evaluating player 2’s strategies you should look at player 2’s payoffs.
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To continue with the example, consider player 1’s strategies. Obviously 
neither U nor M is dominated. Furthermore, strategy D is dominated by neither 
U nor M. But is D dominated by a mixed strategy? The answer is “yes”; D is 
dominated by the mixed strategy that puts probability 1>3 on U, 2>3 on M, and 
0 on D.10 Thus the set of undominated strategies for player 1 is UD1 = {U, M}. 
To find the set of best responses, examine the diagram at the right of the matrix 
in Figure 6.4, where the expected payoffs of player 1’s three pure strategies 
are graphed as functions of the probability that player 1 believes player 2 will 
select L. That is, with player 1’s belief (p, 1 − p), the upward sloping line is 
6p + 0(1 − p), the expected payoff of playing strategy U. The downward slop-
ing line, 2p + 5(1 − p), is the expected payoff from selecting M, and the flat 
line is the payoff from choosing D. There are values of p making U and M best 
responses, but for no value of p is D a best response. Thus B1 = {U, M} and we 
have B1 = UD1 in this game.

You may have concluded by now that strategies are best responses if and 
only if they are not strictly dominated. For two-player games, this is true.11

Result: In a finite two-player game, B1 = UD1 and B2 = UD2 .

Appendix B provides more details on this result and its generalization to 
games with more than two players, where the relation between dominance and 
best response is a bit more subtle and requires a better understanding of the 
kinds of beliefs that players may hold. The key to the analysis has to do with 
whether a given player’s belief is thought to exhibit correlation between the 
strategies of this player’s multiple opponents. One can define Bi so that corre-
lated conjectures are not allowed. Then one can let Bc

i  be the version in which 
correlation is allowed. The general result is

Result:  For any finite game, Bi ⊂ UDi and Bc
i = UDi for i = 1, 2,c, n.

That is, if one imagines that players hold only uncorrelated beliefs, then strictly 
dominated strategies are never best responses. If players are thought to possi-
bly hold correlated beliefs, then a strategy is undominated if and only if it is 
a best response to some belief. Thus, to find the set of strategies that a player 

10The mixed strategy (1>2, 1>2, 0) does not dominate D, demonstrating that you sometimes have to search a 
bit harder to find a dominance relation. Of course, to show that D is dominated, you need to find only one pure 
or mixed strategy that does the job.
11The results reported here are from the work of D. Pearce, “Rationalizable Strategic Behavior and the Prob-
lem of Perfection,” Econometrica 52 (1984): 1029–1050. Closely related results are in E. van Damme, Refine-
ments of the Nash Equilibrium Concept (Berlin, New York: Springer-Verlag, 1983).
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may adopt as a rational response to his belief, you can simply find the set of 
undominated strategies. Because correlation in a player’s belief is not an issue 
when the player has just one opponent, the preceding result is a special case of 
this result. I provide a partial proof of the result in Appendix B, which techni-
cally oriented readers having more than one competitor or more than one friend 
should definitely read.

The relation between dominance and best response comes in handy when 
calculating the sets Bi and UDi . For two-player matrix games, where Bi = UDi , 
you can most easily compute this set by using the following procedure.

Procedure for calculating Bi  UDi 

 :

1. Look for strategies that are best responses to the simplest beliefs—those 
beliefs that put all probability on just one of the other player’s strategies. 
These best responses are obviously in the set Bi so they are also in UDi .

2. Look for strategies that are dominated by other pure strategies; these domi-
nated strategies are not in UDi and thus they are also not in Bi .

3. Test each remaining strategy to see if it is dominated by a mixed strategy. 
This final step is the most difficult, but if you are lucky, then you will rarely 
have to perform it.

For an illustration of the procedure, consider the game in Figure 6.5. Let us 
calculate the set B1 = UD1 . The first step is to find the strategies that are best 
responses to the simplest beliefs. Note that, against L player 1’s best response 
is Y. Against R, X is the best response. Thus, we know that X ∈ B1 and Y ∈ B1 . 
The second step is to check whether any strategy is dominated by another pure 
strategy. You can quickly see that W is dominated by Z. Therefore, we know 
that WF B1 .

One question remains: Is strategy Z an element of B1? This question is 
answered by the third step of the procedure. Note that if a mixed strategy were 

FiGURe 6.5 

the procedure for calculating 

B1 and UD1 .

1
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X

Y

Z
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Watson_c06_047-066hr.indd   59 11/12/12   9:34 AM



60 6: Dominance and Best response

to dominate Z, then this strategy would be a mixture of X and Y. Let us assume 
that X is played with probability p and Y is played with probability 1 − p. In 
order for this mixed strategy to dominate Z, it must deliver a strictly higher 
expected payoff for player 1 than does Z. Against player 2’s strategy L, this 
comparison requires

2p + 6(1 − p) > 5.

Against R, it must be that

7p + 1(1 − p) > 3.

The first inequality simplifies to p < 1>4, whereas the second inequality simpli-
fies to p > 1>3. Because there is no value of p that simultaneously satisfies 
p < 1>4 and p > 1>3, we know that Z is not dominated. Therefore, Z ∈ B1 . In 
fact, you can verify that Z is a best response to the belief u2 = (3>5, 2>5).

WeAk DomInAnce

Recall that a key aspect of the dominance definition is the strict inequal-
ity, so that a mixed strategy si is said to dominate a pure strategy si if and only 
if ui (si , s−i ) > u i (si , s−i ) for all s−i ∈ S−i . One can also consider a version of 
dominance based on a weaker condition: We say that mixed strategy si weakly 
dominates pure strategy si if ui (si , s−i ) Ú ui (si , s−i ) for all s−i ∈ S−i and 
ui (si , s=−i ) > ui (si , s=−i ) for at least one strategy s=−i ∈ S−i of the other players. In 
other words, si performs at least as well as does strategy si , and it performs strictly 
better against at least one way in which the other players may play the game.

Figure 6.6 provides an illustration of weak dominance. In the game pictured, 
if player 1 were to select Y, then player 2’s strategy M delivers a strictly higher 
payoff than does L. If player 1 selects X, then strategies L and M yield the 
same payoff for player 2. Thus, player 2 always weakly prefers M to L, and she 
strictly prefers M in the event that player 1 picks Y. This means that M weakly 
dominates L.

In relation to best-response behavior, weak dominance embodies a form 
of cautiousness, as though the players cannot be too sure about each other’s 

FiGURe 6.6 

example of weak dominance. L M

X

Y

3, 5 3, 5

7, 0 1, 1

2
1

Watson_c06_047-066hr.indd   60 11/12/12   9:34 AM



61guided exercise

strategies. In the example of Figure 6.6, player 2 might reasonably select L if 
she is certain that player 1 will choose X. On the other hand, if she entertains the 
slightest doubt—putting any small, strictly positive probability on Y—then M is 
her only best response. The example suggests a general relation between weak 
dominance and best responses to “cautious” beliefs. To make this formal, for 
any game let WUDi be the set of strategies for player i that are not weakly domi-
nated. Call a belief u−i   fully mixed if u−i (s−i ) > 0 for all s−i ∈ S−i . This simply 
means that u−i puts positive probability on every strategy profile of the other 
players. Then let Bcf

i  be the set of strategies for player i that are best responses to 
fully mixed beliefs. In the superscript, c denotes that correlated conjectures are 
allowed, and f denotes that beliefs are fully mixed.

Result:  For any finite game, Bcf
i = WUDi for each player i = 1, 2,c, n.

Although weak dominance is handy in some games, it is not the best foun-
dation for a theory of rational behavior. There are two reasons why weak domi-
nance can be problematic. First, it may not be appropriate to assume that the 
players hold fully mixed beliefs. It can then be rational for a player to select 
a weakly dominated strategy as a best response. Second, weak dominance 
introduces some thorny technical issues that complicate formation of a general 
theory of behavior. I’ll allude to one of these issues later.

We shall concentrate on the concept of dominance (with the strict inequality) 
for the vast majority of examples and applications. Incidentally, I use the terms 
“dominance” and “strict dominance” interchangeably. Apart from Exercise 10 
at the end of this chapter, this is the last you will hear of weak dominance until 
it is put to use in an auction example in Chapter 27.

guIDeD exercISe

Problem: Suppose that two people decide to form a partnership firm. The reve-
nue of the firm depends on the amount of effort expended on the job by each 
person and is given by:

r (e1 , e2) = a1 e1 + a2 e2 ,

where e1 is the effort level of person 1 and e2 is the effort level of person 2. 
The numbers a1 and a2 are positive constants. The contract that was signed 
by the partners stipulates that person 1 receives a fraction t (between 0 and 
1) of the firm’s revenue, and person 2 receives a 1 − t fraction. That is, 
person 1 receives the amount tr (e1 , e2), and person 2 receives (1 − t)r (e1 , e2). 
Each person dislikes effort, which is measured by a personal cost of e2

1 for 
person 1 and e2

2 for person 2. Person i ’s utility in this endeavor is the amount 
of revenue that this person receives, minus the effort cost e2

i . The effort 
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62 6: Dominance and Best Response

levels (assumed nonnegative) are chosen by the people simultaneously and  
independently.

(a)  Define the normal form of this game (by describing the strategy spaces and 
payoff functions).

(b)  Using dominance, compute the strategies that the players rationally select 
(as a function of t, a1 and a2 ).

(c)  Suppose that you could set t before the players interact. How would you set 
t to maximize the revenue of the firm?

Solution:

(a)  The game has two players. Each player selects an effort level, which is 
greater than or equal to zero. Thus, Si = [0,  ) for i = 1, 2. As described, 
each player’s payoff is the amount of revenue he receives, minus his effort 
cost. Thus, the payoff functions are

u1(e1 , e2) = t [a1 e1 + a2 e2] − e2
1

and

u2(e1 , e2) = (1 − t)[a1 e1 + a2 e2] − e2
2 .

(b)  In this game, each player has a strategy that dominates all others. To see 
this, observe how player 1’s payoff changes as e1 is varied. Taking the deriv-
ative of u1 with respect to e1 , we get ta1 − 2e1 . Setting this equal to zero 
and solving for e1 reveals that player 1 maximizes his payoff by selecting 
e*

1 = ta1>2. Similar analysis for player 2 yields e*
2 = (1 − t) a2 >2. Note that 

although each player’s payoff depends on the strategy of the other player, a 
player’s optimal strategy does not depend on the other’s strategy. The set of 
undominated strategies is therefore

UD1 = {ta1 >2}  and  UD2 = {(1 − t) a2  >2}.

(c)  Because they depend on a1 , a2 , and t, let us write the optimal strategies e*
1 and 

e*
2 as functions of these parameters. The revenue of the firm is then given by

a1 e*
1  (a1 , a2 , t) + a2 e*

2  (a1 , a2 , t).

 Plugging in the values e*
1 and e*

2 from part (b), the revenue is

a1
# ta1

2
+ a2

# (1 − t)a2

2
= t 

a2
1

2
+ (1 − t) 

a2
2

2
.
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63exercises

 Note that the objective function is linear in t. Thus, maximization occurs 
at a “corner,” where either t = 0 or t = 1. If a1 > a2 , then it is best to set 
t = 1; otherwise, it is best to set t = 0.
 Incidentally, one can also consider the problem of maximizing the firm’s 
revenue minus the partners’ effort costs. Then the problem is to maximize

a1
# ta1

2
+ a2

# (1 − t)a2

2
− a ta1

2
b

2

− a (1 − t)a2

2
b

2

 and, using calculus, the solution is to set t = a2
1>(a2

1 + a2
2).

exercISeS

1. Determine which strategies are dominated in the following normal-form games.

1
2

L

A

B

3, 3

4, 1

2, 0

8, –1

R 1
2

L

U

M

D

5, 9

3, 2

0, 1

0, 9

4, 3

1, 1

2, 8 0, 1 8, 4

C R

1
2

L

U

D

1, 1

0, 0

0, 0

5, 5

R1
2

W

U

M

D

3, 6

2, 6

4, 10

3, 3

5, 0

4, 10

1, 5 2, 9 3, 0

0, 8

1, 1

4, 6

X Y Z

(b)

(c)

(a)

(d)

2. For the game in Exercise 1 of Chapter 4, determine the following sets of 
best responses.
(a) BR1 (u2 ) for u2 = (1>3, 1>3, 1>3)
(b) BR2 (u1 ) for u1 = (0, 1>3, 2>3)
(c) BR1 (u2 ) for u2 = (5>9, 4>9, 0)
(d) BR2 (u1 ) for u1 = (1>3, 1>6, 1>2)
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64 6: Dominance and Best response

3. Consider a version of the Cournot doupoly game (described in earlier exer-
cises), where firms 1 and 2 simultaneously and independently select quanti-
ties to produce in a market. The quantity selected by firm i is denoted qi and 
must be greater than or equal to zero, for i = 1, 2. The market price is given 
by p = 100 − 2q1 − 2q2 . Suppose that each firm produces at a cost of 20 
per unit. Further, assume that each firm’s payoff is defined as its profit. Is it 
ever a best response for player 1 to choose q1 = 25? Suppose that player 1 
has the belief that player 2 is equally likely to select each of the quantities 
6, 11, and 13. What is player 1’s best response?

4. For the game of Figure 6.2, determine the following best-response sets.

(a) BR1 (u2 ) for u2 = (1>6, 1>3, 1>2)

(b) BR2 (u1 ) for u1 = (1>6, 1>3, 1>2)

(c) BR1 (u2 ) for u2 = (1>4, 1>8, 5>8)

(d) BR1 (u2 ) for u2 = (1>3, 1>3, 1>3)

(e) BR2 (u1 ) for u1 = (1>2, 1>2, 0)

5. Represent in the normal form the rock–paper–scissors game (see Exercise 
4 of Chapter 2 to refresh your memory) and determine the following best-
response sets.

(a) BR1 (u2 ) for u2 = (1, 0, 0)

(b) BR1 (u2 ) for u2 = (1>6, 1>3, 1>2)

(c) BR1 (u2 ) for u2 = (1>2, 1>4, 1>4)

(d) BR1 (u2 ) for u2 = (1>3, 1>3, 1>3)

6. In the game pictured here, is it ever rational for player 1 to select strategy 
C? Why?

0, 3

3, 0

0, 3

3, 0

A

X

X

1

2

BC

1, 1

Y

Y
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7. In the normal-form game pictured below, is player 1’s strategy M domi-
nated? If so, describe a strategy that dominates it. If not, describe a belief to 
which M is a best response.

1
2

K

L

M

9, 2

1, 0

1, 0

6, 1

3, 2 4, 2

X Y

8. For the Cournot game described in Exercise 3, calculate UD1 .

9. Two medieval city-states, Simancas and Toro, are located near each other. 
Each city-state is controlled by a totalitarian prince, so each can be repre-
sented as a single player. Call the prince of Simancas player 1, and let the 
prince of Toro be called player 2. The land surrounding each city-state can 
be divided among two uses: forested land for deer hunting, and cleared land 
for growing wheat. Each city-state has five units of land. At the outset, all 
of the land is forested.
 Each city-state i (where i = 1, 2) must make two decisions: how much 
land to clear for growing wheat, gi ∈ [0, 5], and how many hounds to raise 
for hunting deer, hi ∈ [0,  ). All decisions are made simultaneously.
 Payoffs depend on the total quantity of forested land in both city-states 
(deer roam freely across borders) and the number of hounds raised in both 
city-states. The deer harvest for city-state i is increasing in its own number 
of hounds but decreasing in the other city-state’s number of hounds. Specif-
ically, the deer harvest in city-state i is max{0, 2hi − hj }(10 − gi − gj ), 
where j denotes the other city-state. Here, the “maximum” operator is 
needed to ensure that the harvest is never negative. The wheat-growing 
results for each city-state, on the other hand, depend only on its own quan-
tity of cleared land. Specifically, the wheat harvest in city-state i is 6gi. 
Raising hounds and clearing land are both costly. Suppose the cost to city-
state i is g2

i + 2h2
i . Summing up, the payoff for city-state 1 is

u1 (g1 , h1 , g2 , h2 ) = max{0, 2h1 − h2 }(10 − g1 − g2 ) + 6g1 − g2
1 − 2h2

1 ,

and the payoff for city-state 2 is

u2 (g1 , h1 , g2 , h2 ) = max{0, 2h2 − h1 }(10 − g2 − g1 ) + 6g2 − g2
2 − 2h2

2 .
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66 6: Dominance and Best response

(a) Show that the strategy (gi , hi ) = (0, 0) is dominated for each city-state i.
(b) Show that any strategy with hi > 5 is dominated for each city-state i.
(c) Show that (g1 , h1 ) = (g2 , h2 ) = (1, 4) is not efficient.

10. Consider the game pictured here:

Offer H

1 M

0, 0 

0, 2
AH

2

RH

0, 0 

1, 1
AM

2

RM

0, 0 

2, 0
AL

2

RL

L

In this simplified “ultimatum-offer” bargaining game, the players negoti-
ate over how to divide two dollars. Player 1 chooses whether to offer all of 
the money (action H), half of the money (M), or none of the money (L) to 
player 2. Player 2 observes the offer and then decides whether to accept it. 
If the offer is rejected, then the players both get zero. For this game, can you 
find any strategies that are weakly dominated but not dominated?
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Rationalizability and 
iteRated dominance 7

The concepts of dominance and best response are the basis of theories of 
rational behavior. We must recognize, however, that rational behavior may 

consist of more than avoiding dominated strategies. Indeed, sophisticated play-
ers understand the fundamental notion of a game—that the actions of one player 
may affect the payoff of another—and can shrewdly estimate the other players’ 
actions by putting themselves in the others’ shoes. In other words, mind games 
can be the art of game playing. At this point, we must take our analysis to an-
other level. Please continue to breathe normally.

Suppose you are player 1 in the game pictured in Figure 7.1. You will notice 
that neither of your strategies is dominated. Therefore, you can rationally play 
either A or B, depending on your belief about the action of your opponent. Let 
us perform the mathematics behind this statement. Let p denote the probability 
that you think the opponent will play X, and let q be the probability that you 
think she will play Y. Obviously, 1 − p − q is the probability that she will play 
strategy Z, and these numbers make sense only if p Ú 0, q Ú 0, and p + q … 1. 
Given your belief, your expected payoff from playing A is

3p + 0q + 0(1 − p − q) = 3p.

Your expected payoff from playing B is

0p + 3q + 1(1 − p − q) = 1 − p + 2q.

Thus, your best response is to play A if 3p > 1 − p + 2q (which simplifies to 
4p > 1 + 2q) and to play B if 4p < 1 + 2q. Both A and B are best responses 
if 4p = 1 + 2q.

FiguRe 7.1 

Playing mind games. X Y Z

A

B

3, 3 0, 5

0, 0 3, 1

0, 4

1, 2

2
1
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68 7: Rationalizability and Iterated Dominance

Are we finished with the analysis? Not by a long shot. Suppose it is common 
knowledge between you and your opponent that both of you are rational and 
understand exactly the game that is being played. That is, you and she both 
know the matrix that describes the game; she knows that you know this; you 
know that she knows this; she knows that you know that she knows this; and so 
forth.1 Can you rationalize playing strategy A against a rational opponent?

To answer this question, first put yourself in the position of player 2. Her 
strategy X is strictly dominated by Y. Therefore, she will not play X; there is no 
belief that she could have about your strategy that would cause her to play X. 
Knowing this, you should assign zero probability to her strategy X (your belief 
should have p = 0).

In fact, you might as well strike the column of the matrix corresponding to 
strategy X, as demonstrated in Figure 7.2(a). Striking X leads to a new “game” 
in which you choose between A and B and your opponent chooses between Y 
and Z. In this reduced game, your strategy A is strictly dominated by B. That 
is, knowing that your opponent will not play X, your only rational strategy is to 
play B. To see this in terms of beliefs, note that if p = 0, it is not possible that 
4p Ú 1 + 2q and so, regardless of your belief about whether your opponent will 
play Y or Z, the only best response is to play B. Thus, as in Figure 7.2(b), we 
can strike strategy A from consideration.

1Recall the definition of common knowledge from Chapter 5.

FiguRe 7.2 

iterative removal of strictly dominated strategies.

X Y Z
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69  Rationalizability and Iterated Dominance

Interestingly enough, we can take this logic one step further in this game. 
Your opponent knows that you know that she will not play X. Thus, recognizing 
that you are rational, she deduces that you will not play A. Putting probability 
1 on the event that you will play B, her only best response is to play Z. That is, 
in the reduced game where you play only B, strategy Y is dominated, as repre-
sented in Figure 7.2(c), where Y is stricken.

Simple logic led to a unique prediction in the example. With rational play-
ers, the only outcome that can arise is the strategy profile (B, Z), yielding the 
payoff vector (1,2). Note that as in the prisoners’ dilemma, our prediction here is a 
decidedly inefficient outcome. Both players could fare better if the strategy profile 
(A, X) were played, but neither player finds it in his or her interest to do so.

The procedure just illustrated is called iterative removal of (strictly) domi-
nated strategies (or iterated dominance, for short). We can apply the procedure 
to any normal-form game as follows. First, delete all of the dominated strate-
gies for each player, because a rational player would never use one of these. 
Then define R1 to be the strategy profiles that remain. Common knowledge of 
rationality therefore implies that it is common knowledge that a strategy profile 
in R1 will be played. In other words, essentially the players are interacting in a 
“reduced” game in which R1 is the set of strategy profiles. The next step is to 
remove any strategies that are dominated in this reduced game and define R2 as 
the strategy profiles that remain. As before, it is then common knowledge that 
a strategy profile in R2 will be played. Continue this process to identify smaller 
and smaller sets of strategy profiles, R3, R4, c, until no more strategies can be 
deleted. Let R denote the resulting set of strategy profiles—those that survive 
this iterated dominance procedure.

Remember that, at least in two-player games, dominance and best response 
imply the same restrictions. Therefore, iterated dominance is identical with the 
procedure in which strategies that are never best responses are removed at each 
round. Thus, the procedure identifies strategies for each player that can be ratio-
nalized in the following way. Player 1 selects a strategy that is a best response 
to his belief about the behavior of player 2. Furthermore, his belief is consistent 
with the rationality of player 2 in that every strategy to which he assigns positive 
probability is a best response for player 2 to some belief of hers. For instance, 
suppose player 1’s belief assigns positive probability to some strategy s2 of 
player 2. That is, u2 

 

(s2 

) > 0. Then there must be a belief u1 of player 2 over the 
strategies of player 1 to which s2 is a best response. Furthermore, each strategy 
assigned positive probability by u1 must be a best response to some belief about 
the strategy of player 2. The logic continues endlessly.

Your first impression of these mind games may be negative, but a very simple 
and precise theory of behavior is represented. Each player should play a best 
response to her belief. In this way, the belief rationalizes playing the strategy. 
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70 7: Rationalizability and Iterated Dominance

Furthermore, each player should assign positive probability only to strategies 
of the other players that can be similarly rationalized. The set of strategies that 
survive iterated dominance is therefore called the rationalizable strategies.2 In 
practical terms, rationalizability refers to strategies that remain after one itera-
tively removes those that are never best responses. But, because this process is 
equivalent to iterated dominance, we can just perform the latter.3

The foregoing account of iterated dominance and rationalizability is 
completely sound for finite games but requires elaboration for infinite games 
(where some players have an infinite number of strategies or there is an infinite 
number of players). I provide more information in Appendix B, which I am sure 
you will be thrilled to read. For now, there is one key item to note: In some games, 
iterated dominance requires an infinite number of rounds to complete. Yikes! It is 
actually not awful, as you will see from an example in the next chapter.

Remember that the logic of rationalizability depends on common knowl-
edge of rationality and the game. If the players have this information, then we 
shall predict that the strategy profile is rationalizable. Understand, though, that 
it may be a stretch to assume that players have this kind of information in some 
settings. For instance, you can certainly imagine situations in which one agent 
does not know whether the other players want to maximize anything in particu-
lar or what the payoffs of the others are or both. In such a case, this person may 
not be able to put himself in the other players’ shoes with confidence, and ratio-
nalizability may be too strong a behavioral concept.

To further illustrate the concept of rationalizability, examine the game in 
Figure 7.3. Realize first that player 2’s strategy X is dominated, so we can strike 
it from consideration. If you do not see this right away, note that strategy X is 

2Rationalizability was invented, and its relationship to iterated dominance characterized, by D. G. Pearce, 
“Rationalizable Strategic Behavior and the Problem of Perfection,” Econometrica 52 (1984): 1029–1050, and 
D. Bernheim, “Rationalizable Strategic Behavior,” Econometrica 52 (1984): 1007–1028.
3Recall that in games with more than two players, best response and dominance are not exact complements. 
Thus, in these games, the set of rationalizable strategies may be different from the set of strategies that survive 
iterated dominance. The difference has to do with whether correlated conjectures are allowed, as briefly 
discussed in Appendix B, but is not important for our study. Thus, the terms iterated dominance and rational-
izability are used interchangeably.

FiguRe 7.3 
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dominated by the mixed strategy (0, 1>2, 1>2), the strategy that puts probability 
1>2 on both Y and Z. No other strategies are dominated at this stage, so we 
have R1 = {U, M, D} × {Y, Z}. In the reduced game (after striking X), player 
1’s strategy U is dominated by D. Therefore, we can strike U and we have 
R2 = {M, D} × {Y, Z}. Then player 2’s strategy Y is dominated by Z, leaving 
R3 = {M, D} × {Z}. Finally, once it is clear that player 2 will choose Z, player 
1’s strategy D is dominated by M. The set of rationalizable strategy profiles thus 
consists of only strategy M for player 1 and only strategy Z for player 2; it is the 
set R = {(M, Z)}.4

The SeconD STRaTegIc TenSIon

Observe that rationalizability does not always lead to a unique strategy profile. 
In fact, it often has little bite in games. For example, neither player has a domi-
nated strategy in the battle of the sexes game (in Figure 6.3). Player 1 might 
rationally believe that player 2 will select A and thus play A in response. But 
player 2 may believe that player 1 will select B and therefore will play B herself. 
Rationalizability merely requires that the players’ beliefs and behavior be consis-
tent with common knowledge of rationality. It does not require that their beliefs 
be correct. We have thus identified another tension in games, which is called 
strategic uncertainty. One manifestation of strategic uncertainty is the coordina-
tion problem, which players often face in games such as the battle of the sexes.

Indeed, lack of strategic coordination seems entirely reasonable and an 
accurate description of some actual events. You might have had the experience 
of losing a friend or family member at Disneyland and being without a cell 
phone to contact this person. Seeking to find each other, you and your friend 
each decided to stand near a prominent site at the theme park. You thought it 
obvious to meet at Cinderella’s Castle. Your friend thought it equally obvious to 
meet at the foot of Main Street. You each behaved in a rational way in response 
to rational conjectures about the other. But your beliefs in the end were not 
consistent. Perhaps you finally caught up to her at the car at the end of the day, 
at which point you were both fuming.

In some games, there is also a direct tension between strategic uncertainty 
and efficiency. Consider a version of the stag hunt game discussed by French 
philosopher Jean-Jacques Rousseau and pictured in Figure 7.4.5 As the story 
goes, two players go on a hunt. Simultaneously and independently, they each 
decide whether to hunt stag or hare. If a player hunts for hare, he will definitely 

4One can define a procedure using weak dominance rather than dominance, but it is subject to the concerns I 
mentioned before. See Appendix B for more on this topic.
5J.-J. Rousseau, A Discourse on Inequality (New York: Penguin, 1984; originally published in 1755).
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catch one (worth 4 units of utility), regardless of whether the other player joins 
him in the hunt for this kind of animal. On the other hand, two people are required 
to catch a stag (which yields 5 to both players). Thus, if only one player hunts 
for stag, then he will get nothing. Note that both players would like to coordi-
nate on the efficient (stag, stag) strategy profile. But suppose player i has some 
doubt about whether the other player will hunt stag. If player i is sufficiently 
uncertain about the other player’s strategy—in particular if player i figures that 
the other player will hunt stag with a probability less than 4>5—then player i 
should hunt for hare. In other words, strategic uncertainty sometimes hinders 
attainment of an efficient outcome. To vegetarians, I apologize.

Strategic uncertainty is a part of life, but there are devices in the world that 
help us coordinate our behavior and avoid inefficiency. Institutions, rules, norms 
of behavior, and, in general, culture often facilitate coordination in society. 
Examples are ubiquitous. Disneyland, and most other places of dense tourism, 
have lost-and-found centers. These centers act as a “focal point” for people in 
search of lost items or lost people; that is, they are prominent in the minds of 
those in need.6 Security on our motorways is buoyed by traffic laws and conven-
tions, which keep drivers on one side of the road. (If you thought the drivers of 
oncoming cars would “drive on the left,” then you should as well.) Furthermore, 
we empower our governments to police the roads because drivers often have the 
incentive to bend the rules.

Communication provides a simple way of coordinating behavior as well. 
For example, suppose Louise and Wayne are planning a trip to a theme park. 
Before entering the grounds, they might agree on a suitable meeting place in 
the event that they become separated and cannot contact each other by phone. 
This agreement will save them from the undesired outcome in which they meet 
in the parking lot at the end of the day. However, this miscoordinated outcome 
might be the most preferred by Louise’s boyfriend Chris. Perhaps it is Louise 
and Chris who ought to communicate better. As therapists say, communication 
is essential to maintaining a healthy relationship.

Communication and many social institutions serve to coordinate beliefs and 
behavior. They create durable systems of beliefs in which economic agents can 

6Nobel laureate Thomas Schelling discussed the idea of a focal point in his influential book titled The Strategy 
of Conflict (London: Oxford University Press, 1960).

FiguRe 7.4 

Stag hunt. Stag Hare

Stag

Hare

5, 5 0, 4

4, 0 4, 4

2
1
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73guided exercise

have confidence. They align our expectations and give us the security of know-
ing that what we expect will actually take place. I pick up the analysis of coor-
dinating institutions in Chapter 9.

guIDeD exeRcISe

Problem: The normal-form game pictured below represents a situation in 
tennis, whereby the server (player 1) decides whether to serve to the opponent’s 
forehand (F), center (C), or backhand (B) side. Simultaneously, the receiver 
(player 2) decides whether to favor the forehand, center, or backhand side. 
Calculate the set of rationalizable strategies for this game.

F C B

F

C

B

0, 5 2, 3

2, 3 0, 5

2, 3

3, 2

5, 0 3, 2 2, 3

2
1

Solution: First note that player 1’s strategy F is dominated by a mixture of C 
and B. You can get a sense of this by noticing that

(a)  if player 2 selects F, both C and B yield a strictly higher payoff than does F 
for player 1;

(b)  if player 2 selects B, then a mixture of C and B yields a higher payoff for 
player 1 than does F, as long as player 1 puts strictly positive probability on C;

(c)  if player 2 selects C, then a mixture of C and B yields a higher payoff for 
player 1 than does F, as long as player 1 puts high enough probability on B.

To quantify (c), consider the mixed strategy in which player 1 puts probability q 
on B and 1 − q on C. Then, in the event that player 2 selects C, player 1’s mixed 
strategy yields an expected payoff of 3q, whereas strategy F yields the payoff 2. 
The mixed strategy is better if q > 2>3. Note that (b) requires q < 1. Thus, for 
any q ∈ (2>3, 1), the mixed strategy dominates F.

After removing player 1’s strategy F from consideration, we see that player 
2’s strategy F is dominated by C, and so F is removed from player 2’s strategy 
set in the second round of the iterated-dominance procedure. This leaves C and 
B for both players. You can quickly confirm that no further deletion of strategies 
can occur, which means the set of rationalizable strategy profiles is

R = {C, B} × {C, B}.
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exeRcISeS

1. Determine the set of rationalizable strategies for each of the following games.

X Y

U

M

D

0, 4 4, 0

3, 3 3, 3

4, 0 0, 4

2
1 X Y Z

U

M

D

2, 0 1, 1

3, 4 1, 2

4, 2

2, 3

1, 3 0, 2 3, 0

2
1

(a) (b)

X Y Z

U

M

D

8, 6 0, 1

1, 0 2, 6

8, 2

5, 1

0, 8 1, 0 4, 4

2
1

(d)

X Y Z

U

M

D

6, 3 5, 1

0, 1 4, 6

0, 2

6, 0

2, 1 3, 5 2, 8

2
1

(c)

X Y

A

B

2, 2 0, 0

0, 0 3, 3

2
1

(e)

X Y

A

B

8, 10 4, 1

6, 4 8, 5

2
1

(f)

X Y

U

D

3, 10 4, 1

6, 4 8, 5

2
1

(g)

2. Suppose that you manage a firm and are engaged in a dispute with one of 
your employees. The process of dispute resolution is modeled by the follow-
ing game, where your employee chooses either to “settle” or to “be tough 
in negotiation,” and you choose either to “hire an attorney” or to “give in.”

Give in Hire attorney

Settle

Be tough

1, 2 0, 1

3, 0 x, 1

You
Employee
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In the cells of the matrix, your payoff is listed second; x is a number that 
both you and the employee know. Under what conditions can you rationalize 
selection of “give in”? Explain what you must believe for this to be the case.

3. Find the set of rationalizable strategies for the following game.

a b c d

w

x

y

z

5, 4 4, 4

3, 7 8, 7

4, 5

5, 8

2, 10 7, 6 4, 6

4, 4 5, 9 4, 10

12, 2

10, 6

9, 5

10, 9

2
1

Note that each player has more than one dominated strategy. Discuss why, 
in the iterative process of deleting dominated strategies, the order in which 
dominated strategies are deleted does not matter.

4. Imagine that there are three major network-affiliate television stations in 
Turlock, California: RBC, CBC, and MBC. All three stations have the op-
tion of airing the evening network news program live at 6:00 p.m. or in a 
delayed broadcast at 7:00 p.m. Each station’s objective is to maximize its 
viewing audience in order to maximize its advertising revenue. The fol-
lowing normal-form representation describes the share of Turlock’s total 
population that is “captured” by each station as a function of the times at 
which the news programs are aired. The stations make their choices simul-
taneously. The payoffs are listed according to the order RBC, CBC, MBC. 
Find the set of rationalizable strategies in this game.

6:00 7:00

6:00

7:00

14, 24, 32 8, 30, 27

30, 16, 24 13, 12, 50

CBC
RBC 6:00 7:00

6:00 7:00

6:00

7:00

16, 24, 30 30, 16, 24

30, 23, 14 14, 24, 32

CBC
RBC

MBC
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5. Suppose that in some two-player game, s1 is a rationalizable strategy for 
player 1. If s2 is a best response to s1 , is s2 a rationalizable strategy for player 
2? Explain.

6. Suppose that in some two-player game, s1 is a rationalizable strategy for 
player 1. If, in addition, you know that s1 is a best response to s2 , can you 
conclude that s2 is a rationalizable strategy for player 2? Explain.

7. Consider a guessing game with ten players, numbered 1 through 10.  
Simultaneously and independently, the players select integers between 0 and 
10. Thus player i ’s strategy space is Si = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, for 
i = 1, 2, c, 10. The payoffs are determined as follows: First, the average 
of the players’ selections is calculated and denoted a. That is,

a =
s1 + s2 + g + s10

10
,

where si denotes player i ’s selection, for i = 1, 2, c, 10. Then, player 
i ’s payoff is given by ui = (a − i − 1) si . What is the set of rationalizable 
strategies for each player in this game?

8. Consider the following game played between 100 people. Each person i 
chooses a number si between 20 and 60 (inclusive). Let a− i be defined as the 
average selection of the players other than player i ; that is, a− i = (j   i  sj 

)>99. 
Person i ’s payoff is ui (s) = 100 − (si −

3
2a− i )2. For instance, if the 

average of the − i players’ choices is 40 and player i chose 56, then player i 
would receive a payoff of 100 − (56 − 3

2
# 40)2 = 100 − 42 = 84.

(a)  Find an expression for player i ’s best response to her belief about the 
other players’ strategies as a function of the expected value of a− i , 
which we can denote a− i . What is the best response to a− i = 40?

(b)  Use your answer to part (a) to determine the set of undominated strate-
gies for each player. Note that dominated strategies are those that are 
not best responses (across all beliefs).

(c)  Find the set of rationalizable strategies. Show what strategies are 
removed in each round of the deletion procedure.

(d)  If there were just two players rather than 100, but the definition of 
payoffs remained the same, would your answers to parts (a) and (b) 
change?

(e)  Suppose that instead of picking numbers between 20 and 60, the play-
ers can select numbers between y and 60, where y is a fixed parameter 
between 0 and 20. Calculate the set of rationalizable strategies for any 
fixed y. Note how the result depends on whether y > 0 or y = 0.
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9. Consider a two-player simultaneous move game with S1 = S2 = [0, 1]. 
Suppose that, for i = 1, 2, player i ’s best response can be represented 
as a function of sj , the expected value of sj according to player i ’s belief 
(where j = − i ). Specifically, player 1’s best response function is given by 
BR1 

(s2 

) = s2 , and player 2’s best response function is given by

BR2 

(s1 

) = minb 1

4
+ s1 , 1 r .

To be clear about this functional form, if 1
4 + s1 < 1, then player 2’s best 

response is 14 + s1. Otherwise, player 2’s best response is 1.
(a) Graph the best response functions for each player.
(b)  Find B1 and B2 . Calculate the rationalizable strategy set and explain 

which strategies are removed in each round of the iterated dominance 
procedure.
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Location, PartnershiP, 
and sociaL Unrest

You have seen in some abstract examples how the concepts of iterated domi-
nance and rationalizability constrain behavior. Our next step is to analyze 

some models that more closely represent real economic situations. As always, 
we have to keep our models simple; otherwise they can become unwieldy. Good 
models capture some of the important features of real-world settings while 
maintaining tractability; they represent and enrich our intuition in digestible 
doses of analytics.

A LocAtion GAme

Where firms locate in a city is a matter of strategy. Often a firm’s proximity 
to its customers and its competitors determines how profitably it can operate. 
Consider a very simple model of location choice by competitors.1 Suppose two 
people—call them Pat and Chris (P and C)—work for the same large soft drink 
company. Their job is to sell cans of the company’s soda at a popular beach. 
They will be working at the same beach and, by company policy, must charge 
the same price. The company has committed to give each salesperson a commis-
sion of 25 cents per can sold. Because of the quantity of drinks that will be sold, 
as well as the coolers and refrigeration needed, each salesperson must work 
from a booth that is stationary on the beach. The only decision that each person 
has to make is where on the beach to set his booth at the beginning of the day. 
Pat and Chris select the locations for their booths independently and simultane-
ously. (Assume that salespeople have to call the city in the morning to obtain a 
permit, at which point they must commit to a location.)

The beach is divided into nine regions of equal size, as pictured in Figure 8.1. 
Booths may be located in any one of these regions (and it is possible for the 
salespeople to locate in the same region). On any given day, fifty people in 
each region will each wish to purchase a soda. Thus, if a salesperson serves 
all of the customers in a single region, he will earn $12.50. Assume that fifty 

1The model analyzed here is of the type first studied by H. Hotelling, “Stability in Competition,” The Economic 
Journal 39 (1929): 41–57.

8
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79A Location Game

customers in every region each purchase a drink, regardless of where Pat and 
Chris locate their booths. However, customers walk to the nearest booth to make 
their purchases. For example, if Pat locates in region 3 and Chris locates in 
region 8, then Pat sells drinks to all of the customers in regions 1 through 5 and 
Chris sells to all of those in regions 6 through 9. If the customers of a given 
region are indifferent between the two booths, assume that half go to one booth 
and half go to the other. Pat and Chris seek to maximize their incomes.

What should Pat and Chris rationally do? To analyze this game formally, 
first represent the game in normal form. Each player’s strategy is a description 
of where this player locates on the beach. Thus, there are nine different strate-
gies, and player i ’s strategy space is Si = {1, 2, 3, 4, 5, 6, 7, 8, 9}, for i = C, P. 
We could draw a matrix to neatly describe the payoff functions for this game; I 
leave it to you to do so and instead just note a few of the payoff numbers. When 
describing strategy profiles, put Chris’s strategy first and Pat’s second; that is, 
(x, y) is the strategy profile in which Chris selects x and Pat selects y. If Chris chose 
2 and Pat selected 5, Chris’s payoff would be uC  (2, 5) = 3 × 12.50 = 37.50 
and Pat would earn uP (2, 5) = 6 × 12.50 = 75.00. If Chris chose 1 and Pat 
selected 9, then the payoffs would be uC  (1, 9) = 56.25 and uP (1, 9) = 56.25. In 
this case, Chris sells to regions 1 through 4, Pat to regions 6 through 9, and they 
split region 5.

To compute the set of rationalizable strategies, we need to perform iter-
ated dominance. Begin by evaluating strategies 1 and 2 against all of the oppo-
nent’s strategies. If Chris plays 1 and Pat plays 1, then Chris gets 56.25; they 
split all of the regions. If Chris plays 2 when Pat chooses 1, then Chris obtains 
100; she captures regions 2 through 9 in this case. Thus, when Pat plays 1, 
Chris’s strategy 2 yields a greater payoff than does strategy 1. Comparing these 
two strategies for Chris against Pat’s strategy 2 yields the same conclusion: 
uC  (2, 2) = 56.25 > uC  (1, 2) = 12.50. Continuing, we find that strategy 2 yields 
a greater payoff than does strategy 1 against all of Pat’s strategies. That is, 
uC  (2, y) > uC  (1, y) for y = 1, 2, c, 9. You should verify this.

We have demonstrated that strategy 2 strictly dominates strategy 1, and it is 
obviously true for both players. By the same reasoning, strategy 9 is dominated 
for both players. In fact, strategies 1 and 9 are the only dominated strategies in the 
game. To see this, note that 2 is a best response to the opponent selecting 1, 3 is a 

FigUre 8.1 

a location game.

2 3 4 5 6 7 8 91
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80 8: Location, Partnership, and Social Unrest

best response to the opponent selecting 2, and so on. By deleting strategies 1 and 9 
for the players, we have reduced the strategy space Si = {1, 2, 3, 4, 5, 6, 7, 8, 9} 
to the set of undominated strategies R1

i = {2, 3, 4, 5, 6, 7, 8}. And we can go 
further by iterating the dominance criterion.

Given that the opponent’s strategy is contained in {2, 3, 4, 5, 6, 7, 8}, 
strategies 2 and 8 are now strictly dominated. That is, ui (3, sj 

) > ui (2, sj ) and 
ui (7, sj ) > ui (8, sj 

) for sj = 2, 3, 4, 5, 6, 7, 8, where sj is the strategy of player 
i ’s opponent. If it is not obvious, you should check this. In the second round of 
deleting strictly dominated strategies, we thus remove 2 and 8, forming the set 
R2

i = {3, 4, 5, 6, 7} for each player. The same analysis requires us to remove 3 
and 7 in the third round, yielding R3

i = {4, 5, 6}, and we remove 4 and 6 in the 
fourth. We are left with only one rational strategy for each player: 5. Thus, the 
set of rationalizable strategy profiles is the singleton R = R5 = {(5, 5)}.

In this game, rationalizability implies that the players, in their quest for a 
large share of the market, both locate in the same region at the center of the 
beach. The model solidifies some intuition that can be applied more generally. 
For example, in a community with two supermarkets, we should expect them 
to be located close together and in the geographical center of the population. 
Furthermore, “location” can be more broadly interpreted, allowing the model to 
address, among other things, product variety and politics. In the first case, think 
of consumers differing in their taste for sweet cereal. A producer can “locate” 
its cereal anywhere in the sweetness spectrum by choosing how much sugar to 
include. Our model suggests that, in a small market, firms produce cereals of 
similar flavor that appeal to the average taste.

Regarding politics, note that the voters in a country are generally a diverse 
bunch. Some desire an open trade policy, whereas others prefer isolation-
ism. Some people want government regulation in certain industries, whereas 
other people oppose any government intervention. One can categorize citizens 
according to their preferences. In the United States and in other countries, this 
categorization often takes the form of a one-dimensional political spectrum, 
with liberal-minded people on the left and conservatives on the right. Candi-
dates for public office may try to appease certain groups of people to get elected. 
We suspect that an individual citizen votes for the candidate who is “closest” to 
him or her in regard to policy.

The location model suggests that candidates will try to locate themselves 
toward the center of the spectrum—that is, they will try to argue that they are in 
the mainstream, that they are moderate, and so forth. Lo and behold, candidates 
actually behave this way. The model also explains why candidates’ positions 
shift over time (such as between a primary election, when a candidate wants to 
appeal to the party faithful, and a general election). I further discuss voting in 
Chapter 10.
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The simple location model is clearly limited. Among others, there are 
four obvious criticisms. First, in the context of market competition, it does not 
include the firms’ specification of prices. Firms might be able to charge higher 
prices when they are separated, and it is not clear how the predictions of our 
model would change with this extension. Second, agents may not have to move 
simultaneously in the real world. Firms can delay the construction of stores to 
observe where their competitors locate. Firms may even be able to relocate in 
response to their rivals’ positions. Third, our model does not apply to larger 
markets where there are more than two firms or more than two products. Fourth, 
our model is one-dimensional, whereas interesting applications have more than 
one dimension.

The cereal industry illustrates a more elaborate economic setting. There are 
many cereal producers (although the market is dominated by General Mills, 
Kellogg’s, and Post) and, more important, firms produce more than one kind of 
cereal. In fact, the dominant firms produce many different varieties, which, in 
reference to our model, is like locating at several different points on the spec-
trum. Firms simultaneously offer various cereals to suit different tastes. The 
technology of cereal production offers one explanation for the plethora of vari-
eties on the market. Different varieties of cereal can be produced in the same 
plant, and companies can change from one variety to another at relatively low 
cost. If there are large segments of the taste spectrum at which no variety is 
located, a firm can easily locate a cereal in this region and earn a profit. Thus, we 
expect all such opportunities to be exhausted, leading to a market with a large 
number of varieties positioned at regular intervals along the spectrum of tastes.

As with the topic of firm competition, the analysis of politics can bene-
fit from an enriched location model. In fact, intuition garnered from the basic 
model can guide us in extending the model and developing an understanding 
of complicated political processes. You might think about what happens if the 
citizens are not uniformly arranged on the political spectrum but, instead, are 
distributed in a different way. What if there are more than two candidates? What 
if the candidates cannot so easily remake themselves (locate freely)? What if 
there is more than one dimension to policy decisions? Why are there only two 
strong parties in the United States? These and many other questions can be 
addressed by using extensions of the basic model.

A PArtnerShiP GAme: StrAteGic comPLementAritieS

Most jobs entail interaction between different people. Whether in a small firm 
with two partners or in a major conglomerate, the success of the enterprise 
requires cooperation and shared responsibility. Because one person’s effort 
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affects another person’s prosperity—perhaps through the profit that they gener-
ate together—people may not always have the incentive to work in the most effi-
cient way. In other words, the nature of the workplace can create “distortions” 
whereby self-interested behavior spoils the cause of joint productivity. Games 
are played between friends and colleagues just as they are played between 
adversaries.2

To construct an extremely simple model of such distortions, think of a part-
nership between two people. The firm’s profit, which the partners share, depends 
on the effort that each person expends on the job. Suppose that the profit is 
p = 4(x + y + cxy), where x is the amount of effort expended by partner 1 and 
y is the amount expended by partner 2. The value c is a positive constant, which 
is assumed to be between 0 and 1>4; it measures how complementary the tasks 
of the partners are. Partner 1 incurs a personal cost x2 of expending effort, which 
is measured in monetary terms. Partner 2’s cost of effort is y2. Assume that x and 
y have to be set between 0 and 4.

The business environment is such that the partners cannot write a contract 
that dictates how much effort each must expend. The reason could be that the 
courts have no way of verifying effort on the job and so cannot enforce such 
contracts. Therefore partner 1 selects x and partner 2 selects y independently. 
Assume that they do so simultaneously as well. The partners seek to maximize 
their individual share of the firm’s profit net of the cost of effort. In mathematical 
terms, partner 1 cares about ( p>2) − x2 and partner 2 cares about ( p>2) − y 2.

To be complete, let us translate this model into the terminology of game 
theory using the normal form. The strategy space for player 1 is the set of numbers 
between zero and four, because he selects an effort level in this range. Player 2 
has the same strategy space. Mathematically, S1 = [0, 4] and S2 = [0, 4]. The 
payoff function for player 1 is 2(x + y + cxy) − x2 and the payoff function for 
player 2 is 2(x + y + cxy) − y 2. Note that because the players have an infinite 
number of strategies, we cannot represent this game with a matrix.

In the partnership game, the distortion in the interaction between the two 
partners arises in that each partner does not fully “internalize” the value of his 
effort. A partner knows that, if he works to increase the firm’s profit by one 
dollar, he obtains only one-half of this amount. He is therefore less willing to 
provide effort. The firm suffers here because the partner does not incorporate the 
benefit of his labor to the rest of the firm.

Let us analyze the game and see whether this intuition is captured by the 
theory of rationalizability. Because the game has an infinite strategy space, 
looking for dominated strategies is a bit of a challenge. Rather than trying for 
a complete mathematical analysis, we can construct the set of rationalizable 

2Remember that game theory is the study of interdependence, not necessarily pure conflict.
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strategies by examining a graph of the players’ best-response functions. This 
type of graph provides a great deal of intuition and will be useful later as well.

Player 1 constructs a belief about the strategy of player 2, which is a prob-
ability distribution over y, player 2’s effort level. Player 1 then selects a best 
response to her conjecture, which maximizes her expected payoff in the game. 
Let us compute this best response. Given her belief, if player 1 selects effort level 
x, then her share of the firm’s profit is the expected value of 2(x + y + cxy).  
This expected value is 2(x + y + cxy), where y is the mean (or “average”) of 
her belief about y.3 Player 1’s expected payoff is thus 2(x + y + cxy) − x2. To 
compute player 1’s best response, take the derivative of this expression with 
respect to x and set the derivative equal to zero (to find where the slope of this 
function of x is zero). This yields

2 + 2cy − 2x = 0.

Solving for x, we have x = 1 + cy. We thus have computed player 1’s best 
response as a function of y. In terms of the notation introduced earlier, 
BR1 (y) = 1 + cy. Player 2’s best-response function is computed in the same 
way and is BR2 

(x) = 1 + cx.
To be consistent with earlier definitions, we should actually write 

BR1 (y) = {1 + cy} and BR2 

 (x) = {1 + cx}, because BRi is a set of strategies 
(which, in this case, consists of a single strategy). However, I will be a bit loose 
with the nature of BRi for games in which BRi contains a single strategy for 
each belief. For such games, we can treat BRi as a function. Thus, I will write 
x = BR1 (y) instead of x ∈ BR1 (y).

Figure 8.2 depicts the best-response functions of the two players. The strat-
egy of player 1 is on the x-axis, and the strategy of player 2 is on the y-axis. 
The best-response function of player 2 is a function of x. Observe that, at 
x = 0, BR2 (0) = 1; at x = 4, BR2 (4) = 1 + 4c. The best-response function for 
player 1 has the same properties, although it is a function of player 2’s strategy y.

To compute the set of rationalizable strategies, first observe that, regard-
less of player 2’s belief about player 1, player 2’s best response is a number 
between 1 and 1 + 4c. To see this, remember that player 1 selects an effort level 
between 0 and 4, which means that x must be between these numbers as well. 
Thus, the greatest that 1 + cx can be is 1 + 4c, and the least that it can be is 1. 
Strategies of player 2 below 1 or above 1 + 4c can never be best responses; they 
are dominated. The same argument establishes that these same strategies are 

3For example, maybe she believes that, with probability 1>4, player 2 will select y = 1>2 and, with probabil-
ity 3>4, player 2 will select y = 2. Then the mean of her conjecture is y = (1>4)(1>2) + (3>4)2 = 13>8. The 
expected value expression is valid because, holding fixed x, the variable y enters player 1’s payoff in a linear 
fashion. That is, the expectation of a constant times y is the constant times the expectation of y.
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dominated for player 1 as well. Thus, if we start with the strategy space [0, 4] 
for each player, the undominated strategies are in the set R1

i = [1, 1 + 4c]. Note 
that because c < 1>4, we know that 1 + 4c < 2.

On to the next level of dominance. Understand that player 1 knows that 
player 2’s strategy will be contained in the set [1, 1 + 4c], and so player 1’s 
average expectation about player 2’s strategy has the same bounds. That is, 
y ∈ [1, 1 + 4c], which implies that player 1’s best response to his belief must 
be a strategy in the set [ 1 + c, 1 + c(1 + 4c)]. We get this set by plugging 
the extreme values 1 and 1 + 4c into player 1’s best-response function, which 
corresponds to the two vertical dashed lines in the center of Figure 8.2. Observe 
that 1 + c > 1 and 1 + c(1 + 4c) < 1 + 4c; so this new set of undominated 
strategies is “smaller” than the one described in the preceding paragraph. Again, 
the same argument can be used to narrow the set of rational strategies for player 
2. Thus, after two rounds of the rationalizability procedure, we have the set of 
strategies R2

i = [1 + c, 1 + c(1 + 4c)] for each player.
We obtain the set of rationalizable strategies by continuing to delete domi-

nated strategies in stages, disregarding strategies that we have deleted in prior 
stages. You can tell from the preceding analysis that at each stage there will be 
an upper and a lower bound on the set of strategies that have survived so far. To 
get the upper bound for the next stage, plug the upper bound of the current stage 
into a player’s best-response function. To get the lower bound for the next stage, 
plug in the current lower bound. From looking at the graph, it is not difficult to 
see where this process leads: as we remove dominated strategies, both the lower 
and upper bounds converge to the point at which the players’ best-response 

1 + c

x4
1 + c(1 + 4c)

4

1

1

y

1 + 4c
BR2(x)

BR1(y)

         (x*, y*)

n   n         (x , y)

FigUre 8.2 

Partnership game  

best-response functions.
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functions cross. They cross at the point where

x =
1

1 − c
 and y =

1

1 − c
,

which jointly solve the equations x = 1 + cy and y = 1 + cx. There-
fore, x* = 1>(1 − c) is the only rationalizable strategy for player 1, and 
y* = 1>(1 − c) is the only rationalizable strategy for player 2. That is, the set of 
rationalizable strategy profiles is the singleton set R = {( 1

1− c , 1
1− c)}. Although 

it may not be obvious from the picture, the rationalizability procedure requires 
an infinite number of rounds to reach this conclusion.4

Given that the players select their only rationalizable strategies, the firm’s 
profit is

4 c 1

1 − c
+

1

1 − c
+

c

(1 − c)2 d ,

which simplifies to (8 − 4c)>(1 − c)2. Splitting the profit and including the 
effort cost, each partner gets a payoff of (3 − 2c)>(1 − c)2.

Rationalizability yields a unique prediction in this model of a partnership, 
and, as we have seen before, the outcome is not the one that the players like best. 
To find the efficient outcome, maximize the total net profit of the firm,

4(x + y + cxy) − x2 − y 2,

by choosing x and y. Taking the derivatives of this expression with respect to 
x and y and setting these derivatives equal to zero, we get 4 + 4cy = 2x and 
4 + 4cx = 2y. Solving these equalities simultaneously yields the jointly opti-
mal effort levels:

xn =
2

1 − 2c
 and yn =

2

1 − 2c
.

Note that

1

1 − c
<

2

1 − 2c
.

4For the benefit of those who are mathematically inclined, the convergence property can be proved in the 
following way: Take any number z and define w = z − 1>(1 − c). The number w measures the distance 
between z and 1>(1 − c). Plugging z into the best-response function yields 1 + cz = 1 + c[w + 1>(1 − c)] 
=  cw + 1>(1 − c). In words, if |w| is the distance between z and 1>(1 − c), then c|w| is the distance 
between BRi  (z) and 1>(1 − c). Because 0 < c < 1, the distance shrinks every time the number is plugged 
into the best-response function. One can slow that the set of strategies that survive after k rounds of iterated 
dominance is Rk

i = [ 1
1− c − ( 1

1− c)c
k, 1

1− c + (3−4c
1− c )ck].
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By playing their rationalizable strategies, the partners provide less effort than 
they jointly prefer. The jointly optimal strategy profile is denoted (xn, yn) in 
Figure 8.2.5

We have seen such a conclusion before, the prisoners’ dilemma being the 
standard example of how individual incentives can interfere with group gain. 
But here the process of iteratively deleting strictly dominated strategies is about 
as complicated as the title of the procedure. There is also a bit more economics 
at work in the partnership example. As already noted, the reason our predicted 
outcome differs from the joint-optimum strategy is that the partners’ individ-
ual costs and benefits differ from joint costs and benefits. The joint optimum 
balances joint benefits (the firm’s gross profit) with joint costs (the sum of the 
partners’ effort costs). Because each partner cares only about his own cost and 
benefit and because his individual benefit is only a fraction of the joint benefit, 
his calculations understate the value of his effort. Thus, he expends less effort 
than is best from the social point of view. Because both players do so, they both 
end up worse off.

The term cxy was included in the partners’ profit function for two reasons. 
First, it makes iterated dominance more interesting than if the term were absent, 
which allows us to build intuition that will be useful later. Incidentally, you will 
notice that one of the problems at the end of this chapter is a simplified version 
of the game heretofore presented; it is much easier to solve.

The second reason for including the cxy term is that it represents an impor-
tant feature of many economic settings—a feature called complementarity. In 
the partnership game, increases in effort by one of the partners is beneficial 
to him, up to a point. For example, raising x from 0 to 1>2 will increase part-
ner 1’s payoff. Furthermore, increasing a partner’s effort is more valuable the 
greater is the other partner’s effort level. To see this, note that the first deriva-
tive of player 1’s payoff function with respect to his own effort, x, increases as 
y increases. The same is true for player 2’s payoff. The relation between the 
partners’ strategies is complementary here; in formal terms, the game is one of 
strategic complementarities. In general, strategic complementarity is easy to 
detect in games with continuous strategy spaces. It exists if 02

 ui (s)>0si  0sj Ú 0 for 
all s ∈ S, each player i, and each other player j. That is, the cross partial deriva-
tive of player i ’s payoff function with respect to player i ’s strategy and any other 
player’s strategy is not negative.6

5The term joint refers to the “total” welfare of all agents in the model—in this case, the two partners. Sometimes 
the expression social optimal is used, although it can be ambiguous if we consider people outside the game.
6Strategic complementarity was discussed by J. Bulow, J. Geanakoplos, and P. Klemperer, “Multimarket 
Oligopoly: Strategic Substitutes and Complements,” The Journal of Political Economy 93 (1985): 488–511. 
The concept was analyzed more generally by P. Milgrom and J. Roberts, “Rationalizability, Learning, and 
Equilibrium in Games with Strategic Complementarities,” Econometrica 58 (1990): 1255–1277.
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Because of the strategic complementarity, each player’s best-response func-
tion is increasing in the mean belief about the partner’s strategy. That is, as y 
increases, so does the optimal x in response. In terms of the graph in Figure 8.2, 
the players’ best-response functions are positively sloped. In the partnership 
game, as c increases, so does the slope of the best-response functions. (Because 
player 1’s best response is a function of y, this means the graph in Figure 8.2 
flattens.) As a result, the rationalizable effort levels increase, too. Intuitively, 
they do so because each player’s optimal strategy depends “more” on the effort 
of the other.

Rationalizability does not always lead to a unique prediction in games such 
as this one, even when there are strategic complementarities. The force of iter-
ated dominance depends on the relative slopes of the best-response functions. 
To develop your understanding, it might be helpful to draw a few pictures like 
Figure 8.2 with various different best-response functions. A best-response func-
tion for player 1 must assign a value for every y, so it must stretch from the 
bottom of the picture to the top. A best-response function for player 2 must 
stretch from the left to the right. One result of which you may convince your-
self is that rationalizability leads to a unique prediction in two-player games 
with three properties: (1) the strategy spaces are intervals with lower and upper 
bounds, (2) there are strategic complementarities, and (3) the slope of the best-
response functions is less than one. These conditions are not required for ratio-
nalizability to yield a unique strategy profile, but they are sufficient. You should 
verify that they hold in the partnership game.

SociAL UnreSt

Recall the year 2011: A wave of rebellion flows across North Africa and the 
Middle East as thousands, perhaps millions, of people take to the streets to 
demonstrate against repressive government regimes and in favor of human 
rights and democracy. The first protest occurs in Tunisia in December 2010. 
Under intense pressure from the populace, the Tunisian president is driven from 
power within a month. Unrest spreads to Algeria and Egypt and eventually to 
more than a dozen other countries in what becomes known as the “Arab Spring.” 
By the end of 2011, governments are overthrown in Tunisia, Egypt, Yemen, and 
Libya. Thousands die.

Given the living conditions and political culture of the affected countries, 
one can understand why people in these countries rose in revolt. But why did 
it happen in 2011? Conditions were awful for years before; repressive regimes 
had long been in control. Furthermore, why did it happen in so many countries 
at the same time? Game theoretic analysis can provide some insight.
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The key idea is that one takes a risk by participating in a protest. Further, 
the risk depends on how many others decide to protest. A successful protest 
requires that enough people actually participate. A protester who acts alone or in 
a small group will likely be defeated—and possibly harmed. Thus, it is impor-
tant to understand what the prospective protesters know about each other and 
their intended strategies.

Consider a simple model in which many players (the citizens) simultaneously 
choose whether to protest (strategy P) or stay home (strategy H). Assume that 
there is an infinite number of players, with each player represented by a point on 
the interval [0, 1], and suppose the players are uniformly distributed on this inter-
val. (See Appendix A for the definition of uniform distribution.) We can therefore 
write “player i ∈ [0, 1].” Although it may not appear so, this specification leads to 
a simpler model than would be the case with a finite number of players. Suppose 
that the players differ in terms of their dedication to the cause of protest; specifi-
cally, dedication is measured by the index i. A player with i close to zero is not 
very dedicated to the cause, whereas a player with i close to 1 is perhaps a zealot.

Suppose the payoff of player i depends on the fraction x of players who choose 
to protest. Player i ’s payoff is the sum of two terms: First, regardless of player i ’s 
choice, this player gets a benefit of 4x − 2 from the protest movement. This term 
represents the idea that an increase in the fraction of protesters will translate into 
better outcomes. For instance, an increase in x implies more concessions from 
the government or a greater likelihood that the government will be overthrown. 
Second, if player i chooses to protest, then this player gets an additional amount 
4x − 2 + ai, where a is a fixed parameter that is nonnegative. Here, the addi-
tional 4x − 2 represents that the benefit of the protest movement is amplified for 
those who directly participate. The latter part, ai, represents that players with 
higher values of i are more dedicated to the protest movement, in that they get 
a bonus from protesting. In a nutshell, if player i stays home, then her payoff is

ui (H, x) = 4x − 2,

whereas if she protests, then her payoff is

ui (P, x) = 8x − 4 + ai,

Note that I am writing the payoff as function of player i ’s strategy and x, as the 
payoff depends on the other players’ strategies only through the proportion x 
who select P.

The first step in analyzing this game is to compare the payoffs of P and H 
for any player i and to determine the conditions under which this player has 
the incentive to protest. Note that by writing ui (P, x) Ú ui (H, x) and rearranging 
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terms, we find that player i prefers to protest if and only if i Ú (2 − 4x)>a. 
Thus, players with higher values of i are more interested in protesting, and the 
attractiveness of strategy P increases in x for all players. In other words, if a 
large enough fraction of the other players will protest, then player i will want to 
join. Furthermore, the “cutoff ” value of x is smaller for more dedicated players.

So, is it rational for players to protest? Under what conditions will a protest 
occur? We can address these questions by calculating the set of rationalizable 
strategy profiles. It turns out that the rationalizable set depends critically on 
whether the most dedicated player (with i = 1) strictly prefers to protest, condi-
tional on believing that no one else will choose to protest (so x = 0). That is, we 
need to evaluate whether u1 (P, 0) > u1 (H, 0). Note that this inequality simpli-
fies to a > 2. I’ll proceed by examining two specific cases, one in which a = 1 
and one in which a = 3. An exercise at the end of this chapter asks you to 
generalize the analysis.

Consider first the case in which a = 1. Here, the most dedicated player 
(i = 1) is only moderately so, and it can be rational for him to stay home or 
protest depending on his belief about the others. More precisely, if he were to 
believe that most other players will stay home, so that x … 1>4, then staying 
home is a best response. Likewise, if he believes that x Ú 1>4, then protesting is 
a best response. We have the same conclusion for the other players: both protest-
ing and staying home are rational strategies depending on beliefs. This means 
that all strategy profiles are rationalizable, so we do not have a firm prediction.

In this case, strategic uncertainty may lead the players to stay home even 
though they would all be better off if they all chose to protest. Such an outcome, 
no doubt frustrating to the players, has been observed in many instances in the 
world. Successful protests often rely on the occurrence of events that help the 
players coordinate on the protest strategy. Examples of coordinating events 
include public declarations by opposition leaders, provocative statements and 
the initiation of harsh policies by government leaders, or prominent geopolitical 
events. For instance, one could argue that the successful protests in Tunisia trig-
gered an expectation that the people would similarly rise up in nearby countries.

Next consider the case in which a = 3. Here, the most dedicated player 
(i = 1) is quite motivated to protest. In fact, regardless of his belief about the 
others, this player’s only rational strategy is to protest; that is, H is dominated 
for this player. We reach the same conclusion for every player i > 2>3, which 
you can check by evaluating ui (P, x) > ui (H, x) as shown above. On the other 
hand, every player i … 2>3 can rationally choose to protest or stay home; such a 
player wants to stay home if she believes that x is likely to be small.

This analysis shows that in the first round of the iterated dominance proce-
dure, strategy H is removed for each player i for which i > 2>3. Thus, at least a 
third of the players must protest, so all of the players know that x Ú 1>3. Recall 
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that player i strictly prefers to protest if and only if i > (2 − 4x)>a. Plugging 
in a = 3 and noting that x Ú 1>3, we see that (2 − 4x)>a … 2>9, which means 
that protesting becomes the dominant strategy for every player i > 2>9. We 
conclude that in the second round of the iterated dominance procedure, strategy 
H is removed for each player i > 2>9. By common knowledge of rationality, 
therefore all of the players know that x Ú 7>9.

The procedure terminates in the third round of iterated dominance. Recall 
again that player i strictly prefers to protest if and only if i > (2 − 4x)>a. Plug-
ging in a = 3 and noting that x Ú 7>9, we calculate that (2 − 4x)>a … −10>27. 
In other words, because x is sure to be large, the inequality i > (2 − 4x)>a 
holds for every player i. As a result, no one can rationally select strategy H. The 
unique rationalizable strategy profile has everyone protesting.

This result is interesting because it doesn’t take many extremely dedi-
cated players to induce a mass protest. To see this, consider the inequality 
ui (P, 0) > ui (H, 0), which means that player i strictly prefers to protest even if 
no one else does. This inequality simplifies to i > 2>a. For the sake of discus-
sion, let’s call players who satisfy this inequality zealots. For them, protest is 
the only rational strategy. In the case of a = 3, one-third of the population are 
zealots. The other two-thirds could rationally stay home if they thought that x 
would be close to zero. But knowing that the zealots will protest, so x Ú 1>3, 
the moderately dedicated players in the interval (2>9, 2>3] will also take to the 
streets. For them, the assured presence of the zealots cuts the risk of protest-
ing. Furthermore, knowing that the zealots and moderately dedicated will both 
protest, the more neutral players with i close to zero will also join in the protest.

It takes only a slight change in the parameter a to switch from the case in 
which players can rationally stay home to the case in which we predict a mass 
protest for sure. In fact, 2 is the cutoff value of a. For any a … 2, every strategy 
profile is rationalizable. For any a > 2, the only rationalizable profile is for all 
players to protest.

This example shows the power that an extreme fringe has in terms of moti-
vating a disaffected population. In the Arab Spring uprisings, zealots played an 
important role. Many took to the streets and challenged the military establish-
ment, at great personal risk. Some set themselves on fire. The horrific scenes of 
protest and rebellion marked a major international crisis, with repercussions that 
will extend for decades.

GUided exerciSe

Problem: Consider the location game analyzed in this chapter, but with differ-
ent preferences for the players. Instead of each player seeking to sell as many 
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cans of soda as possible, suppose that each wants to sell as few cans as possible. 
To motivate such preferences, think of the players being paid a fixed wage for 
their work, and imagine that sales entail effort that they would rather not exert. 
In this new game, are there any dominated strategies for the players? Compute 
the rationalizable strategies for the players, and explain the difference between 
this game and the original game.

Solution: Intuitively, players in this game want to do the opposite of what 
was shown to be rational in the standard location game. Whereas in the stan-
dard game a player benefits from being closer to the middle location than is her 
opponent, in this game the players gain (that is, sell fewer sodas) by moving 
away from the middle. Indeed, you can easily check that the strategy of locat-
ing in region 1 dominates each of the strategies 2 through 5, because locating 
in region 1 yields strictly lower sales regardless of where the opponent locates. 
Furthermore, the strategy of locating in region 9 dominates each of the strate-
gies 5 through 8. Thus, strategies 2 through 8 for both players are removed in the 
first round of the iterated-dominance procedure. In the second round, we find 
that neither strategy 1 nor strategy 9 dominates the other. Therefore, the set of 
rationalizable strategies for each player i is Ri = {1, 9}, for i = 1, 2.

exerciSeS

1. Consider a location game like the one discussed in this chapter. Suppose 
that instead of the nine regions located in a straight line, the nine regions 
form a box with three rows and three columns. Two vendors simultaneously 
and independently select on which of the nine regions to locate. Suppose 
that there are two consumers in each region; each consumer will walk to 
the nearest vendor and purchase a soda, generating a $1.00 profit for the 
vendor. Consumers cannot walk diagonally. For example, to get from the 
top-left region to the middle region, a consumer has to walk through either 
the top-center region or the middle-left region. (This means that the middle 
region is the same distance from top-left as top-right is from top-left.) As-
sume that if some consumers are the same distance from the two vendors, 
then these consumers are split equally between the vendors. Determine the 
set of rationalizable strategies for the vendors.

2. Consider a location game with nine regions like the one discussed in this 
chapter. But instead of having the customers distributed uniformly across 
the nine regions, suppose that region 1 has a different number of customers 
than the other regions. Specifically, suppose that regions 2 though 9 each 
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has ten customers, whereas region 1 has x customers. For what values of x 
does the strategy of locating in region 2 dominate locating in region 1?

3. Consider our nine-region location game to be a model of competition be-
tween two political candidates. Fifty voters are located in each of the nine 
regions of the political spectrum; each voter will vote for the closest candi-
date. Voters in regions equidistant from the two candidates will split evenly 
between them.
(a)  Assume that each candidate wants to maximize the number of votes 

he or she receives. Are the candidates’ preferences the same as those 
modeled in the basic location game? Discuss how this setting differs 
from the setting in which candidates want to maximize the probability 
of winning (with the rule that the candidate with the most votes wins the 
election and, in case of a tie, each candidate is awarded the office with 
probability 1>2).

(b)  Suppose, contrary to the basic location model, that voters are not 
uniformly distributed across the nine regions. Instead, whereas regions 
1, 2, 3, 4, 5, 8, and 9 each contains fifty voters, regions 6 and 7 each 
contains x voters. Analyze the candidate location game for the case in 
which x = 75. In a rationalizable outcome, can one of the candidates 
win with probability 1?

(c) What happens if x > 75 or x < 75?

4. Consider the partnership game analyzed in this chapter, but assume that 
c < 0. Graph the players’ best-response functions for this case, and explain 
how they differ from those in the original model. If you can, find the ratio-
nalizable strategies for the players. Use the graph to find them. Repeat the 
analysis under the assumption that c > 1>4.

5. Consider a duopoly game in which two firms simultaneously and indepen-
dently select prices. Assume that the prices are required to be greater than or 
equal to zero. Denote firm 1’s price as p1 and firm 2’s price as p2 . The firms’ 
products are differentiated. After the prices are set, consumers demand 
10 − p1 + p2 units of the good that firm 1 produces. Consumers demand 
10 − p2 + p1 units of the good that firm 2 produces. Assume that each firm 
must supply the number of units demanded. Also assume that each firm 
produces at zero cost. The payoff for each firm is equal to the firm’s profit.
(a)  Write the payoff functions of the firms (as a function of their strategies 

p1 and p2).
(b) Compute firm 2’s best-response function (as a function of p1).
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(c)  Can you determine the rationalizable strategies in this game by inspect-
ing the graph of the best-response functions? What are the rationalizable 
strategies?

6. Consider a location game with five regions on the beach in which a ven-
dor can locate. The regions are arranged on a straight line, as in the origi-
nal game discussed in the text. Instead of there being two vendors, as with 
the original game, suppose there are three vendors who simultaneously 
and independently select on which of the five regions to locate. There are 
thirty consumers in each of the five regions; each consumer will walk to 
the nearest vendor and purchase a soda, generating a $1.00 profit for the 
vendor. Assume that if some consumers are the same distance from the two 
or three nearest vendors, then these consumers are split equally between 
these vendors.
(a) Can you rationalize the strategy of locating in region 1?
(b)  If your answer to part (a) is “yes,” describe a belief that makes locating 

at region 1 a best response. If your answer is “no,” find a strategy that 
strictly dominates playing strategy 1.

7. Consider a game in which, simultaneously, player 1 selects a number 
x ∈ [2, 8] and player 2 selects a number y ∈ [2, 8]. The payoffs are given by:

u1 (x, y) = 2xy − x2

u2 (x, y) = 4xy − y2.

Calculate the rationalizable strategy profiles for this game.

8. Finish the analysis of the “social unrest” model by showing that for any 
a > 2, the only rationalizable strategy profile is for all players to protest. 
Here is a helpful general step: Suppose that is it common knowledge that 
all players above y will protest, so x Ú 1 − y. Find a cutoff player number 
f (y) with the property that given x Ú 1 − y, every player above f (y) strictly 
prefers to protest.

9. Consider an industry in which two firms compete by simultaneously and 
independently selecting prices for their goods. Firm 1’s product and firm 2’s 
product are imperfect substitutes, so that an increase in one firm’s price will 
lead to an increase in the quantity demanded of the other firm’s product. In 
particular, each firm i faces the following demand curve:

qi = max{0, 24 − 2pi + pj},
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 where qi is the quantity that firm i sells, pi is firm i ’s price, and pj is the other 
firm’s price. (The “maximum” operator is needed to ensure that quantity 
demanded is never negative.)
 Suppose that the maximum possible price is 20 and the minimum price 
is zero, so the strategy space for each firm i is Si = [0, 20]. Both firms 
produce with no costs.
(a)  What is firm i ’s profit as a function of the strategy profile ( p1, p2)? Let 

each firm’s payoff be defined as its profit.
(b)  Show that for each firm i , prices less than 6 and prices greater than 11 

are dominated strategies, whereas prices from 6 to 11 are not domi-
nated, so Bi = [6, 11].

(c)  Consider a reduced game in which firms select prices between x and 
y, where x < y. What strategies are undominated in such a game? Use 
your answer to compute the set of rationalizable strategies in the origi-
nal game.
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Nash Equilibrium 9

The concept of rationalizability embodies just a few simple assumptions 
about what players know about each other and how players respond to their 

own beliefs. The assumptions are that (1) people form beliefs about others’ be-
havior, (2) people best respond to their beliefs, and (3) these facts are common 
knowledge among the players. The concept is quite weak in that no additional 
assumptions about behavior are made. In particular, we do not assume that each 
player’s beliefs are consistent with the strategies actually used by the other play-
ers. We saw at the end of Chapter 7 how strategic uncertainty can lead to very 
uncoordinated outcomes; in the battle of the sexes, for example, both players 
may receive their lowest possible payoffs if the expectation of one player is not 
synchronized with the behavior of the other.

There are many settings in which rationalizability is the appropriate behav-
ioral concept. In particular, it is justified in studying situations in which people 
have little history in common on which to coordinate their beliefs. Locating a 
friend on your first trip to Disneyland may fit into this category, as long as you 
have not communicated extensively with your friend (presumably because you 
lost your cell phone or the battery ran down) and you have not agreed in advance 
on places to meet under certain contingencies. In a more traditional economic 
vein, bargaining between the buyer and the seller of a house or car often takes 
place with strategic uncertainty. The parties may not have met each other previ-
ously and do not know what strategies each will adopt in the negotiation. They 
may understand that they are both rational and sophisticated thinkers, which can 
restrict how they act, but there is strategic uncertainty nonetheless.

In other settings, strategic uncertainty is resolved through a variety of social 
institutions, such as norms, rules, or communication between the players. For 
instance, if people can communicate before playing a game, they may discuss what 
strategies each will take, and they may even agree on how the game will be played. 
Communication therefore can reduce strategic uncertainty by bringing beliefs into 
harmony with actual behavior. We can imagine how this is accomplished in coordi-
nation games, where the players can all benefit from agreeing to a course of play. In 
more adversarial settings, communication may not be quite as effective. In general, 
communication that aligns the players’ expectations should be considered a form 
of agreement, or contract. This interpretation is elaborated in later chapters.
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Historical factors also may coordinate beliefs and behavior. For example, 
consider the game of deciding how to pass someone who is walking toward you 
on the sidewalk. If neither of you changes direction, you will collide. At least one 
of you must alter your path to prevent a collision. But if you both move toward 
the street or you both move away from the street, then you will also collide and 
be embarrassed to boot. You are better off if one person moves a bit toward the 
street and the other moves a bit away from the street. You need to coordinate your 
actions. One way of doing so is to yell to each other commands such as “move to 
your right please,” but yelling seems as embarrassing as colliding.

In fact, the “avoiding people on the street” game is played every day in 
society, and historical precedent has served to align our beliefs and behavior. At 
some point in the United States, people began to favor the practice of organiz-
ing the sidewalk in much the same way as streets are organized for automobile 
travel. People generally move to their right to avoid others. How this transpired 
may not be known; perhaps it was the result of random behavior. Regardless 
of its origins, people have come to expect that others will prevent collisions 
by moving to their right. It is a social convention, one reinforced every day as 
people conform to it.

History, rules, and communication are just as effective in coordinating 
beliefs and behavior in economic settings as they are in walking games. Firms 
that compete over time often settle into a routine in which the manager of each 
firm has learned to accurately predict the strategies employed by his rivals each 
week. Business partners who work together on similar projects over and over 
again learn what to expect from each other. They can also communicate to coor-
dinate their actions. Bargaining over the price of a house can be moderated by 
social norms, even when the parties have little personal experience with the 
market. The parties’ beliefs and behavior are often guided by how others have 
played the game in the past.

The point of this chapter is to begin to explore rational behavior when 
actions and beliefs are coordinated by social institutions. The underlying idea 
is that through some social force (such as those just discussed) behavior in a 
game is coordinated, or congruous. Congruity can refer to consistent and regu-
lar behavior in a game that is played over and over in society or by the same 
parties who interact repeatedly. Congruity can also refer to behavior in a one-
shot game in which communication or social history has aligned the beliefs 
of each player with the strategies of the others. Here are three versions of the 
congruity concept, geared toward different settings:

1. A game is repeatedly played in society or by a group of agents. The behav-
ior of the players “settles down” in that the same strategies are used each 
time the game is played.
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2. The players meet before playing a game and reach an agreement on the 
strategy that each will use. Subsequently, the players individually honor the 
agreement.

3. An outside mediator recommends to the players that they adopt a specific 
strategy profile in a game. Each player, expecting that the others will follow 
the mediator’s suggestion, has the incentive to follow the mediator as well.

Instead of studying these interpretations separately, we shall examine their 
common element—the combination of best-response behavior and reduced stra-
tegic uncertainty.

Nash Equilibrium

The simplest notion of congruity is that the players are best responding in a setting 
of strategic certainty. In other words, the players coordinate on a single strategy 
profile. In such a case, the players’ beliefs and behavior are consistent, with each 
player’s belief about another player’s strategy concentrated on the actual strategy 
that the other player uses. Because of these accurate beliefs, the players are best 
responding to each others’ strategies. To say it differently, the players’ strategies 
are “mutual best responses.”

The idea of mutual best response is one of the many contributions of Nobel 
laureate John Nash to the field of game theory. It is a simple, but extremely 
powerful, theory of behavior. Nash used the term equilibrium for this concept; 
we now call it Nash equilibrium.1 Here is the formal definition:

A strategy profile s ∈ S is a Nash equilibrium if and only if si ∈ BRi (s−i ) 
for each player i. That is, ui (si , s−i ) Ú ui (s=i , s−i ) for every s=i ∈ Si and each 
player i.

For example, consider a game that is repeated in society, and suppose that over 
time behavior settles to the point that it conforms to a single strategy profile, s. If 
player i believes that the behavior of the others today will correspond to histori-
cal behavior, then player i should play a best response to s−i . If st is not a best 
response to s−i , then s is not a good description of what will happen today. That 
is, s can be stable over time only if si is a best response to s−i for each player i.

As another example, consider the setting in which the players meet before 
playing a game and agree on a strategy profile s that should be played. The 

1Nash reported his equilibrium concept in “Non-Cooperative Games,” Annals of Mathematics 51 (1951): 
286–295.
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players each have an individual incentive to abide by the agreement only if each 
player’s prescribed strategy is a best response to the prescription for the others. 
If the agreement is to play strategy profile s and si F BRi (s−i ) for some player i, 
then this player has no incentive to abide by the agreement and will choose a 
strategy that is different from si .

To illustrate the concept of a Nash equilibrium, consider the classic normal-
form games pictured in Figure 3.4. The games are redrawn in Figure 9.1, and 
the Nash equilibria are designated by circles around the relevant cells of the 
matrices. The set of rationalizable strategies also is indicated for each game (in 
that strategies removed by the iterated dominance procedure are stricken). Note 
that all strategies are rationalizable for every game except the pigs game and the 
prisoners’ dilemma.

In the prisoners’ dilemma, regardless of the other player’s strategy, the 
only best response is to play strategy D. We have D ∈ BRi (D) = {D} for both 
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players, and so the strategy profile (D, D) is the Nash equilibrium of the pris-
oners’ dilemma. The battle of the sexes has two equilibria, one in which the 
couple coordinates on the opera and one in which both players go to the movie. 
That is, (O, O) and (M, M) are both Nash equilibria of the battle of the sexes. 
If one’s friend selects O, then O is the only best response; if the friend chooses 
M, one must do the same. Note that even though it might appear that the payoffs 
are circled in Figure 9.1, the circles designate the cells (strategy profiles). Nash 
equilibria are strategy profiles, not payoffs. Thus, if you had to report the Nash 
equilibria of the pigs game, you should write “(P, D),” not “(2, 3).”

A more stringent version of the equilibrium concept is called strict Nash 
equilibrium. A strategy profile s is called a strict Nash equilibrium if and only if 
{si 

} = BRi (s−i ) for each player i. In words, player i ’s strategy si is the only best 
response to s−i . You should verify that in the games of Figure 9.1, all of the Nash 
equilibria are also strict Nash equilibria.

In general, Nash equilibria are not difficult to locate in matrix games. Just 
look for profiles such that each player’s strategy is a best response to the strategy 
of the other. You can check all of the strategy profiles (each cell of the matrix) 
one at a time. Alternatively, you can find the best responses of player 1 to each 
of the strategies of player 2 and then find the best responses of player 2 to each 
of the strategies of player 1. For an illustration of the second method, exam-
ine the game in Figure 9.2(a). Let us find player 1’s best responses to each of 
player 2’s strategies. By scanning player 1’s payoffs in the first column of the 
matrix, you can see that the greatest payoff for player 1 appears in the second 
row. Therefore, K is player 1’s best response to X. In Figure 9.2(b), I have indi-
cated this best response by underlining player 1’s payoff of 8 in the (K, X) cell 
of the matrix. Proceeding to the second column, we find that M is player 1’s 

FigurE 9.2 
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best response to Y, which is indicated in Figure 9.2(b) by the payoff of 7 that is 
underlined. Examination of the third column reveals that both K and L are best 
responses to Z; thus, both of the 5s in this column are underlined.

Our analysis of the game in Figure 9.2(a) continues with the evaluation of 
player 2’s best responses. To find player 2’s best response to J, we scan across 
the first row of the matrix and look at player 2’s payoff numbers. The largest is 
7, which I have underlined in Figure 9.2(b). In other words, Y is player 2’s best 
response to J. Moving ahead to the second through fourth rows of the matrix, we 
find that X is player 2’s best response to K, Z is player 2’s best response to L, 
and both X and Y are best responses to M. These best responses are designated 
with the appropriately underlined numbers in Figure 9.2(b).

Having located the players’ best responses, we can easily find the Nash 
equilibria of the game in Figure 9.2(a). There is a Nash equilibrium at each cell 
in which the payoff numbers for both players are underlined in Figure 9.2(b). 
For example, (K, X) is a Nash equilibrium—K is player 1’s best response to X, 
and X is player 2’s best response to K. The game has two other Nash equilibria: 
(L, Z) and (M, Y). Observe that (K, X) is a strict Nash equilibrium because K 
and X are the only best responses to one another. Neither (L, Z) nor (M, Y) is a 
strict Nash equilibrium.

There are a few things you should keep in mind at this point. First, each 
Nash equilibrium is a rationalizable strategy. (Incidentally, this is not difficult 
to prove; you might give it a try.) Because of this relation, you can restrict your 
search for equilibria to rationalizable strategies. Second, as Figure 9.1 indicates, 
some games have more than one Nash equilibrium. I will address the economic 
consequences of this later, but for now this should at least be taken as a caveat 
not to conclude your search for equilibria after finding just one. Third, some 
games have no equilibrium. Matching pennies is a good example. It is a game 
of pure conflict, where players can only win or lose. A player who loses under 
a given strategy profile will want to change her strategy so that she wins and 
the other loses; but then the other will want to change her strategy, and so forth.

Equilibrium of thE PartNErshiP GamE

As you have seen, it is not difficult to find Nash equilibria in matrix games. In 
fact, computing equilibria of games with infinite strategy spaces also is not diffi-
cult. One need only compute the best-response mappings for each player and 
then determine which strategy profiles, if any, satisfy them all simultaneously. 
This usually amounts to solving a system of equations.

To illustrate the computation of a Nash equilibrium, let us consider the part-
nership game discussed in Chapter 8. The best-response functions for this game 
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are pictured in Figure 8.2. Player 1’s best response function is

BR1 (y) = 1 + cy,

where y is the expected value of player 1’s belief about player 2’s strategy. 
Player 2’s best-response function is

BR2 (x) = 1 + cx,

where x is the mean of player 2’s belief.
A Nash equilibrium for this game is a strategy profile (x*, y*) with the 

property that

x* ∈ BR1 (y*) and y* ∈ BR2 (x*).

Because we consider BR1 and BR2 to be functions in this example, this property 
can be expressed as

x* = BR1 (y*) and y* = BR2 (x*).

That is, the point (x*, y*) should lie on the best-response functions of both 
players. There is one such point and it is obviously located where the two best-
response functions cross. We can compute this point by solving the following 
system of equations:

x* = 1 + cy* and y* = 1 + cx*.

Substituting the second equation into the first yields x* = 1 + c(1 + cx*), 
which simplifies to x*(1 − c2) = 1 + c. Noting that 1 − c2 = (1 + c)(1 − c), 
we therefore have x* = 1>(1 − c). Substituting this equation into the second 
equation yields y* = 1>(1 − c). Observe that this strategy profile is the same as 
that computed in Chapter 8. In this game, rationalizability and Nash equilibrium 
predict the same, single strategy profile.

CoordiNatioN aNd soCial WElfarE

We observed earlier that rationalizability does not necessarily imply coordi-
nated behavior by the players. Nash equilibrium, on the other hand, implies 
some coordination because it embodies a notion of congruity for a single strat-
egy profile. However, Nash equilibria do not always entail strategies that are 
preferred by the players as a group. For instance, the only Nash equilibrium of 
the prisoners’ dilemma is inefficient, in that both players would be better off if 
they played differently. Thus, we note the prisoners’ dilemma as an example of 
individual incentives interfering with the interests of the group.
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Sometimes a socially inefficient outcome prevails not because of conflict 
between individual incentives but because there is more than one way to coor-
dinate. Consider the Pareto coordination game in Figure 9.1. This game has two 
Nash equilibria on which the players may coordinate. The equilibrium (B, B) 
is inefficient; both players would rather be in the (A, A) equilibrium than in 
the (B, B) one. But (B, B) is an equilibrium nonetheless. Given that the other 
chooses strategy B, each player’s only rational move is to select B as well.

Lest you think that inefficient equilibria should be ruled out in practice, 
consider some examples of inefficient equilibria in the world—which, one 
might argue, are more the rule than the exception. The most well-known 
historical example is the layout of most computer keyboards and typewriters 
in the English-speaking world. The standard arrangement of keys (starting with 
QWERTY in the third row) was devised many years ago by the founder of 
the typewriter to minimize “jamming” of the keys. On mechanical typewrit-
ers, this problem is created when adjacent keys are pushed at nearby points of 
time, causing the associated arms that strike the ribbon to tangle. The inventor 
arranged the keys so that those that are likely to be used in close proximity (such 
as “a” and “n”) are not adjacent on the keyboard.

Unfortunately, many people believe the QWERTY keyboard is not the most 
efficient layout for speedy typing. Furthermore, “jamming” is not a problem 
with modern typewriters and computers. In the 1930s, August Dvorak and 
William Dealey, through a careful study of word usage in the English language, 
devised another keyboard layout that is commonly referred to as the Dvorak 
keyboard. Some people assert that those who learn to type with this keyboard 
can do so at rates substantially higher than is possible with QWERTY.2 We thus 
must ask the economic question: Why is the QWERTY keyboard still the norm?

The answer is that QWERTY is entrenched and few people have the incen-
tive to switch to a new format, given that most others in the world use QWERTY. 
In the Pareto coordination game of Figure 9.1, think of player 1 as the typical 
computer owner and player 2 as the typical computer manufacturer. Strategy 
A is to buy or produce a Dvorak keyboard, and strategy B is to buy or produce 
the QWERTY keyboard. If most people in the world are trained to use only the 
QWERTY design—that is, they have adopted strategy B—it is obviously best 
for a computer maker to build QWERTY keyboards. Furthermore, because most 
computer keyboards in existence are QWERTY, the typical youngster will be 
advised to practice on QWERTY rather than Dvorak, and the next generation 

2A woman named Barbara Blackburn has been cited in the Guinness Book of World Records as the fastest 
typist in the world. She typed at a comfortable 170 words per minute by using the Dvorak system, with a 
top speed of 212. You can, too, by converting your computer keyboard to the Dvorak layout, which merely 
requires a minor alteration of software. Of late, some have argued that the advantage of the Dvorak keyboard 
is actually quite minor, but it still makes for a good example.
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of computer buyers will demand QWERTY keyboards. Given that the English-
speaking world began typing with QWERTY, the Dvorak keyboard has little 
chance of widespread success. Besides, computerized speech recognition may 
make the keyboard obsolete, at which time the QWERTY-Dvorak debate will be 
relegated to history books. I am proud to note that part subs this textbook were 
gem elated using speech recognition software.

The competition between VHS and Betamax videotape formats during the 
1980s is another good example. Many people regarded the Betamax format 
as superior in the quality of reproduction, yet this format died out. Its demise 
may be the simple result of random factors in the early VCR market or shrewd 
marketing by VHS producers. There was a time in which both formats were 
popular, although it was obvious that efficiency would be enhanced if every-
one used the same format. Gradually, VHS gained a greater market share. At 
some point, the VHS movement picked up steam and decisively moved toward 
domination, as new video buyers rationally flocked to the format that appeared 
to be taking hold. A similar competition briefly occurred in the market for high-
definition video storage between Blu-Ray and HD-DVD discs. However, in this 
case the manufacturers quickly recognized the looming inefficiency of a failure 
to coordinate, and they agreed to retire the HD-DVD standard in favor of Blu-
Ray. The question of which is the better technology is probably not relevant at 
this point, for the world is rapidly moving to solid-state and cloud data storage.

As a final example, consider cigarette lighters in automobiles. Years ago, 
when there were no cell phones or automobile refrigerator units, auto manu-
facturers installed round cigarette lighters in dashboards. Many people smoked 
while driving and they appreciated the little device that, when pressed, allowed 
the flow of electricity to pass through a resistant wire coil, creating heat suffi-
cient to light a cigarette. Then came the electronic age and the flow of electronic 
gadgets to market. Manufacturers of cell phones—and other devices—realized 
that folks would like to use their phones while driving (which is ill advised 
because cell phone use while driving is on a par with drunkenness in its contri-
bution to traffic accidents and is illegal in some states). These manufacturers 
discovered that they could power the phones by using an adapter that fits into a 
cigarette lighter, and so they included the adapter in their designs.

Unfortunately, automobile cigarette lighters do not provide the most secure 
electrical connection. The flow of electricity is easily disrupted by bumps in the 
road, as my wife and I discovered on a long camping trip for which we brought 
a portable refrigerator—okay, we should have been “roughing it” anyway. There 
are better, more reliable ways of getting electricity to devices; more secure plug 
and socket connections can easily be implemented. But the auto producers and 
the device manufacturers are in an inefficiently coordinated outcome, from 
which neither side has a unilateral incentive to deviate. Automobile companies 
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could, at a reasonable cost, design and install more secure electrical sockets 
in their cars, but they have no incentive to do so if the device manufacturers 
are using cigarette lighter adapters. Further, the device manufacturers have no 
incentive to adopt a different plug if automobile companies do not install the 
new sockets. Perhaps USB ports will rescue society from this inefficient coordi-
nation, at least for the use of low-power devices.

thE third stratEGiC tENsioN

The QWERTY, VHS–Betamax, and auto examples are just a few of the ways 
in which our world has coordinated inefficiently. It might be helpful for you to 
look for more examples. On a thematic level, note that inefficient coordination 
poses a problem even if the players have the same preferences over outcomes 
and there is no strategic uncertainty—that is, even if the players entirely eschew 
the first and second strategic tensions.3 Thus, the specter of inefficient coordina-
tion is called the third strategic tension. You might start to contemplate whether 
specific social or economic institutions can alleviate this tension as they might 
alleviate strategic uncertainty (the second tension) in the real world. Further-
more, you can ruminate over how institutions help select between equilibria 
in games such as the battle of the sexes, where players disagree about which 
equilibrium is preferred.

Because the terms “joint” and “social” come up frequently in the context 
of optimality and efficiency, some clarification is in order. When using these 
terms, we should always make clear which set of people we are focusing on. For 
example, we might say that two firms realize their joint optimal strategy profile; 
in this case, we are addressing only the firms’ welfare, not the utility of other 
agents in the world (such as the firms’ customers). In fact, an outcome that is 
jointly efficient from the firms’ standpoint may be quite inefficient with respect 
to a larger set of actors. Generally, when I use the terms “joint” and “social,” 
either (1) I will have specified the group or society of interest or (2) I will be 
referring to the entire set of players in the game at hand.

CoNGruous sEts

Remember that the Nash equilibrium concept represents the extreme version of 
congruity in which the players coordinate on a single strategy profile. In some 
settings, it may not be reasonable to expect such an extreme form of coordi-
nation. One reason is that there may not be a social institution that serves to 

3Recall that the first two tensions are (1) the clash between individual and group incentives and (2) strategic 
uncertainty and its implications for joint optimality.
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coordinate beliefs and behavior. Another reason is that coordination on a single 
strategy profile may be inconsistent with best-response behavior in some games.

For an interesting example, consider the game shown in Figure 9.3. Suppose 
the players can communicate before the game to discuss how to coordinate their 
play. Would they coordinate on the Nash equilibrium strategy profile (z, m)? 
Perhaps, but it would be a shame, for the players would get higher payoffs if 
they could coordinate on not playing strategies z and m. Unfortunately, this kind 
of coordination cannot be captured by the equilibrium notion, as (z, m) is the 
only Nash equilibrium of the game.

One can define a more general notion of congruity that lies between ratio-
nalizability and Nash equilibrium, in which strategic uncertainty is reduced but 
not always eliminated. The key is to associate the congruity idea with sets of 
strategy profiles. For instance, for the game shown in Figure 9.3, consider the 
set of strategy profiles X K {w, y} × {k, 1}. Notice that if player 1 is convinced 
that player 2 will select either k or 1 (but not m), then player 1’s best response 
must be w or y. Likewise, if player 2 thinks player 1 will select either w or y, 
then player 2’s best responses are only strategies k and 1. We can say that the 
set X is a congruous set because coordinating on X is consistent with common 
knowledge of best-response behavior. Here is a precise and general definition:

Consider a set of strategy profiles X = X1 × X2 ×g× Xn , where 
Xi ⊂ Si for each player i. The set X is called congruous if, for each player 
i, a strategy si is included in Xi if and only if there is a belief u−i ∈ X−i 
(putting probability only on strategies in X−i ) such that si ∈ BRi (u−i ). 
The set X is called weakly congruous if, for each player i and each 
strategy si ∈ Xi , there is a belief u−i ∈ X−i such that si ∈ BRi (u−i ).

In words, X is weakly congruous if each of the strategies in Xi can be ratio-
nalized with respect to X−i . It is congruous if Xi contains exactly those strategies 
that can be so rationalized.4 Note that a strategy profile s is a Nash equilibrium 

4Note that in the formal definitions, “X−i” denotes the set of probability distributions on S−i that put positive 
probability only on strategies in X−i .
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if and only if {s} is weakly congruous. Also, s is a strict Nash equilibrium if and 
only if {s} is congruous.5 See Appendix B for more notes on congruence and 
rationalizability.

asidE: ExPErimENtal GamE thEory

At this point in our tour of game theory, it is worthwhile to pause and reflect 
on the purpose and practicality of the theory. As I have already emphasized 
(and will continue to emphasize) in this book, game theory helps us to organize 
our thinking about strategic situations. It provides discipline for our analysis 
of the relation between the outcome of strategic interaction and our underly-
ing assumptions about technology and behavior. Furthermore, the theory gives 
us tools for prescribing how people ought to behave—or, at least, what things 
people ought to consider—in strategic settings.

You might start to ask, however, whether the theory accurately describes and 
predicts real behavior. The answer is not so straightforward. There are two ways 
of evaluating whether game theory is successful in this regard. First, you might 
gather data about how people behave in real strategic situations. For example, 
you can observe where competing firms locate in a city, how team members 
interact within a firm, how managers contract with workers, and so forth. Then 
you can construct game-theoretic models in an attempt to make sense of the 
data. You can even perform statistical tests of the models. In fact, many empiri-
cal economists dedicate themselves to this line of work. These economists are 
constantly challenged by how to reconcile the complexities of the real world 
with necessarily abstract and unadorned theoretical models.

The second way of evaluating game theory’s predictive power is to bring 
the real world closer to the simple models. You can, for example, run labora-
tory experiments in which subjects are asked to play some simple matrix games. 
In fact, this sort of research—which is called experimental game theory—has 
become a little industry in itself. In many universities throughout the world, exper-
imental economists herd students into laboratories that are filled with computer 
stations, attracting the students with the prospect of winning significant amounts 
of money. In comparison with experimental work done by researchers in other 
disciplines, the economists certainly have gotten one thing right: they pay well. 
By paying the subjects according to their performance in games, experimenters 
give them a strong incentive to think about how best to play.6

5Relative to weak congruity, a congruous set X has the additional property of being best-response complete, 
meaning that for each player i and each belief u−i ∈ X−i , BRi  (u−i  ) ⊂ Xi . More common terminology is that X 
is a “curb (closed under best response) set.” These sets were analyzed by K. Basu and J.W. Weibull, “Strategy 
Subsets Closed Under Rational Behavior,” Economics Letters 36 (1991): 141–146.
6Experiments in the classroom also are popular, and instructive to boot. If you are enrolled in a game-theory 
course and your professor does not run any classroom experiments, I dare say that you are being shortchanged.
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107Guided Exercise

The downside of experimental research is that the games people play in the 
laboratory are often far removed from the sort of real strategic settings we dearly 
care about. On the plus side, however, the laboratory affords the experimenter 
considerable control over the strategic environment. The experimenter can, in 
essence, put the subjects into any game of interest. There is an important restric-
tion, however: in some settings, the experimenter cannot completely control the 
subjects’ payoffs. In particular, the subjects may care about more than just their 
monetary rewards. People are often motivated in ways the simple theoretical 
models fail to capture: spite, envy, fairness, schadenfreude, to name a few.

Experiments help us identify people’s motivations (and not just when the 
people are dramatic actors). Experiments also help us determine people’s degree 
of strategic sophistication, which concerns whether they are really thinking and 
behaving in the way that our hyper-rationality-based theories predict. To the 
extent that behavior deviates from theory in a systematic way, experiments can 
guide us in improving our models.

A good example of high-quality experimental research is the work of Miguel 
Costa-Gomes, Vincent Crawford, and Bruno Broseta. These economists evalu-
ated strategic sophistication by having subjects play matrix games and by track-
ing, through a clever computer interface, the way subjects gather and use infor-
mation. The research attempts to reveal whether subjects are actively thinking 
about each other’s preferences in the way rationalizability and equilibrium theory 
predict.7 The researchers find considerable heterogeneity in subjects’ strategic 
thinking, ranging from unsophisticated to moderately sophisticated, “boundedly 
rational” behavior. Many subjects appeared to follow rules that respect one or 
two rounds of iterated dominance, leading to equilibrium play in some simple 
games but deviating systematically from equilibrium in more complex games. 
This theme is consistent with the greater experimental literature.8

GuidEd ExErCisE

Problem: Consider the duopoly game from Exercise 5 of Chapter 8, in which 
two firms simultaneously and independently select prices that are greater than or 
equal to zero. Denote firm 1’s price as p1 and firm 2’s price as p2 . After the prices 
are set, consumers demand 10 − p1 + p2 units of the good that firm 1 produces, 

7See M. Costa-Gomes, V. Crawford, and B. Broseta, “Cognition and Behavior in Normal-Form Games: An 
Experimental Study,” Econometrica 69 (2001): 1193–1235.
8The behavioral game-theory literature is extensive. If you are interested in the subject, you can browse through 
some of the books and papers that survey the literature. Two sources are V. Crawford, “Theory and Experi-
ment in the Analysis of Strategic Interaction,” in D. Kreps and K. Wallis, eds., Advances in Economics and 
Econometrics: Theory and Applications (Seventh World Congress, vol. I, Econometric Society Monograph 
No. 27) (Cambridge, UK, and New York: Cambridge University Press, 1997), pp. 206–242; and J. Kagel and 
A. Roth, eds., The Handbook of Experimental Economics (Princeton, NJ: Princeton University Press, 1995).
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108 9: Nash Equilibrium

and they demand 10 − p2 + p1 units of the good that firm 2 produces. Assume 
that each firm produces at zero cost, so firm i ’s payoff (profit) is

(10 − pi + pj ) pi = 10pi − p2
i + pi pj ,

where pi is firm i ’s price and pj is the other firm’s price. Find the Nash equilib-
rium of this game.

Solution: A Nash equilibrium in this game is a profile of prices for the two 
firms, p*

1  and p*
2 , such that p*

1  is a best response to p*
2  for firm 1 and p*

2  is a 
best response to p*

1  for firm 2. We begin by calculating the firms’ best-response 
functions. Letting i denote one of the firms, we find i ’s best-response function 
by taking the derivative of this firm’s payoff function with respect to pi , setting 
it equal to zero, and solving for pi . The derivative condition is

10 − 2pi + pj = 0,

which, solving for pi , yields pi = 5 + (pj>2). Thus, firm i ’s best response, writ-
ten as a function, is

BRi (pj) = 5 +
pj

2
.

Thus, we have the following system of equations:

p1 = 5 +
p2

2
 and p2 = 5 +

p1

2
,

which is solved by p*
1 = p*

2 = 10. That is, the Nash equilibrium is (10, 10).
By the way, a shortcut to the solution involves guessing that, because the 

game is symmetric, the Nash equilibrium might be symmetric as well. That 
is, p*

1 = p*
2 = k for some number k. Using this to substitute for the prices in 

the best-response equation pi = 5 + (pj >2) (imposing the symmetry), we have 
k = 5 + (k>2), which simplifies to k = 10. This shortcut maneuver is worth 
trying when examining other symmetric games, but it does not always work 
because some symmetric games do not have symmetric equilibria.

ExErCisEs

1. Consider the normal-form game pictured here.

a b c

w

x

y

5, 2 3, 4

6, 2 2, 3

8, 4

8, 8

1, 1 0, 1 9, 2

2
1
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(a) What are the Nash equilibria of this game?
(b) Which of these equilibria are efficient?
(c) Is the set X = {w, x} × {b, c} weakly congruent?

2.  Find the Nash equilibria of and the set of rationalizable strategies for the 
games in Exercise 1 at the end of Chapter 6.

3. Find the Nash equilibria of the games in Exercise 1 of Chapter 7.

4.  Compute the Nash equilibria of the following location game. There are two 
people who simultaneously select numbers between zero and one. Suppose 
player 1 chooses s1 and player 2 chooses s2 . If si < sj , then player i gets a 
payoff of (si + sj )>2 and player j obtains 1 − (si + sj )>2, for i = 1, 2. If 
s1 = s2 , then both players get a payoff of 1>2.

5.  Find the Nash equilibrium of the following normal-form game: 
S1 = [0, 1], S2 = [0, 1], u1 (s1 , s2 ) = 3s1 − 2s1s2 − 2s2

1 , and u2 (s1 , s2) =  
s2 + 2s1s2 − 2s2

2 . (The solution is interior, so you can use calculus.)

6.  Consider a game in which, simultaneously, player 1 selects any real number 
x and player 2 selects any real number y. The payoffs are given by:

u1 (x, y) = 2x − x2 + 2xy

u2 (x, y) = 10y − 2xy − y2.

(a)  Calculate and graph each player’s best-response function as a function 
of the opposing player’s pure strategy.

(b) Find and report the Nash equilibria of the game.
(c) Determine the rationalizable strategy profiles for this game.

7. Consider the normal-form game pictured here:

X Y Z

A

B

2, 0 1, 3

5, 4 1, 3

5, x

6, 2

2
1

All of the payoff numbers are specified, with the exception of that denoted 
by x. Find a number for x such that the following three statements are all true: 
(B, X) is a Nash equilibrium, (A, Z) is an efficient strategy profile, and, for 
the belief u1 = (1

2 , 12), Y is a best response for player 2; that is, Y ∈ BR2 (u1 ).
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110 9: Nash Equilibrium

8.  Consider the nine-region location game presented in Chapter 8, where two 
vendors simultaneously choose locations and then customers walk to the 
nearest vendor to purchase a single unit. That is, the strategy space for each 
player i is Si = {1, 2, 3, 4, 5, 6, 7, 8, 9}. Assume that there are ten custom-
ers in each region. Suppose that, unlike in the standard model, each custom-
er is only willing to walk up to two regions away. For example, customers 
in region 1 are willing to walk to regions 2 or 3 to purchase a unit, but they 
will not travel to any higher-numbered regions. Thus, each player’s payoff 
is the number of customers up to two regions away who are closer to this 
player’s location than to the other player’s location, with the customers who 
are indifferent dividing evenly.

(a)  Describe the strategies that are eliminated in the first two rounds of the 
rationalizability procedure.

(b) This game has exactly two Nash equilibria. Find them.

9.  Consider a two-player game with the following strategy spaces: S1 = [0, 5] 
and S2 = [0, 5]. Suppose the players’ best-response functions, s1 = BR1 (s2 ) 
and s2 = BR2 (s1), are as pictured here.

54321

1

2

3

4

5

BR2

BR1

s1

s2

(a) Does this game have any Nash equilibria? If so, what are they?
(b) What is the set of rationalizable strategy profiles for this game?

10.  Is the following statement true or false? If it is true, explain why. If it is 
false, provide a game that illustrates that it is false. “If a Nash equilibrium is 
not strict, then it is not efficient.”
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11.  This exercise asks you to consider what happens when players choose their 
actions by a simple rule of thumb instead of by reasoning. Suppose that 
two players play a specific finite simultaneous-move game many times. The 
first time the game is played, each player selects a pure strategy at random. 
If player i has mi strategies, then she plays each strategy si with probability 
1>mi . At all subsequent times at which the game is played, however, each 
player i plays a best response to the pure strategy actually chosen by the 
other player the previous time the game was played. If player i has k strate-
gies that are best responses, then she randomizes among them, playing each 
strategy with probability 1>k.
(a)  Suppose that the game being played is a prisoners’ dilemma. Explain 

what will happen over time.
(b)  Next suppose that the game being played is the battle of the sexes. In the 

long run, as the game is played over and over, does play always settle 
down to a Nash equilibrium? Explain.

(c)  What if, by chance, the players happen to play a strict Nash equilibrium 
the first time they play the game? What will be played in the future? 
Explain how the assumption of a strict Nash equilibrium, rather than a 
nonstrict Nash equilibrium, makes a difference here.

(d)  Suppose that, for the game being played, a particular strategy si is not 
rationalizable. Is it possible that this strategy would be played in the 
long run? Explain carefully.

12.  Consider a two-player game and suppose that s* and t* are Nash equilibri-
um strategy profiles in the game. Must it be the case that {s*

1 , t*
1 } × {s*

2 , t*
2 } 

is a weakly congruous strategy set? Explain why or why not.

13.  Consider the following n-player game. Simultaneously and independently, 
the players each select either X, Y, or Z. The payoffs are defined as follows. 
Each player who selects X obtains a payoff equal to g, where g is the num-
ber of players who select Z. Each player who selects Y obtains a payoff of 
2a, where a is the number of players who select X. Each player who selects 
Z obtains a payoff of 3b, where b is the number of players who select Y. 
Note that a + b + g = n.
(a)  Suppose n = 2. Represent this game in the normal form by drawing the 

appropriate matrix.
(b)  In the case of n = 2, does this game have a Nash equilibrium? If so, 

describe it.
(c)  Suppose n = 11. Does this game have a Nash equilibrium? If so, describe 

an equilibrium and explain how many Nash equilibria there are.
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112 9: Nash Equilibrium

14.  Heather and David (players 1 and 2) are partners in a handmade postcard 
business. They each put costly effort into the business, which then deter-
mines their profits. However, unless they each exert at least 1 unit of effort, 
there are no revenues at all. In particular, each player i chooses an effort 
level ei Ú 0. Player i ’s payoff is

ui (ei , ej) = c −ei if ej< 1,

ei (ej − 1)2 + ei −
1

2
e2

i if ej Ú 1.

where j denotes the other player.
(a) Prove that (0,0) is a Nash equilibrium.
(b)  Graph the players’ best responses as a function of each other’s 

strategies.
(c) Find all of the other Nash equilibria.

15.  Suppose you know the following for a particular three-player game: The 
space of strategy profiles S is finite. Also, for every s ∈ S, it is the case that 
u2 (s) = 3u1 (s), u3 (s) = [u1 (s)]2, and u1 (s) ∈ [0, 1].
(a) Must this game have a Nash equilibrium? Explain your answer.
(b)  Must this game have an efficient Nash equilibrium? Explain your 

answer.
(c)  Suppose that in addition to the information given above, you know that 

s* is a Nash equilibrium of the game. Must s* be an efficient strat-
egy profile? Explain your answer; if you answer “no,” then provide a  
counterexample.
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OligOpOly, Tariffs, Crime, and VOTing 10

The Nash equilibrium concept is widely applied by practitioners of game 
theory. Almost every modern social scientist who has dabbled with formal 

models has called on, or at least argued about, the concept. Nash equilibrium 
also lies at the heart of more sophisticated concepts of congruity, including most 
of those discussed in the remainder of this book. This chapter surveys just a few 
of the classic games to which Nash’s concept is routinely applied; more are pre-
sented as exercises at the end of this chapter. The examples will give you some 
practice in computation of equilibria. The examples also demonstrate some of 
the earliest applications of the theory to the subjects of industrial organization 
and international relations.

Cournot Duopoly MoDel

In the early 1800s, Augustin Cournot constructed a model of the interac-
tion between two firms, whereby the firms compete by choosing how much 
to produce.1 Here is a version of his model. Suppose firms 1 and 2 produce 
exactly the same good—that is, there is no product differentiation in the 
market, so consumers do not care from which firm they purchase the good. 
To be concrete, suppose the product is red brick. Simultaneously and inde-
pendently, the firms select the number of bricks to produce. Let q1 denote 
firm 1’s quantity and q2 denote firm 2’s quantity, in thousands. Assume that 
q1 , q2 Ú 0. The total output in the industry is then q1 + q2 . Assume that all of 
the brick is sold, but the price that consumers are willing to pay depends on 
the number of bricks produced.2 The demand for bricks is given by an inverse 
relation between quantity and price—an inverse relation is the norm in most 
markets (when price drops, consumers buy more). Suppose the price is given 
by the simple function p = 1000 − q1 − q2 . Also suppose each firm must pay 

1Cournot’s analysis is contained in his book titled Recherches sur les Principes Mathématiques de la Théorie 
des Richesses, published in 1838. A translation is Researches into the Mathematical Principles of the Theory 
of Wealth (New York: Macmillan, 1897).
2Indeed, if the price were close enough to zero, I would be motivated to build a brick walkway in my backyard. 
If the price were close to infinity, I would be motivated to change professions.
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114 10: oligopoly, tariffs, Crime, and Voting

a production cost of $100 per thousand bricks. Firms wish to maximize their 
profits.

To compute the equilibrium of this market game, we start by specifying the 
normal form. Because each firm selects a quantity, we have S1 = [0,  ) and 
S2 = [0,  ). Each firm’s payoff is its profit, which is revenue (price times quan-
tity) minus cost. Thus, firm 1’s payoff is

u1 (q1 , q2 ) = (1000 − q1 − q2 ) q1 − 100q1

and firm 2’s payoff is

u2 (q1 , q2 ) = (1000 − q1 − q2 ) q2 − 100q2 .

Next, we calculate the best-response functions for the firms. Because we 
will be looking for a Nash equilibrium strategy profile, we can think of each 
firm’s best response as a function of the other firm’s quantity (rather than a 
belief about this quantity). Observe that firm 1’s payoff function is a downward 
parabola, as a function of q1 . To find firm 1’s optimal strategy, we use calculus 
to determine the quantity that maximizes this profit. Taking the partial derivative 
of u1 with respect to q1 and setting this equal to zero yields

1000 − 2q1 − q2 − 100 = 0.

Solving for q1, we get q1 = 450 − q2 >2. Thus, firm 1’s best-response function 
is BR1 (q2) = 450 − q2 >2. The game is symmetric, so the same analysis reveals 
firm 2’s best-response function to be BR2 (q1) = 450 − q1 >2.

Finally, we determine the quantities that satisfy both best-response functions. 
That is, we look for q*

1 and q*
2 such that BR1 (q*

2  ) = q*
1 and BR2(q*

1  ) = q*
2 . You can 

easily check that these equalities are solved by q*
1 = 300 and q*

2 = 300. This is 
the Nash equilibrium strategy profile: each firm produces 300,000 red bricks.3

The Nash equilibrium in the Cournot game is inefficient from the firms’ point 
of view. In this sense, the Cournot game is like the prisoners’ dilemma. To see this, 
note that both firms would be better off if they each produced 225,000 bricks—you 
should convince yourself of this by demonstrating that these quantities actually 
maximize the sum of the firms’ profits. Firms overproduce relative to their joint 
optimal production levels. Overproduction results because each firm does not value 
the profit of the other. Consider a marginal increase in the quantity selected by a 
firm. This increase in quantity expands the firm’s sales quantity, but it decreases 

3Although the modern rudiments of game theory had not been invented until many years after Cournot’s work, 
his theory predicted the Nash equilibrium outcome as the stable outcome of a dynamic process, whereby firms 
alternate in playing a best response to each other’s strategies. Nash’s special contribution (along with those 
of contemporaries, such as von Neumann) was to build the game theory apparatus and define the equilibrium 
concept for general games.
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the market price relative to production (marginal) cost. The firm balances these 
opposing effects to maximize profit. However, the firm’s private costs and benefits 
of raising quantity do not equal joint costs and benefits. In particular, raising quan-
tity has a detrimental effect on the other firm’s payoff through the price change. 
Because each firm’s price effect understates the joint price effect, the firms have the 
incentive to overproduce relative to their joint optimal levels.

BertranD Duopoly MoDel

The Cournot model may seem a bit unreasonable because it has firms selecting 
quantities rather than prices. In reality, firms select both prices and quantities. 
But consumer demand implies a definite relation between these two variables, 
so firms can be thought of selecting one first (quantity or price) and then setting 
the other to whatever the market will bear. 

The technology of production typically dictates whether the firm effectively 
commits to quantity or price. For example, in industries with long production 
cycles (such as automobiles, pharmaceuticals, and agricultural products), firms 
have to establish production targets well in advance of sales; later, prices adjust 
as the quantity supplied meets demand. Thus, the Cournot model is well suited 
to industries with long production cycles and/or short consumption cycles.

At the other extreme are industries in which firms can produce on short 
notice. For instance, once a piece of software is designed, it can be freely and 
instantaneously copied and transmitted to consumers in any quantity. In these 
markets, firms set prices and then produce to accommodate demand. We can 
analyze price-based competition using a variant of the Cournot model presented 
in the previous section. Suppose that the two firms simultaneously and inde-
pendently set prices and then are forced to produce exactly the number of 
bricks demanded by customers at these prices. As before, industry demand is 
given by p = 1000 − q1 − q2 , which can be written as Q = 1000 − p, where 
Q = q1 + q2 . That is, facing price p, consumers demand 1000 − p thousand 
units of brick. Let us assume that consumers purchase brick from the firm that 
charges the lower price. If the firms set equal prices, then suppose the demand is 
split evenly—that is, each firm sells (1000 − p)>2 thousand units. Assume the 
cost of production is 100 per thousand bricks, as before. A model like this one 
was analyzed by Joseph Bertrand in the late 1800s.4

4The source is J. Bertrand, “Théorie Mathematique de la Richesse Sociale,” Journal des Savants 68 (1883): 
499–508. Cournot also proposed a price-selection model for the case of “differentiated-product oligopoly,” 
where a firm can charge a higher price than others and still expect some share of the market. Economists 
generally regard Cournot as the founder of theories of quantity selection and differentiated-product price 
selection. Bertrand is given credit for the pricing game with homogeneous products. Later, you will see how 
Bertrand’s game has the flavor of a particular auction environment.

Watson_c10_113-131hr.indd   115 11/12/12   9:53 AM



116 10: oligopoly, tariffs, Crime, and Voting

To specify the normal form of this game, note that the firms make one deci-
sion each (simultaneously and independently). Because each firm selects a 
price, we have S1 = [0,  ) and S2 = [0,  ) under the assumption that negative 
prices are not allowed. As before, each firm’s payoff is given by revenue (price 
times quantity) minus cost. However, in this game, a firm will sell no brick if 
it charges a price that is higher than the opponent’s price. Let p1 and p2 be the 
prices set by the firms; further, given firm i ,  let j  denote the other firm. Firm i ’s 
payoff ui (p1 , p2 ) is then equal to

(1000 − pi ) pi − 100(1000 − pi ) = (1000 − pi )(pi − 100)

if pi < pj , whereas i ’s payoff equals 0 if pi > pj . In the event that pi = pj , firm 
i ’s profit is

(1000 − pi ) pi

2
−

100(1000 − pi )

2
=

(1000 − pi )( pi − 100)

2
.

The Bertrand game requires a different analytical technique from that used 
for the Cournot game because best-response functions are not well defined in 
the Bertrand model. To see this, note that if firm 2’s price is 200, then firm 1’s 
optimal response is to select “the largest number that is less than 200.” There 
is no such number, because one can always get closer and closer to 200 from 
below (199, 199.99, 199.9999, etc.). However, finding the Nash equilibrium is 
not difficult. Remember that we are looking for a strategy profile (p1 , p2) such 
that p1 is a best response to p2 for firm 1 and p2 is a best response to p1 for firm 2.

First note that neither firm can be pricing below 100 in an equilibrium 
because in this case at least one of the firms earns a negative profit, and each 
firm can guarantee itself a profit of 0 by pricing at 100. Second, observe that 
pi > pj Ú 100 cannot be the case in equilibrium for i = 1 or i = 2. Here, if 
pj > 100, then firm i  can raise its profit (from 0) by changing its price to be 
between 100 and pj . Further, if pj = 100, then firm j  can increase its profit by 
raising its price while still undercutting the price charged by firm i .  Third, 
note that pi = pj > 100 is not possible in equilibrium because then each firm 
gets half of the market demand but could grab all of the quantity demanded by 
dropping its price by a tiny amount. These facts imply that the only possible 
equilibrium prices are p1 = p2 = 100; that is, price equals marginal cost. We 
verify that this is an equilibrium strategy profile by noting that neither firm can 
gain by raising or lowering its price.

Interestingly, the equilibrium of the Bertrand game yields zero profit for 
the firms, whereas the equilibrium of the Cournot game gives the firms positive 
profits. In addition, prices are lower and quantities are higher in the Bertrand 
case. For intuition, note that in the Bertrand model, firms always have the 
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incentive to undercut each other’s prices as long as price exceeds the marginal 
cost of production because a firm can grab the entire market by doing so. But 
in the Cournot model, firms have to raise output more than just a little to grab 
significant market share. In addition, large quantity increases cause large price 
decreases, which have a negative effect on profit. There is thus a sense in which 
price-setting environments are more competitive than quantity-setting environ-
ments in markets with homogeneous products.

tariff Setting By two CountrieS

National governments can influence international trade (trade between consum-
ers and firms of different countries) by imposing barriers that restrict trade. The 
most common of these barriers are taxes on the importation of foreign commod-
ities, commonly referred to as tariffs. A large country (or union of countries) 
usually benefits by setting a small import tariff, assuming that other countries 
do not raise their tariffs, too. Consider, for example, the European Union (EU) 
as an importer of bananas. Because the EU is a large economy in regard to its 
share of world trade, an increase in the EU’s banana tariff causes the world’s 
quantity demand for bananas to decrease and the international price of bananas 
to fall. Simultaneously, the tariff drives up the price of bananas in the EU. Thus, 
the tariff creates a wedge between the international price of bananas and the 
price of bananas in the EU. When this wedge is large enough, the tariff revenue 
may be larger than the loss in consumer welfare incurred by Europeans due to 
the higher prices for bananas in the EU. Similar reasoning holds for the United 
States as an importer of European cheese.

Thus, the United States and the EU have unilateral incentives to impose tariffs 
(the United States sets a tariff on the importation of cheese, and the EU sets a tariff 
on bananas). Unfortunately, the United States and the EU are both worse off when 
tariffs are uniformly high, relative to uniformly low tariffs. Thus, the tariff-setting 
game is a form of the prisoners’ dilemma. The two economies would benefit by 
cooperating to keep tariffs low, instead of narrowly pursuing their individual inter-
ests. In other words, they would benefit by finding a way to enforce free trade.

A game-theoretic model can be used to illustrate the strategic aspects of 
tariffs. Suppose there are two countries that are labeled 1 and 2. Let xi be the tariff 
level of country i (in percent), for i = 1, 2. If country i picks xi and the other coun-
try j selects xj , then country i gets a payoff of 2000 + 60 xi + xi xj − x2

i − 90xj 
(measured in billions of dollars). Assume that x1 and x2 must be between 0 and 
100 and that the countries set tariff levels simultaneously and independently.5 

5You can read more about tariff games in J. McMillan, Game Theory in International Economics (New York: 
Harwood Academic Publishers, 1986).
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Exercise 3 at the end of this chapter asks you to compute the Nash equilibrium 
of this game.

a MoDel of CriMe anD poliCe

Game theory and the Nash equilibrium concept can be used to study the interac-
tion between criminals and law-enforcement agencies. Gary Becker, a Nobel 
Prize-winning economist, led the way on this kind of research and showed 
that economic analysis is extremely useful in this policy arena. According to 
Becker’s theory, “The optimal amount of enforcement is shown to depend on, 
among other things, the cost of catching and convicting offenders, the nature 
of punishments—for example, whether they are fines or prison terms—and the 
response of offenders to changes in enforcement.”6 Becker also argued that, 
with the optimal enforcement system, crime does occur.

Here is a game that illustrates how the government balances the social cost of 
crime with law-enforcement costs and how criminals balance the value of illegal 
activity with the probability of arrest. The game has two players: a criminal (C) 
and the government (G). The government selects a level of law enforcement, 
which is a number x Ú 0. The criminal selects a level of crime, y Ú 0. These 
choices are made simultaneously and independently. The government’s payoff is 
given by uG = −xc4 − y 2>x with the interpretation that −y 2>x is the negative 
effect of crime on society (moderated by law enforcement) and c4 is the cost of 
law enforcement, per unit of enforcement. The number c is a positive constant. 
The criminal’s payoff is given by uC = y 1>2>(1 + xy), with the interpretation that 
y 1>2 is the value of criminal activity when the criminal is not caught, whereas 
1>(1 + xy) is the probability that the criminal evades capture. Exercise 4 of this 
chapter asks you to compute the Nash equilibrium of this game.

the MeDian Voter theoreM

Consider an expanded version of the location-choice model from Chapter 8, 
where two political candidates (players 1 and 2) decide where to locate on the 
political spectrum. Suppose the policy space is given by the interval [0, 1], with 
the location 0 denoting extreme liberal and 1 denoting extreme conservative. 
Citizens (the voters) are distributed across the political spectrum, not necessar-
ily uniformly as was the case in the basic location game described in Chapter 8. 

6G. Becker, “Crime and Punishment: An Economic Approach,” Journal of Political Economy 76 (1968): 
169–217, at p. 170.
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Each citizen has an ideal point (a favorite policy) on the interval [0, 1]. Let 
function F describe the distribution of the citizens. Specifically, for any location 
x ∈ [0, 1], F(x) is the fraction of the citizens whose ideal point is less than or 
equal to x. Assume that F is a continuous function, with F(0) = 0 and F(1) = 1. 
Technically, this means that there is a “continuum” of citizens—an infinite 
number, smoothly distributed across the political spectrum.

Voting takes place after the candidates simultaneously and independently 
select their policy locations. Each citizen is assumed to vote for the candidate 
who is located closest to the citizen’s ideal point. A candidate wins by obtaining 
more votes than the other candidate does. Assume that if the candidates select 
exactly the same policy position, then the voters split evenly between them and 
they tie in the election, with the eventual winner determined by an unmodeled 
Supreme Court decision. Each candidate wants to win the election, so let us 
assume that a candidate obtains a payoff of 1 if he wins, 0 if he loses, and 1>2 
if there is a tie.7

Let us analyze the game by looking for a Nash equilibrium. Suppose that 
player 1 selects location s1 and player 2 selects s2 . Guided by the intuition devel-
oped from the location model in Chapter 8, we can guess that the players will 
choose the same policy location in equilibrium—that is, s1 = s2 . To see why 
this is so, consider the case in which s1 < s2 . Could this arise in equilibrium? 
In fact, no. If the players were to tie with these strategies, then an individual 
player would fare strictly better—that is, he would get more votes and win—by 
moving closer to the position of the other player. Similarly, if one of the players 
were to win with strategy profile (s1 , s2 ), then the other player could improve 
from a loss to a tie by matching the first player’s policy position. Thus, in equi-
librium it must be that s1 = s2 = x, for some number x ∈ [0, 1].

The question then becomes: What is the equilibrium policy location x that 
both players choose? Our intuition from Chapter 8 is that the players will locate 
in the center, but the definition of “center” surely depends on the distribution 
of voters. Let x* be the number satisfying F(x*) = 1>2. Then x* is the median 
voter—that is, the voter who is more conservative than exactly half of the citi-
zens and who is more liberal than exactly half of the citizens.

The Nash equilibrium of the location is game is for both players to select 
x*, which induces a tie in the election. To see this, note what would happen if 
candidate i were to deviate from locating at x*. Then candidate i would obtain 
strictly fewer votes than would candidate j and, as a result, candidate i would 
lose the election. Furthermore, at no other number x is there a Nash equilibrium. 
This is because if there were, there would be strictly more voters on the side of 

7Recall that this is not exactly the same as wanting to maximize the number of votes; nothing changes if we 
assume vote maximization in the example studied here, however.
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x containing x* than there are on the other side and so, from such a position, 
a candidate would be able to guarantee victory by moving toward x*. That the 
equilibrium occurs at x* is Anthony Downs’s celebrated median voter theo-
rem, which is a cornerstone of political science theory.8

StrategiC Voting

An underlying assumption of the analysis of candidates’ policy choices in the 
previous section is that each citizen votes for the candidate whose policy is clos-
est to the citizen’s ideal point. Is it, however, safe to say that voters behave in 
this way? Would a sophisticated citizen always vote for her favorite candidate, 
even if this candidate were sure to lose the election? A story and numerical 
example will shed light on this issue.

On October 7, 2003, in a historic recall election, Gray Davis was removed 
from office as the governor of California. Popular confidence in Davis had been 
eroded in the preceding years by revelations of a severe imbalance in the state’s 
budget, a crisis in the electricity market, declining trust in government officials 
in general, and a growing sense that Davis lacked the gumption to lead. In fact, 
Davis’s approval ratings had been falling well before his reelection in Novem-
ber 2002, but his shrewd and disciplined political machine was able to orches-
trate his reelection anyway.

The recall election was highly unusual; many people considered its rules 
to be ill suited to modern political decision making. On the same ballot, voters 
were asked whether to remove Davis from office and then, conditional on the 
recall passing, they were asked to select among the—get this—135 registered 
replacement candidates. Among the field of replacement candidates were 
dozens of people who entered the race for publicity or just on a whim. Candi-
dates included a star of pornographic movies, a former child star from a televi-
sion series, and many others with colorful histories. The election was won by 
Arnold Schwarzenegger, a movie star and former bodybuilder, who had little 
political experience but excellent name recognition and was himself a savvy 
enough politician to later get reelected.9

Gray Davis’s journey through reelection and disgraceful fall from the 
governorship provides two examples of strategic behavior in elections. The 

8The location-choice model was developed for analysis of oligopoly by H. Hotelling, “Stability in Competi-
tion,” The Economic Journal 39 (1929): 41–57, and for analysis of politics by A. Downs, An Economic Theory 
of Democracy (New York: Harper & Row, 1957). The median voter theorem extends to sequential candidate 
choices.
9The recall election, and events leading to it and from it, have been extensively recorded and discussed in the 
media. A brief newspaper account of the election is J. Marelius, “Schwarzenegger Wins: Decisive Support for 
Dramatic Change Ends Historic Race,” San Diego Union-Tribune, October 8, 2003.
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first took place in the regular election of 2002, in which Davis was campaign-
ing for reelection. Facing no serious opposition for nomination in the Demo-
cratic primary, Davis’s campaign allocated part of its war chest to manipulate 
the contest between Bill Simon and Los Angeles Mayor Richard Riordan, who 
were sparring in the Republican primary for the right to oppose Davis in the 
general election.

Riordan, a moderate Republican, was widely viewed as a greater threat to 
Davis than was the right-wing Simon. In other words, Riordan was closer to 
Davis on the political spectrum and thus, as we know from the basic location 
model, in a more competitive stance against Davis than was Simon. In fact, 
polls suggested that Riordan could have beaten Davis in the general election. 
So Davis did something consistent with our location model: he funded adver-
tisements that questioned Riordan’s credentials (even from the right) and thus 
helped Simon to defeat Riordan in the primary. Davis then defeated Simon in 
the general election.10

The second noteworthy example concerns Davis’s recall election, in which 
the leading Republican candidates to replace him were Schwarzenegger and 
State Senator Tom McClintock. It was another example of a moderate (Schwar-
zenegger) versus a right-wing (McClintock) Republican. Conservative and 
die-hard Republican voters favored McClintock. However, much of the Repub-
lican party feared that a Republican vote split between Schwarzenegger and 
McClintock would propel Lieutenant Governor Cruz Bustamante, the focal 
liberal candidate, into the governorship. As the recall election neared, the state 
Republican Party’s board of directors took the unprecedented step of endorsing 
one of the Republican candidates, Schwarzenegger, who was viewed as more 
moderate than Bustamante. In essence, the Republican leadership asked conser-
vative Republicans to vote for their second-favorite candidate as their only hope 
of securing a Republican governor.11

Here is a simple voting game that illustrates the story. Suppose that Davis is 
recalled and that there are three candidates to replace him: Bustamante, Schwar-
zenegger, and McClintock. The candidates have no actions in the game. Suppose 
there are three voting blocks: liberals (L), moderates (M), and conservatives (C). 
For simplicity, assume that each voting block behaves as a single player, so we 
have a three-player game. Simultaneously and independently, players L, M, and 
C select single candidates. The candidate who obtains the most votes wins the 
election.

10A summary appears in J. Marelius, “Davis Weighs In with Anti-Riordan Ad,” San Diego Union-Tribune, 
January 26, 2002; and J. Marelius, “Simon Storms Past Riordan: Rookie Politician to Face Incumbent Davis,” 
San Diego Union-Tribune, March 6, 2002.
11See J. Marelius and P. J. LaVelle, “State GOP Taps Schwarzenegger: Party Chairman Calls on McClintock 
Backers Not to ‘Waste’ Votes,” San Diego Union-Tribune, September 30, 2003.
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Suppose that the voting blocks contain roughly the same number of voters, 
but that the liberal voting block is slightly bigger than the other two. Thus, if L 
votes for Bustamante, M votes for Schwarzenegger, and C votes for McClintock, 
then Bustamante wins. If two or three of the players vote for the same candidate, 
then this candidate wins.

The general preferences of the voters are shown in Figure 10.1. For exam-
ple, L favors Bustamante over Schwarzenegger, and Schwarzenegger over 
McClintock. Suppose that each voter cares both about whom she votes for and 
about who wins the election. Specifically, assume that a voter’s payoff is the 
sum of an amount determined directly by her voting action and an amount deter-
mined by who wins. On the first component, the voter gets 2 if she votes for 
her most preferred candidate, 1 if she votes for her second choice, and 0 if she 
votes for her least preferred candidate. On the second component, the voter gets 
4 if her most preferred candidate wins, 2 if her second choice wins, and 0 if her 
least preferred candidate wins the election. For example, if player M votes for 
Schwarzenegger yet Bustamante wins, then player M gets a payoff of 4 (that is, 
2 from voting for her favorite candidate, plus 2 for her second favorite winning 
the election).

In the voting game, it is not rational for each player to vote for his most 
preferred candidate. In particular, the strategy profile (Bustamante, Schwar-
zenegger, McClintock) is not a Nash equilibrium of the game. From this profile, 
which implies victory for Bustamante, player C can strictly gain by deviating to 
vote for Schwarzenegger. The switch to Schwarzenegger changes the outcome 
of the race (now won by Schwarzenegger), and player C gains more from the 
outcome change (from 0 to 2) than she loses by voting for her second choice 
(from 2 to 1). Thus, this example shows that it is not always rational for citizens 
to vote “truthfully,” as we assumed in the basic election model.

The example also substantiates the logic behind the Republican Party’s 
endorsement of Schwarzenegger at the eleventh hour in the recall election.  
The endorsement helped convince conservatives to vote for Schwarzenegger 

figure 10.1 

Voter preferences.

Most preferred Sceond choice Least preferred

Player L

Player M

Player C

Bustamante Schwarzenegger McClintock

Schwarzenegger Bustamante McClintock

McClintock Schwarzenegger Bustamante
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if they didn’t want to see their least favorite candidate elected. Note that the 
strategy profile (Bustamante, Schwarzenegger, Schwarzenegger) is a Nash 
equilibrium of the game. With this strategy profile, player M is voting for and 
getting her most preferred candidate and therefore has no incentive to deviate. 
Player L cannot change the outcome of the election by switching his vote, so 
he rationally selects Bustamante. Finally, if player C switched to Bustamante, 
then Bustamante would be elected and player C would get zero; alternatively, 
if player C switched to McClintock, then Bustamante would win and player C 
would obtain a payoff of just 2. By voting for Schwarzenegger, player C obtains 
3, and this is the best player C can do.

guiDeD exerCiSe

Problem: Consider a market with ten firms. Simultaneously and independently, 
the firms choose between locating downtown and locating in the suburbs. The 
profit of each firm is influenced by the number of other firms that locate in 
the same area. Specifically, the profit of a firm that locates downtown is given 
by 5n − n2 + 50, where n denotes the number of firms that locate downtown. 
Similarly, the profit of a firm that locates in the suburbs is given by 48 − m, 
where m denotes the number of firms that locate in the suburbs. In equilibrium, 
how many firms locate in each region and what is the profit of each?

Solution: Note that there is a negative congestion effect for the suburban region 
in that a firm’s value of locating there decreases in the number of other firms 
that locate in the same region. The same is true for the downtown region when 
the number of firms locating there exceeds three. Thus, intuition suggests that 
equilibrium will not feature the vast majority of firms congregating in one or the 
other region, but instead will have the firms dividing between the regions.

Another way to think about this is that in equilibrium, the value of locating 
downtown will be roughly the same as the value of locating in the suburbs. If, for 
instance, the value of locating in the suburbs were much higher than that of locat-
ing downtown, then a firm that was planning to locate downtown would strictly 
gain by switching to the strategy of locating in the suburbs. Let us determine the 
number of firms in each location that would be required to equate the values of 
the two locations. Noting that m = 10 − n, equating the values implies

5n − n2 + 50 = 48 − (10 − n),

which simplifies to

(n − 6)(n + 2) = 0.
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The solution n = −2 is not meaningful. The equilibrium therefore has n = 6 
and m = 4. That is, six firms locate downtown and four locate in the suburbs. 
Each firm earns a profit of 44. You should verify that no firm would gain by 
switching locations unilaterally.

exerCiSeS

1. Consider a more general Cournot model than the one presented in this chap-
ter. Suppose there are n firms. The firms simultaneously and  independently 
select quantities to bring to the market. Firm i ’s quantity is denoted qi , 
which is constrained to be greater than or equal to zero. All of the units  
of the good are sold, but the prevailing market price depends on the total 
quantity in the industry, which is Q = g n

i=1qi . Suppose the price is given by 
p = a − bQ and suppose each firm produces with marginal cost c. There 
is no fixed cost for the firms. Assume a > c > 0 and b > 0. Note that firm 
i ’s profit is given by ui = p(Q)qi − cqi = (a − bQ)qi − cqi . Defining Q−i 
as the sum of the quantities produced by all firms except firm i, we have 
ui = (a − bqi − bQ−i )qi − cqi . Each firm maximizes its own profit.
(a)  Represent this game in the normal form by describing the strategy 

spaces and payoff functions.
(b)  Find firm i ’s best-response function as a function of Q−i . Graph this 

function.
(c)  Compute the Nash equilibrium of this game. Report the equilibrium 

quantities, price, and total output. (Hint: Summing the best-response 
functions over the different players will help.) What happens to the 
equilibrium price and the firm’s profits as n becomes large?

(d)  Show that for the Cournot duopoly game (n = 2), the set of rationaliz-
able strategies coincides with the Nash equilibrium.

2. Consider a more general Bertrand model than the one presented in this 
chapter. Suppose there are n firms that simultaneously and  independently 
select their prices, p1 , p2 ,c, pn in a market. These prices are greater 
than or equal to zero. The lowest price offered in the market is defined 
as p = min{p1 , p2 ,c, pn}. Consumers observe these prices and purchase 
only from the firm (or firms) charging  p ,  according to the demand curve 
Q = a −  p.  That is, the firm with the lowest price gets all of the sales. If 
the lowest price is offered by more than one firm, then these firms equally 
share the quantity demanded. Assume that firms must supply the quantities 
demanded of them and that production takes place at a cost of c per unit. 
That is, a firm producing qi units pays a cost cqi . Assume a > c > 0.
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(a)  Represent this game in the normal form by describing the strategy 
spaces and payoff (profit) functions.

(b) Find the Nash equilibrium of this market game.
(c)  Is the notion of a best response well defined for every belief that a firm 

could hold? Explain.

3. Consider the tariff game described in this chapter.
(a) Find the best-response functions for the countries.
(b) Compute the Nash equilibrium.
(c)  Show that the countries would be better off if they made a binding 

agreement to set lower tariffs (than in equilibrium). You do not need to 
speculate how such an agreement could be enforced.

(d)  Using the graph of the best-response functions, determine the set of 
rationalizable strategies in the tariff game.

4. Consider the game between a criminal and the government described in this 
chapter.
(a)  Write the first-order conditions that define the players’ best-response 

functions and solve them to find the best-response functions. Graph the 
best-response functions.

(b)  Compute the Nash equilibrium of this game.
(c)  Explain how the equilibrium levels of crime and enforcement change as 

c increases.

5. In the years 2000 and 2001, the bubble burst for many Internet and computer 
firms. As they closed shop, some of the firms had to liquidate sizable assets, 
such as inventories of products. Suppose eToys is going out of business and 
the company seeks a buyer for a truckload of Elmo dolls in its warehouse. 
Imagine that eToys holds an auction on eBay to sell the dolls and that two 
retailers (players 1 and 2) will bid for them. The rules of the auction are as 
follows: the retailers simultaneously and independently submit sealed bids 
and then eToys gives the merchandise to the highest bidder, who must pay 
his bid. It is common knowledge that the retailer who obtains the load of 
dolls can resell the load for a total of $15,000. Thus, if player i wins the auc-
tion with bid bi , then player i ’s payoff is $15,000 − bi . The losing retailer 
gets a payoff of $0. If the retailers make the same bids (b1 = b2 ), then eToys 
declares each player the winner with probability 1>2, in which case player i 
obtains an expected payoff of (1>2)(15,000 − bi ). What will be the winning 
bid in the Nash equilibrium of this auction game? If you can, describe the 
equilibrium strategies and briefly explain why this is an equilibrium. (Hint: 
This is similar to the Bertrand game.)
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6. Imagine that a zealous prosecutor (P) has accused a defendant (D) of com-
mitting a crime. Suppose that the trial involves evidence production by both 
parties and that by producing evidence, a litigant increases the probability 
of winning the trial. Specifically, suppose that the probability that the defen-
dant wins is given by eD>(eD + eP), where eD is the expenditure on evidence 
production by the defendant and eP is the expenditure on evidence produc-
tion by the prosecutor. Assume that eD and eP are greater than or equal to 
0. The defendant must pay 8 if he is found guilty, whereas he pays 0 if he 
is found innocent. The prosecutor receives 8 if she wins and 0 if she loses 
the case.
(a)  Represent this game in normal form.
(b)  Write the first-order condition and derive the best-response function for 

each player.
(c)  Find the Nash equilibrium of this game. What is the probability that the 

defendant wins in equilibrium.
(d) Is this outcome efficient? Why?

7. Consider an asymmetric Cournot duopoly game, where the two firms 
have different costs of production. Firm 1 selects quantity q1 at a pro-
duction cost of 2q1 . Firm 2 selects quantity q2 and pays the produc-
tion cost 4q2 . The market price is given by p = 12 − q1 − q2 . Thus, 
the payoff functions are u1 (q1 , q2 ) = (12 − q1 − q2 ) q1 − 2q1 and 
u2 (q1 , q2 ) = (12 − q1 − q2 ) q2 − 4q2 . Calculate the firms’ best-response 
functions BR1 (q2 ) and BR2 (q1 ), and find the Nash equilibrium of this game.

8. Recall the candidate location game discussed in this chapter, whose analysis 
led to the median voter theorem. Consider a variant of the game in which 
some of the voters have to be motivated to vote. In particular, suppose that the 
policy space [0, 1] is divided into three regions: [0, 12 − a], (1

2 − a, 12 + a),  
and [1

2 + a, 1], where a is a fixed parameter that is smaller than 1>2. Mod-
erate citizens, whose ideal points are in the interval (1

2 − a, 1
2 + a), always 

go to the polls and vote as described in the basic model; that is, each moder-
ate citizen votes for the closest candidate. Liberals, whose ideal points are in 
the interval [0, 12 − a], go to the polls only if there is a liberal candidate—that 
is, someone who locates at or to the left of the point 12 − a. Conditional on 
voting, each liberal votes for the closest candidate. Likewise, conservatives, 
whose ideal points are in the interval [1

2 + a, 1], will vote only if there is a 
conservative candidate—someone who locates at or to the right of 12 + a.
 For example, suppose one of the candidates locates at 1>2 and the 
other candidate locates at 1. Then the candidate at 1 received votes from 
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the citizens between 3>4 and 1, whereas the candidate at 1>2 receives votes 
from only the citizens between 1

2 − a and 3>4 because the liberal citizens 
are not motivated to vote. Assume that the citizens are uniformly distributed 
over the policy space. Thus, if F describes the distribution, then F(x) = x 
for every x ∈ [0, 1].
(a)  For what values of a is there an equilibrium of the candidate location-

choice game in which both candidates locate at 1>2 (in the center, at the 
median voter)?

(b)  Show that for some values of a, there is an equilibrium in which one of 
the candidates locates at 12 − a and the other locates at 12 + a. For what 
values of a does such an equilibrium exist? Comment on the reason 
why the median-voter result fails.

9. Consider the strategic voting example discussed at the end of this chap-
ter, where we saw that the strategy profile (Bustamante, Schwarzenegger, 
Schwarzenegger) is a Nash equilibrium of the game. Show that (Busta-
mante, Schwarzenegger, Schwarzenegger) is, in fact, the only rationaliz-
able strategy profile. Do this by first considering the dominated strategies 
of player L.

10. Consider a game that has a continuum of players. In particular, the players 
are uniformly distributed on the interval [0, 1]. (See Appendix A for the 
definition of uniform distribution.) Each x ∈ [0, 1] represents an  individual 
player; that is, we can identify a player by her location on the interval [0, 1]. 
In the game, the players simultaneously and independently select either F or 
G. The story is that each player is choosing a type of music software to buy, 
where F and G are the competing brands. The players have different values 
of the two brands; they also have a preference for buying what other people 
are buying (either because they want to be in fashion or they find it easier 
to exchange music with others who use the same software). The following 
payoff function represents these preferences. If player x selects G, then her 
payoff is the constant g. If player x selects F, then her payoff is 2m − cx, 
where c is a constant and m is the fraction of players who select F.  Note that 
m is between 0 and 1.
(a)  Consider the case in which g = 1 and c = 0. What are the rationaliz-

able strategies for the players? Is there a symmetric Nash equilibrium, 
in which all of the players play the same strategy? If so, describe such 
an equilibrium.

(b)  Next, consider the case in which g = 1 and c = 2. Calculate the ratio-
nalizable strategy profiles and show your steps. (Hint: Let m denote an 

Watson_c10_113-131hr.indd   127 11/12/12   9:53 AM



128 10: oligopoly, tariffs, Crime, and Voting

upper bound on the fraction of players who rationally select F. Use this 
variable in your analysis.)

(c)  Describe the rationalizable strategy profiles for the case in which 
g = −1 and c = 4. (Hint: Let m denote an upper bound on the fraction 
of players who rationally select F and let m denote a lower bound on the 
fraction of players who rationally select F.)

11. Suppose that the speed limit is 70 miles per hour on the freeway and that 
n drivers simultaneously and independently choose speeds from 70 to 100. 
Everyone prefers to go as fast as possible, other things equal, but the police 
ticket any driver whose speed is strictly faster than the speeds of a frac-
tion x of the other drivers, where x is a parameter such that 0 … x … 1. 
More precisely, for a given driver, let m denote the number of drivers that 
choose strictly lower speeds; then, such a driver is ticketed if and only if 
m>(n − 1) > x. Note that by driving 70, a driver can be sure that he will 
not be ticketed. Suppose the cost of being ticketed outweighs any benefit of 
going faster.
(a)  Model this situation as a noncooperative game by describing the strat-

egy space and payoff function of an individual player.
(b)  Identify the Nash equilibria as best you can. Are there any equilibria in 

which the drivers choose the same speed? Are there any equilibria in 
which the drivers choose different speeds? How does the set of Nash 
equilibria depend on x?

(c)  What are the Nash equilibria under the assumption that the police do 
not ticket anyone?

(d)  What are the Nash equilibria under the assumption that the police ticket 
everyone who travels more than 70?

(e)  If the same drivers play this game repeatedly, observing the outcome 
after each play, and there is some noisiness in their choices of speed, 
how would you expect their speeds to change over time as they learn 
to predict each other’s speeds when x is near 100 and when x is near 0? 
Explain your intuition.

12. Consider a strategic setting in which two geographically distinct firms 
(players 1 and 2) compete by setting prices. Suppose that consumers are 
uniformly distributed across the interval [0,1], and each will buy either one 
unit or nothing. Firm 1 is located at 0 and firm 2 is located at 1. Assume that 
the firms cannot change their locations; they can only select prices. Simul-
taneously and independently, firm 1 chooses a price p1 and firm 2 chooses a 
price p2 . Suppose that the firms produce at zero cost and that due to a gov-
ernment regulation, they must set prices between 0 and 6.
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 As in the standard location game, consumers are sensitive to the 
distance they have to travel in order to purchase. But they are also sensitive 
to price. Consumers get a benefit of 6 from the good that is purchased, but 
they also pay a personal cost of c times the distance they have to travel to 
make the purchase. Assume that c is a positive constant. If the consumer 
at location x ∈ [0, 1] purchases from firm 1, then this consumer’s utility is 
6 − cx − p1 . If this consumer instead purchases from firm 2, then her util-
ity is 6 − c(1 − x) − p2 . If this consumer does not purchase the good, her 
utility is 0.
(a)  Suppose that for given prices p1 and p2, every consumer purchases the 

good. That is, ignore the case in which prices are so high that some 
consumers prefer not to purchase. Find an expression for the “marginal 
consumer” who is indifferent between purchasing from firm 1 or firm 2. 
Denote this consumer’s location as x*( p1, p2 ).

(b)  Continue to assume that all consumers purchase at the prices you are 
analyzing. Note that firm 1’s payoff (profit) is p1 x*( p1, p2 ) and firm 
2’s payoff is p2[1 − x*( p1, p2 )]. Calculate each firm’s best response as 
a function of the other player’s strategy. Also graph the best-response 
functions for the case of c = 2.

(c)  Find and report the Nash equilibrium of this game for the case in which 
c = 2.

(d) As c converges to 0, what happens to the firms’ equilibrium profits?
(e)  What are the rationalizable strategies of this game for the case in which 

c = 2?
(f) Find the Nash equilibrium of this game for the case in which c = 8.

13. Consider a game in which, simultaneously, player 1 selects a number x ∈ [0, 6] 
and player 2 selects a number y ∈ [0, 6]. The payoffs are given by:

u1 (x, y) =
16x

y + 2
− x2

u2 (x, y) =
16y

x + 2
− y 2.

(a)  Calculate each player’s best-response function as a function of the 
opposing player’s pure strategy.

(b) Find and report the Nash equilibrium of the game.
(c)  Suppose that there is no social institution to coordinate the players on 

an equilibrium. Suppose that each player knows that the other player is 
rational, but this is not common knowledge. What is the largest set of 
strategies for player 1 that is consistent with this assumption?
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14. Suppose n students are on a committee to decide the fraction of student fees 
to spend on student activities. The minimum fraction they can select is 0, 
and the maximum fraction is 1. Any amount they do not spend will go back 
into the university’s general financial aid budget.
 Each committee member i has an ideal policy xi ∈ (0, 1) that repre-
sents the fraction member i wants to spend on student activities. Member 
i ’s utility is ui (xi , d) = − 0  d − xi 0 , where d ∈ [0, 1] is the fraction that the 
committee ultimately decides on. For example, if the committee chooses 
d = 0.5 and member i ’s ideal policy is xi = 0.7, then member i ’s utility is 
−0.2. The committee members have common knowledge of one another’s 
preferred policies.
(a)  Suppose that n = 3 and that the committee’s choice is determined 

by a “median voter” rule. Simultaneously, each committee member 
i announces a policy position (i.e., “votes”) yi ∈ [0, 1], and then the 
committee’s decision d (y1 , y2 , y3) is the median of {y1 , y2 , y3}. Show that 
under the median voter rule, it is a Nash equilibrium for each committee 
member i to vote truthfully, so that yi = xi .

(b)  Suppose that n = 2 and that the committee’s choice is determined by 
a “phantom median voter” rule. The committee members simultane-
ously vote as in part (a), but now the committee’s decision d (y1 , y2) 
is the median of {y1 , y2 , 0.5}. Show that under the phantom median 
voter rule, it is a Nash equilibrium for each committee member i to vote 
yi = xi .

(c)  Suppose again that n = 3, but now assume the committee’s decision is 
determined by an “average vote” rule, where d (y1 , y2 , y3) is the average 
of {y1 , y2 , y3}. Show that under the average vote rule, if the committee 
members have different ideal policies, then it is not a Nash equilib-
rium for the players to vote truthfully. Finally, find the unique Nash 
equilibrium of this game for the case in which x1 = 0.3, x2 = 0.6, and 
x3 = 0.9. Can you prove that it is the unique Nash equilibrium?

15. An island has two reefs that are suitable for fishing, and there are twenty 
fishers who simultaneously and independently choose at which of the two 
reefs (1 or 2) to fish. Each fisher can fish at only one reef. The total num-
ber of fish harvested at a single reef depends on the number of fishers who 
choose to fish there. The total catch is equally divided between the fishers 
at the reef. At reef 1, the total harvest is given by f1 (r1 ) = 8r1 −

r 2
1

2 , where 
r1 is the number of fishers who select reef 1. For reef 2, the total catch is 
f2 (r2 ) = 4r2 , where r2 is the number of fishers who choose reef 2. Assume 
that each fisher wants to maximize the number of fish that he or she catches.
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(a)  Find the Nash equilibrium of this game. In equilibrium, what is the total 
number of fish caught?

(b)  The chief of the island asks his economics advisor whether this arrange-
ment is efficient (i.e., whether the equilibrium allocation of fishers 
among reefs maximizes the number of fish caught). What is the answer 
to the chief’s question? What is the efficient number of fishers at each 
reef?

(c)  The chief decides to require a fishing license for reef 1, which would 
require each fisher who fishes there to pay the chief x fish. Find the 
Nash equilibrium of the resulting location-choice game between the 
fishers. Is there a value of x such that the equilibrium choices of the 
fishers results in an efficient outcome? If so, what is this value of x?
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11 MIXED-STRATEGY NASH EQUILIBRIUM

Recall that some games do not have a Nash equilibrium. Consider, for ex-
ample, the matching pennies game shown in Figure 9.2. In this game, no 

strategy profile is stable because each one has a “winner” and a “loser”—a sta-
tus that is flipped if either player alters his or her strategy. In matching pennies, 
players actually have an interest in deceiving each other. Suppose that you and 
I are playing the game and I, as player 1, have privately decided to select strat-
egy H. This would be rational if I thought that you would select H as well, but 
your selection of H relies on a belief that I am likely to play T. In other words, 
I would like you to believe that I will choose T while, in fact, I plan to select H. 
Coordination of beliefs and behavior is, in this example, seemingly at odds with 
best-response behavior.

Yet, let us think a bit further. If you can accurately predict my strategy, 
as would be the case in equilibrium, then you can take advantage of me (for 
example, by selecting T while I choose H). Clearly, then, it is not in my interest 
for you to know what strategy I will play. Perhaps the best I can do is to random-
ize between H and T, so you cannot be sure of what I will do. This logic begs 
the question: Is there a mixed-strategy profile that has the equilibrium property?

Notice that if each player randomizes with probability 1>2 on both strate-
gies, then neither player has a strict incentive to play H or T; in fact, all strat-
egies—H, T, and every mixed strategy—are best responses to the opponent 
randomizing with equal probability. To see this, observe that if you play H and 
T with equal probabilities, then I will get an expected payoff of zero—that is, 
(1>2)(1) + (1>2)(−1)—regardless of whether I choose H or T. Furthermore, if 
I mix between H and T, I will still expect zero.

The point here is that if we extend the notions of best response and equilib-
rium to the consideration of mixed strategies, we find that the mixed-strategy 
profile ((1>2, 1>2), (1>2, 1>2)), where both players randomize equally between 
their pure strategies, has the Nash equilibrium property in the matching pennies 
game. With this mixed-strategy profile, each player is best responding to the 
other. We then can say that ((1>2, 1>2), (1>2, 1>2)) is a mixed-strategy Nash 
equilibrium of the matching pennies game.

Formally, then, the Nash equilibrium concept extends to mixed strategies. 
For general games, the definition of a mixed-strategy Nash equilibrium is a 
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mixed-strategy profile having the property that no player could increase his or 
her payoff by switching to any other strategy, given the other player’s strategy:

Consider a strategy profile s = (s1 , s2 , c, sn ), where si ∈ Si for 
each player i. Profile s is a mixed-strategy Nash equilibrium if and 
only if ui (si , s−i ) Ú ui (s=i , s−i ) for each s=i  ∈ Si and each player i. That 
is, si is a best response to s−i for every player i.

For a mixed strategy to be a best response (as required in the definition), it must 
put positive probability only on pure strategies that are best responses. This 
demonstrates how to calculate a mixed-strategy Nash equilibrium.1

For another example, consider a lobbying game between two firms. Each 
firm may lobby the government in hopes of persuading the government to make 
a decision that is favorable to the firm. The two firms, X and Y, independently 
and simultaneously decide whether to lobby (L) or not (N). Lobbying entails 
a cost of 15. Not lobbying costs nothing. If both firms lobby or neither firm 
lobbies, then the government takes a neutral decision, which yields 10 to both 
firms. A firm’s payoff is this value minus the lobbying cost if it lobbied. If firm 
Y lobbies and firm X does not lobby, then the government makes a decision that 
favors firm Y, yielding zero to firm X and 30 to firm Y. Thus, firm Y’s payoff 
in this case is 30 − 15 = 15. If firm X lobbies and firm Y does not lobby, then 
the government makes a decision that favors firm X, yielding 40 to firm X (so 
X’s payoff is 40 − 15 = 25) and zero to firm Y. The normal form of this game 
is pictured in Figure 11.1.

You can quickly verify that there are two pure-strategy Nash equilibria for 
this game: (N, L) and (L, N). Check this by evaluating each cell of the matrix and 
asking whether at least one of the players would want to make a unilateral devia-
tion. In addition to these pure-strategy equilibria, there is also a mixed-strategy 
equilibrium. To find it, recall what must hold in a mixed-strategy equilibrium: a 
player must achieve a best response by selecting a mixed strategy. For example, 

1Note that in the definition, si is compared against each pure strategy s=i rather than against all mixed strategies. 
This is sufficient because, if another mixed strategy were to deliver a higher payoff than does si , then such 
would be the case for some pure strategy s=i . Thus, checking the pure-strategy deviations is enough.

FIGURE 11.1 

A lobbying game. L
Y

X N

L

N

-5, -5 25, 0

0, 15 10, 10
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let’s guess that firm X mixes between L and N. If this strategy is optimal for 
firm X (in response to the other firm’s strategy), then it must be that the expected 
payoff from playing L equals the expected payoff from playing N; otherwise, 
firm X would strictly prefer to pick either L or N.

But how can firm X’s strategies L and N yield the same expected payoff? 
It must be that firm Y’s behavior generates this expectation (because if firm Y 
played a pure strategy, then X would strictly prefer one of its strategies over the 
other). Let q denote the probability that firm Y plays L; that is, (q, 1 − q) is firm 
Y’s mixed strategy. Against this mixed strategy, firm X expects to earn

q(−5) + (1 − q)(25) = 25 − 30q

by choosing L and

q(0) + (1 − q)(10) = 10 − 10q

by choosing N. For firm X to be willing to randomize, it must be that 
25 − 30q = 10 − 10q. This simplifies to q = 3>4. In other words, firm X can 
randomize in playing a best response if firm Y’s strategy is (3>4, 1>4).

Let us move on to firm Y’s incentives and let p be the probability that firm 
X plays L. Then, if firm Y selects L, its expected payoff is

p(−5) + (1 − p)(15) = 15 − 20p.

By choosing N, firm Y obtains 10 − 10p. Firm Y is indifferent between its two 
strategies (and therefore willing to randomize) if 15 − 20p = 10 − 10p, which 
simplifies to p = 1>2.

The mixed-strategy profile ((1>2, 1>2), (3>4, 1>4)) is a mixed-strategy 
Nash equilibrium. Given firm Y’s mixed strategy, firm X’s mixed strategy is a 
best response—in fact, every strategy is a best response for firm X. Likewise, 
given firm X’s strategy, firm Y’s prescribed strategy is a best response. Note that 
constructing a mixed-strategy equilibrium entails an interesting new twist: we 
look for a mixed strategy for one player that makes the other player indiffer-
ent between her pure strategies. This is the best method of calculating mixed-
strategy equilibria.

You should try your hand at computing mixed-strategy Nash equilibria. To 
guide you in this regard, know that—like pure-strategy equilibria—mixed-strategy 
equilibria never involve dominated strategies. Examine the games in Figure 9.2 
again. Convince yourself of the mixed equilibrium notion by demonstrating that 
((1>2, 1>2), (1>2, 1>2)) is the mixed-strategy equilibrium of both the matching 
pennies and coordination games. Players select one strategy with probability 1>3 
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in the mixed equilibria of the battle of the sexes and Pareto coordination games. 
Also find the mixed-strategy equilibrium of the hawk–dove game.

RaNdoMizatioN iN SpoRtS

For another example, take the tennis-service game of Chapter 7’s Guided Exer-
cise, whose payoff matrix is reproduced in Figure 11.2. Recall that each player’s 
strategy F is removed in the iterated-dominance procedure, so the set of ratio-
nalizable strategies for each player is {C, B}. The game has no Nash equilib-
rium in pure strategies. In any mixed-strategy equilibrium, the players will put 
positive probability on only rationalizable strategies. Thus, we know a mixed-
strategy equilibrium will specify a strategy (0, p, 1 − p) for player 1 and a strat-
egy (0, q, 1 − q) for player 2. In this strategy profile, p is the probability that 
player 1 selects C, and 1 − p is the probability that he selects B; likewise, q is the 
probability that player 2 selects C, and 1 − q is the probability that she selects B.

To calculate the mixed-strategy equilibrium in the tennis example, observe 
that against player 2’s mixed strategy, player 1 would get an expected payoff of

q # 0 + (1 − q) # 3 = 3 − 3q

if he selects C; whereas by choosing B, he would expect

q # 3 + (1 − q) # 2 = 2 + q.

In order for player 1 to be indifferent between C and B, which is required to 
motivate him to randomize, it must be that player 2’s probability q solves

3 − 3q = 2 + q,

implying q = 1>4. Turning to player 2’s incentives, note that she would get

p # 5 + (1 − p) # 2 = 2 + 3p

by choosing C and

p # 2 + (1 − p) # 3 = 3 − p

by choosing B. Equating these and solving for p yields p = 1>4. Thus, the 
mixed-strategy equilibrium of the tennis-service example is (0, 1>4, 3>4) for 
player 1 and (0, 1>4, 3>4) for player 2.

The example just considered is not a wacky theoretical curiosity. Real 
tennis players have to make these choices dozens of times during a match. Some 
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amateur players get into the habit of serving predominantly to one side or, on 
defense, by always favoring one side. When such a player faces a slightly more 
sophisticated opponent (one who notices his disposition), then the opponent 
makes him pay c again and again. You might think that professional players, 
in addition to their greater technical skills, don’t make this mistake. They get 
paid for winning, after all. In fact, one can test whether professional players 
choose their strategies optimally. Economists Mark Walker and John Wood-
ers performed such a study and found that the behavior of professional tennis 
players is consistent with mixed-strategy Nash equilibrium, although it tends to 
exhibit correlation over time.2

Most sports have a matching-pennies component, where each side would be 
at a disadvantage if the other side knew its pure strategy. Randomization is thus an 
essential aspect of play. Good examples are penalty kicks in soccer, play selection 
in American football, and pitch selection in baseball. Some of these have been 
studied empirically, with results that are similar to those found for tennis.3

tECHNiCaL NotES

The following summarizes the steps required to calculate mixed-strategy Nash 
equilibria for simple two-player games.

Procedure for finding mixed-strategy equilibria:

1. Calculate the set of rationalizable strategies by performing the iterated-
dominance procedure.

2See M. Walker and J. Wooders, “Minimax Play at Wimbledon,” American Economic Review 91 (2001): 
1521–1538.
3Examples of empirical work on randomization in soccer penalty kicks and American football are P.-A. 
Chiappori, S. Levitt, and T. Groseclose, “Testing Mixed-Strategy Equilibria When Players Are Heteroge-
neous: The Case of Penalty Kicks in Soccer,” American Economic Review 92 (2002): 1138–1151; I. Palacios-
Huerta, “Professionals Play Minimax,” Review of Economic Studies 70 (2003): 395–415; and D. Romer, “Do 
Firms Maximize? Evidence from Professional Football,” Journal of Political Economy 114 (2006): 340–365.

FIGURE 11.2 

A tennis-service game. F C B

F

C

B

0, 5 2, 3

2, 3 0, 5

2, 3

3, 2

5, 0 3, 2 2, 3

2
1
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2. Restricting attention to rationalizable strategies, write equations for each 
player to characterize mixing probabilities that make the other player indif-
ferent between the relevant pure strategies.

3. Solve these equations to determine equilibrium mixing probabilities.

If each player has exactly two rationalizable strategies, this procedure is quite 
straightforward. If a player has more than two rationalizable strategies, then there 
are several cases to consider; the various cases amount to trying different combi-
nations of pure strategies over which the players may randomize. For example, 
suppose that A, B, and C are all rationalizable for a particular player. Then, in a 
mixed-strategy equilibrium, it may be that this player mixes between A and B 
(putting zero probability on C), mixes between A and C (putting zero probability 
on B), mixes between B and C (putting zero probability on A), or mixes between 
A, B, and C. There are also cases in which only one of the players mixes.

Note that every pure-strategy equilibrium can also be considered a mixed-
strategy equilibrium—where all probability is put on one pure strategy. All of 
the games analyzed thus far have at least one equilibrium (in pure or mixed 
strategies). In fact, this is a general theorem.4

Result: Every finite game (having a finite number of players and a fi-
nite strategy space) has at least one Nash equilibrium in pure or mixed 
strategies.

For more on this theorem, see Appendix B. The result is quite useful because 
it guarantees that the Nash equilibrium concept provides a prediction for every 
finite game. You should now ask, “Is the prediction reasonable?” What about 
examples such as the lobbying game, where there are both pure-strategy equi-
libria and nontrivial mixed-strategy equilibria? Is it more reasonable to expect 
the mixed equilibrium to occur in some cases?

ExaMpLE: duopoLy witH CapaCity CoNStRaiNtS

When previous editions of this book were in circulation, I sometimes asked for 
feedback from colleagues and students. A few people told me that they found a 
few of the exercises to be much more challenging than were the related exam-
ples in the text, and they recommended that I discuss some more complicated 
examples in the chapters so readers would be prepared for the exercises. So here 
you go c

4John Nash presented this theorem in “Non-Cooperative Games,” Annals of Mathematics 51 (1951): 286–295.
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Recall the Cournot and Bertrand duopoly models from the beginning of 
Chapter 10. In these examples, the firms could produce as many units as they 
wish at a constant marginal cost of 100. But in the real world, firms typically 
face capacity constraints. A firm’s production facility, for instance, may allow 
it to produce only up to a certain number of units; a higher level would simply 
be infeasible. It is important to understand the strategic implications of such a 
constraint. To explore the logic, consider a variation of the Bertrand game.

Suppose two firms produce a homogeneous good and compete by select-
ing prices. The firms produce at zero cost. There are ten consumers. Each 
consumer would like to buy one unit of the good and is willing to pay at most 1 
for the good. The firms simultaneously and independently select prices. Let p1 
denote firm 1’s price and let p2 denote firm 2’s price. In a setting with uncon-
strained capacities, all of the consumers purchase from the firm that sets the 
lower price, unless this price exceeds 1 in which case no one buys. If the firms 
charge the same price, then the consumers divide equally between the firms. It 
is easy to verify that the unique Nash equilibrium of this game without capac-
ity constraints has p1 = p2 = 0.

Suppose, however, that the firms face a capacity constraint. Specifically, 
each firm can produce and sell at most eight units. If the firms charge the same 
price p1 = p2 … 1, then five consumers buy from firm 1 and five consumers buy 
from firm 2, as in the standard model. However, if firm i charges a lower price 
than does firm j, so that pi < pj … 1, then eight consumers purchase from firm i 
at firm i ’s price, and the remaining two consumers purchase from firm j at firm 
j ’s price.

Let us look for an equilibrium in this pricing game. First note that select-
ing a price in excess of 1 is irrational, for this guarantees a payoff of zero (no 
consumer would purchase from this firm). Next observe that each firm i can 
guarantee a payoff of at least 2 by setting its price to exactly 1. Even if the other 
firm selects a lower price, the other firm can sell to only eight consumers, and 
so the remaining two consumers will purchase from firm i. We thus know that 
p1 , p2 ∈ [0, 1].

The next step is to demonstrate that there is no pure-strategy equilibrium. 
For instance, consider prices such that p1 = p2 > 0. In this case, each firm has 
the incentive unilaterally to deviate by slightly lowering its price and capturing 
eight customers rather than five. If p1 = p2 = 0, then a firm would gain by rais-
ing its price to 1. Finally, consider the case of pi < pj … 1. In this case, it must 
be that pj = 1, for otherwise firm j could gain by raising its price for the two 
consumers who are stuck purchasing from this firm. But with pj = 1, it cannot 
be optimal for firm i to charge strictly less; firm i would gain by raising its own 
price. In summary, there is no profile of prices that constitute a pure-strategy 
Nash equilibrium.
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Therefore, if there is an equilibrium, then it must be in mixed strategies. 
In fact, there is a unique mixed-strategy equilibrium, it is symmetric, and it 
has firms randomizing over an interval [p

–
, 1]. Let F : [0, 1] S [0, 1] denote the 

cumulative probability distribution for each firm’s mixed strategy. In words, for 
each firm i, F(x) is the probability that firm i charges a price pi …  x. One can 
show that the function F must be continuous, for otherwise a firm would have 
the incentive to deviate by selecting a price that is slightly below a point of 
discontinuity (where there is a “mass point” in the other firm’s distribution). The 
function must also be strictly increasing, for otherwise a player would deviate 
from selecting prices that are just below a constant region of F.

We can characterize F by recalling the key requirement of a mixed-strategy 
equilibrium: A player must be indifferent between the strategies that she selects 
with positive probability. Note that if firm j plays according to distribution F and 
if firm i chooses price pi , then firm i ’s expected payoff is

8pi (1 − F( pi )) + 2pi F( pi ).

To understand this expression, note that F( pi ) is the probability that firm j ’s 
price is below pi , so 1 − F(pi ) is the probability that firm j ’s price is higher 
than pi . In the latter contingency, firm i sells to eight consumers; in the former 
contingency, firm i sells to two consumers.

Note also that because F(1) = 1, firm i gets a payoff of 2 by charging the 
price pi = 1. Thus, we see that firm i ’s expected payoff must be 2 over all prices 
in the interval [p

–
, 1]. This leads to the following identity:

8x(1 − F(x)) + 2xF(x) = 2

for all x ∈ [p
–

, 1]. After bit of algebra to solve for F, we get

F(x) =
4x − 1

3x
.

This expression also reveals the value of p
–

 because we know that F(p
–

) = 0 by 
definition. Solving this equation yields p

–
= 1>4.

In the mixed-strategy equilibrium, the firms select prices by randomiz-
ing over the interval [1>4, 1] according to cumulative distribution function F. 
Each firm gets an expected payoff of 2 in equilibrium. Thus, a simple capacity 
constraint leads firms to randomize as they jockey for position in the market. 
The randomization probabilities balance two forces: By raising its price, a firm 
increases its profit margin but decreases the probability that it will be the lower-
priced firm and capture the higher quantity.
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GuidEd ExERCiSE

Problem: Consider the following n-player game. Simultaneously, each of the n 
players chooses between X and Y. The payoff of player i is 1 if he or she selects 
Y. In the event that player i selects X, his payoff is 2 if no other player chooses 
X, and his payoff is 0 if at least one other player chooses X as well. In this game, 
there is a mixed-strategy Nash equilibrium in which each player selects Y with 
probability a. (The probability a is the same for all players.) Calculate a.

Solution: In the mixed-strategy equilibrium, a given player i must be indiffer-
ent between selecting X and Y. Suppose that each of the other n − 1 players 
selects Y with probability a. Note that because these players act independently, 
the probability that they all select Y is an−1. It is in this event that player i would 
obtain a payoff of 2 by choosing X; otherwise, the choice of X would yield 0. 
Thus, player i ’s expected payoff of selecting X is

an−1 # 2 + 11 − an−12 # 0.

Equating player i ’s expected payoffs of X and Y, we obtain

2an−1 = 1,

which simplifies to

a = c 1
2
d
1 1

n−12
.

Thus, there is a mixed-strategy Nash equilibrium in which each player selects 
Y with this probability.

ExERCiSES

1. Consider the following normal-form game.

Q W Z

X

Y

1, 7 1, 5

2, 3 0, 4

3, 4

0, 6

2
1

(a) Determine the set of rationalizable strategies for this game.
(b)  The game has only one Nash equilibrium, and it is a mixed-strategy 

Nash equilibrium. Compute this equilibrium.
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2. Suppose you know the following about a particular two-player game: S1 =

{A, B, C}, S2 = {X, Y, Z}, u1 (A, X) = 6, u1 (A, Y) = 0, and u1 (A, Z) = 0. 
In addition, suppose you know that the game has a mixed-strategy Nash 
equilibrium in which (a) the players select each of their strategies with posi-
tive probability, (b) player 1’s expected payoff in equilibrium is 4, and (c) 
player 2’s expected payoff in equilibrium is 6. Do you have enough infor-
mation to calculate the probability that player 2 selects X in equilibrium? If 
so, what is this probability?

3. Consider another version of the lobbying game introduced in this chapter. 
Suppose the payoffs are the same as presented earlier, except in the case in 
which firm X lobbies and firm Y does not lobby. In this case, suppose the 
government’s decision yields x to firm X and zero to firm Y. Assume that 
x > 25. The normal form of this game is pictured here.

L
Y

X N

L

N

-5, -5 x-15, 0

0, 15 10, 10

(a)  Designate the (pure-strategy) Nash equilibria of this game (if it has 
any).

(b) Compute the mixed-strategy Nash equilibrium of the game.
(c)  Given the mixed-strategy equilibrium computed in part (b), what is the 

probability that the government makes a decision that favors firm X? (It 
is the probability that (L, N) occurs.)

(d)  As x rises, does the probability that the government makes a decision 
favoring firm X rise or fall? Is this good from an economic standpoint?

4. Compute the mixed-strategy equilibria of the following games.

A B

A

B

2, 4 0, 0

1, 6 3, 7

L M R

U

C

D

8, 3 3, 5

3, 3 5, 5

6, 3

4, 8

5, 2 3, 7 4, 9

2
1

2
1
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5. This exercise explores how, in a mixed-strategy equilibrium, players must 
put positive probability only on best responses. Consider the game in the 
following figure.

L M R

U

C

D

x, x x, 0

0, x 2, 0

x, 0

0, 2

0, x 0, 2 2, 0

2
1

Compute the pure-strategy and mixed-strategy Nash equilibria for this 
game, and note how they depend on x. In particular, what is the difference 
between x > 1 and x < 1?

6. Determine all of the Nash equilibria (pure-strategy and mixed-strategy 
equilibria) of the following games.

 

C

C

D

D
(b)

2, 2 0, 3

3, 0 1, 1

2
1H

H

T

T
(a)

1, -1 -1, 1

-1, 1 1, -1

2
1

 

A

A

B

B
(d)

1, 4 2, 0

0, 8 3, 9

2
1H

H

D

D
(c)

2, 2 3, 1

3, 1 2, 2

2
1

A

A

B

B
(e) (f)

2, 2 0, 0

0, 0 3, 4

2
1 L M R

U

C

D

8, 1 0, 2

3, 1 4, 4

4, 3

0, 0

5, 0 3, 3 1, 4

2
1

Watson_c11_132-147hr.indd   142 2/4/13   12:00 PM



143Exercises

7. Compute the mixed-strategy Nash equilibria of the following games. (First 
convert the games into the normal form.)

A

B

6, 6

5, 5

1, 1 -1, 0 3, 2

0, 0

4, -1

2, 2

8, 8

1

2

1 2

X

Y

X

YC

O O D

1� UII

8. Consider the following social problem.5 A pedestrian is hit by a car and 
lies injured on the road. There are n people in the vicinity of the accident. 
The injured pedestrian requires immediate medical attention, which will be 
forthcoming if at least one of the n people calls for help. Simultaneously 
and independently, each of the n bystanders decides whether or not to call 
for help (by dialing 911 on a cell phone or pay phone). Each bystander ob-
tains v units of utility if someone (anyone) calls for help. Those who call for 
help pay a personal cost of c. That is, if person i calls for help, then he ob-
tains the payoff v − c; if person i does not call but at least one other person 
calls, then person i gets v; finally, if none of the n people calls for help, then 
person i obtains zero. Assume v > c.
(a)  Find the symmetric Nash equilibrium of this n-player normal-form 

game. (Hint: The equilibrium is in mixed strategies. In your analysis, 
let p be the probability that a person does not call for help.)

(b)  Compute the probability that at least one person calls for help in equi-
librium. (This is the probability that the injured pedestrian gets medical 
attention.) Note how this depends on n. Is this a perverse or intuitive 
result?

5The social situation described here was featured in A. M. Rosenthal, Thirty-Eight Witnesses (New York: 
McGraw-Hill, 1964) and in J. Darley and B. Latané, “Bystander Intervention in Emergencies: Diffusion of 
Responsibility,” Journal of Personality and Social Psychology 8 (1968): 377–383.
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9. Prove that every 2 × 2 game has a Nash equilibrium (in either pure or 
mixed strategies). Do this by considering the following general game and 
breaking the analysis into two categories: (a) one of the pure-strategy pro-
files is a Nash equilibrium, and (b) none of the pure-strategy profiles is a 
Nash equilibrium.

L
2

1 R

U

D

a, b c, d

e, f g, h

10. Does the rock–paper–scissors game have any pure-strategy Nash equilibria? 
Find and report all of the mixed-strategy Nash equilibria of this game. (Take 
an educated guess to find one, verify it mathematically, and then search for 
others.) If you forget the representation of this game, refresh your memory 
by looking at Exercise 4 of Chapter 2 and Exercise 5 of Chapter 6.

11. The famous British spy 001 has to choose one of four routes, a, b, c, or d 
(listed in order of speed in good conditions) to ski down a mountain. Fast 
routes are more likely to be struck by an avalanche. At the same time, the 
notorious rival spy 002 has to choose whether to use (y) or not to use (x) his 
valuable explosive device to cause an avalanche. The payoffs of this game 
are represented here.

x y

a

b

c

d

12, 0 0, 6

11, 1 1, 5

10, 2 4, 2

9, 3 6, 0

002
001

(a)  Let u2 (x) denote the probability that 001 believes 002 selects x. Explain 
what 001 should do if u2 (x) > 2>3, if u2 (x) < 2>3, and if u2 (x) = 2>3.

(b)  Imagine that you are Mr. Cue, the erudite technical advisor to British 
military intelligence. Are there any routes you would advise 001 defi-
nitely not to take? Explain your answer.
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(c)  A viewer of this epic drama is trying to determine what will happen. 
Find a Nash equilibrium in which one player plays a pure strategy si 
and the other player plays a mixed strategy sj . Find a different mixed-
strategy equilibrium in which this same pure strategy si is assigned zero 
probability. Are there any other equilibria?

12. Consider a game with n players. Simultaneously and independently, the 
players choose between X and Y. That is, the strategy space for each player 
i is Si = {X, Y}. The payoff of each player who selects X is 2mx − m2

x + 3, 
where mx is the number of players who choose X. The payoff of each player 
who selects Y is 4 − my , where my is the number of players who choose Y. 
Note that mx + my = n.
(a)  For the case of n = 2, represent this game in the normal form and find 

the pure-strategy Nash equilibria (if any).
(b)  Suppose that n = 3. How many Nash equilibria does this game have? 

(Note: you are looking for pure-strategy equilibria here.) If your answer 
is more than zero, describe a Nash equilibrium.

(c)  Continue to assume that n = 3. Determine whether this game has a 
symmetric mixed-strategy Nash equilibrium in which each player 
selects X with probability p. If you can find such an equilibrium, what 
is p?

13. Consider the following three-player team production problem. Simultane-
ously and independently, each player chooses between exerting effort (E) or 
not exerting effort (N). Exerting effort imposes a cost of 2 on the player who 
exerts effort. If two or more of the players exert effort, each player receives 
a benefit of 4 regardless of whether she herself exerted effort. Otherwise, 
each player receives zero benefit. The payoff to each player is her realized 
benefit less the cost of her effort (if she exerted effort). For instance, if 
player 1 selects N and players 2 and 3 both select E, then the payoff vector 
is (4, 2, 2). If player 1 selects E and players 2 and 3 both select N, then the 
payoff vector is (−2, 0, 0).
(a)  Is there a pure-strategy equilibrium in which all three players exert 

effort? Explain why or why not.
(b)  Find a symmetric mixed-strategy Nash equilibrium of this game. Let p 

denote the probability that an individual player selects N.

14. Player 1 (the “hider”) and player 2 (the “seeker”) play the following game. 
There are four boxes with lids, arranged in a straight line. For convenience, 
the boxes are labeled A, B, C, and D. The administrator of the game gives 
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player 1 a $100 bill, and player 1 must hide it in one of the four boxes. 
Player 2 does not observe where player 1 hides the $100 bill. Once player 1 
has hidden the bill, player 2 must open one (and only one) of the boxes. If 
the money is in the box that player 2 opens, then player 2 keeps the $100. If 
it is not, player 1 gets to keep the $100.
(a) Does this game have a pure-strategy Nash equilibrium?
(b) Find the mixed-strategy Nash equilibrium.
(c)  Suppose it is common knowledge that player 1 likes the letter “A” and 

would get extra satisfaction from putting the money in box A. Let this 
satisfaction be equivalent to receiving $20. Assume this is in addition 
to any money received in the game. How does player 1’s preference for 
the letter “A” affect the equilibrium mixing probabilities? Calculate the 
new equilibrium strategy profile if you can.

(d)  Describe the equilibria of the game in which player 1’s extra satisfac-
tion from selecting box A is equivalent to receiving $120.

15. Consider a game between a police officer (player 3) and two drivers (play-
ers 1 and 2). Player 1 lives and drives in the Clairemont neighborhood of 
San Diego, whereas player 2 lives and drives in the Downtown area. On 
a given day, players 1 and 2 each have to decide whether or not to use 
their cell phones while driving. They are not friends, so they will not be 
calling each other. Thus, whether player 1 uses a cell phone is indepen-
dent of whether player 2 uses a cell phone. Player 3 (the police officer) 
selects whether to patrol in Clairemont or Downtown. All of these choices 
are made simultaneously and independently. Note that the strategy spaces 
are S1 = {U, N}, S2 = {U, N}, and S3 = {C, D}, where “U” stands for “use 
cell phone,” “N” means “not use cell phone,” “C” stands for “Clairemont,” 
and “D” means “Downtown.”
 Suppose that using a cell phone while driving is illegal. Furthermore, 
if a driver uses a cell phone and player 3 patrols in his or her area (Claire-
mont for player 1, Downtown for player 2), then this driver is caught and 
punished. A driver will not be caught if player 3 patrols in the other neigh-
borhood. A driver who does not use a cell phone gets a payoff of zero. A 
driver who uses a cell phone and is not caught obtains a payoff of 2. Finally, 
a driver who uses a cell phone and is caught gets a payoff of −y, where 
y > 0. Player 3 gets a payoff of 1 if she catches a driver using a cell phone, 
and she gets zero otherwise.
(a)  Does this game have a pure-strategy Nash equilibrium? If so, describe 

it. If not, explain why.
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(b)  Suppose that y = 1. Calculate and describe a mixed-strategy equilib-
rium of this game. Explain whether people obey the law.

(c)  Suppose that y = 3. Calculate and describe a mixed-strategy equilib-
rium of this game. Explain whether people obey the law.

16. Consider a variant of the Bertrand game with capacity constraints that was 
analyzed in this chapter. Suppose that firm 1’s capacity constraint is c1 and 
firm 2’s capacity constraint is c2 , where c1 , c2 Ú 5. That is, firm 1 can pro-
duce at most c1 units, and firm 2 can produce at most c2 units. As before, if 
p1 = p2 … 1, then five consumers buy from firm 1, and five consumers buy 
from firm 2, as in the standard model. Furthermore, if firm i charges a lower 
price than does firm j, so that pi < pj … 1, then ci consumers purchase from 
firm i at firm i ’s price, and the remaining 10 − ci consumers purchase from 
firm j at firm j ’s price. The questions below ask you to analyze several cases.
(a)  Suppose that c1 , c2 Ú 10. Confirm that p1 = p2 = 0 is a pure-strategy 

Nash equilibrium and that it is the unique equilibrium. Note that it 
yields payoffs of zero.

(b)  Suppose that the capacity constraints satisfy c1 = c2 = 5. Show that the 
unique equilibrium (a pure-strategy equilibrium) has p1 = p2 = 1 and 
yields the payoff of 5 for each player.

(c)  Suppose that the capacity constraints satisfy c2 ∈ [5, 10) and c1 Ú c2 . 
Verify that the following describes a mixed-strategy Nash equilibrium. 
(This is the unique equilibrium.) Let p

–
= (10 − c2 )>c1 . Firm 1 and firm 

2 randomize over the interval [p
–

, 1] according to the following cumula-
tive probability distributions:

 F1 (x) = c ¢ 1

c1 + c2 − 10
≤c2 ¢ x − p

–
x
≤ if x ∈ [p

–
, 1)

 1 if x = 1

 F2 (x) = a 1

c1 + c2 − 10
bc1 a

x − p
–

x
b .

If c1 = c2 then the equilibrium is symmetric and F1 = F2  is continuous. If 
c1 > c2 , then F1 has a discontinuity at 1 (a mass point for firm 1’s mixed 
strategy). In any case, firm 1’s equilibrium expected payoff is c1 p

–
 and firm 

2’s equilibrium expected payoff is c2 p
–

.
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12 STRICTLY COMPETITIVE GAMES  
AND SECURITY STRATEGIES

The concepts introduced in this chapter are of peripheral importance in the 
grand scheme of things, but they are well worth digesting for several rea-

sons. First, they are low fat. Second, working with them will enhance your un-
derstanding of rationality and strategy in general. Third, they will be used to 
produce some useful results later in this tour of game theory. The first concept 
is the definition of a particular class of games:

A two-player, strictly competitive game is a two-player game with the 
property that for every two strategy profiles s, s ∈ S, u1 (s) > u1 (s) if 
and only if u2 (s) < u2 (s).

Thus, in a strictly competitive game, the two players have exactly opposite 
rankings over the outcomes. In comparisons of various strategy profiles, wher-
ever one player’s payoff increases, the other player’s payoff decreases. Strictly 
competitive games offer no room for joint gain or compromise.

Matching pennies (see Figure 3.4) is a good example of a two-player, strictly 
competitive game. There are only two payoff vectors in matching pennies, one 
that favors player 1 and one that favors player 2. The payoff vectors describe 
who wins the game. When you think about it, lots of games have outcomes that 
are limited to: (a) player 1 wins and player 2 loses, (b) player 2 wins and player 1 
loses, and (c) the players tie (draw). Because players prefer winning to tying and 
tying to losing, every two-player game with outcomes described in this way is a 
strictly competitive game. Such games include chess, checkers, tennis, football 
(with each team considered to be one player), and most other sports and leisure 
games. Another example of a strictly competitive game appears in Figure 12.1. 
Note that the outcomes of this game cannot be put in terms of a simple “winner” 
and “loser.” Incidentally, the matching pennies game is a special type of strictly 
competitive game called zero-sum, in which the players’ payoffs always sum 
to zero.1 The strictly competitive game in Figure 12.1 is not a zero-sum game.

1A great deal of the early game-theory literature concerned zero-sum games, as analyzed in J. von Neumann 
and O. Morgenstern, Theory of Games and Economic Behavior (Princeton, NJ: Princeton University Press, 
1944).
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Next consider the concept of a security strategy, which is based on evaluat-
ing “worst-case scenarios.” In any game, the worst payoff that player i can get 
when he plays strategy si is defined by

wi (si ) K

 

min
sj∈Sj

 ui (si , sj )

Here we look across player j’s strategies to find the one that gives player i the 
lowest payoff given that player i plays si . If player i selects strategy si then he is 
guaranteed to get a payoff of at least wi (si). A security strategy gives player i 
the best of the worst cases.

A strategy s–i ∈ Si for player i is called a security strategy if s–i  solves 
maxsi

 ∈Si
 wi (si ). Player i’s security payoff level is maxsi

 ∈Si
 wi (si ).

Note that the security payoff level can also be written as 
max
si∈Si

 
 

min
sj∈Sj

 ui (si ,  sj ).

Observe that in the game pictured in Figure 12.1, B is player 1’s security strat-
egy and Y is player 2’s security strategy. Player 1’s security level is 1, whereas 
player 2’s security level is 3.

Note that the definition of a security strategy is formulated in terms of a 
pure strategy for player i. Another version of the concept focuses on mixed strat-
egies. To differentiate it from the pure-strategy version, I use the term “maxmin 
strategy”:

A mixed strategy s–i ∈ Si for player i is called a maxmin strategy if 
s–i  solves maxsi∈Si

 minsj∈Sj
 ui (si , sj ). Player i’s maxmin payoff level is 

the value maxsi∈Si
 minsj∈Sj

 ui (si , sj ).

The main difference between a security strategy and a maxmin strategy for 
player i is that the former identifies a payoff that player i can be certain to 
achieve at minimum, whereas the latter identifies a lower bound that player i 
can achieve in expectation. In other words, by playing a maxmin strategy, player 

FIGURE 12.1 

A two-player, strictly 

competitive game.

X
2

1 Y

A

B

3, 2 0, 4

6, 1 1, 3
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i expects to get at least his maxmin payoff on average, but he may get a lower 
payoff.

It is not difficult to see that a player’s maxmin payoff must be at least as large 
as this player’s security level because selecting a security strategy is always an 
option in the maximization problem over mixed strategies. There is no general 
relation between these concepts and Nash equilibrium. However, an important 
exception exists for strictly competitive games.

Result: If a two-player game is strictly competitive and has a Nash 
equilibrium s* ∈ S, then s*

1 is a security strategy for player 1 and s*
2 is a 

security strategy for player 2.2 Furthermore, each player’s security level 
and maxmin level are the same, so s*

1 and s*
2 are maxmin strategies for 

the players as well.

In other words, if si is a Nash-equilibrium strategy for player i in a strictly 
competitive game, then si guarantees player i at least her security payoff level, 
and player i cannot improve this lower bound by randomizing. Figure 12.1 illus-
trates the result. Note that (B, Y) is a Nash equilibrium of the game, and we 
already observed that B and Y are security strategies.

In fact, we can elaborate. By virtue of s* being a Nash equilibrium, s*
j  is a 

best response to s*
i . Thus, any deviation from s*

j  would weakly lower player j ’s 
payoff and, because the game is strictly competitive, it would raise player i’s 
payoff. We therefore know that with the equilibrium profile s*, player i receives 
the lowest payoff conditional on selecting s*

i . This means that player i’s security 
payoff level is ui (s*). To summarize, by choosing s*

i , player i guarantees at least 
her equilibrium payoff, whether or not player j selects his equilibrium strategy.

The result is not difficult to prove mathematically, so I include the proof for 
those who want to see it. The proof is a bit technical, so stay focused. Let us 
prove the result for player 1’s strategy; the same arguments work for player 2’s 
strategy as well. Because s* is a Nash equilibrium, player 2 cannot increase her 
payoff by unilaterally deviating from s*

2 , which means that

u2 (s*
1 , s2 ) … u2 (s*)

for every strategy s2 . But, because the game is strictly competitive, we can put 
this inequality in terms of player 1’s payoff by reversing the direction of inequal-
ity. That is, we know that

u1 (s*
1 , s2 ) Ú u1 (s*)

2J. von Neumann, “Zur Theorie der Gesellschaftsspiele,” Mathematische Annalen 100 (1928): 295–320.
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for every strategy s2 . In words, at strategy profile s*, player 1 gets the lowest 
possible payoff given that he plays s*

1 . Thus, u1(s*) = w1 (s*
1  ). We’re almost 

done. Because s* is a Nash equilibrium, player 1 cannot gain by deviating from 
s*

1 , which means that

u1 (s*) Ú u1 (s1 , s*
2  )

for every strategy s1 . In addition, we know that u1(s1 , s*
2  ) is not less than w1 (s1 ) 

because the latter is the worst-case payoff when player 1 selects s1 . We conclude 
that w1 (s*

1  ) = u1 (s*) Ú w1 (s1 ) for every strategy s1 which means s*
1 is a security 

strategy.
To prove the second claim of the result, that each player’s security level and 

maxmin level coincide, we can use a contradiction argument: We presume that 
the claim is false and then generate a logical contradiction from this assumption. 
For the claim to be false, we would be able to find an example with the follow-
ing property for some player i:

ui (s*) <
 

max
si∈Si

 
 

min
sj∈Sj

 ui (si , sj) =
 

min
sj∈Sj

 ui (s–i , sj ).

where s–i is a maxmin strategy for player i. The equality here holds by the defini-
tion of maxmin strategy. Using the inequality and plugging in s*

j , we get

ui (s*) < ui (s–i , s*
j  ).

This implies that there is a pure strategy si ∈ Si such that

ui (si , s*
j  ) > ui (s*),

but this contradicts that s*
i  is a best response to s*

j . The proof is complete.
I end this chapter with a note about mixed-strategy equilibria. The result 

from this chapter extends to mixed strategies in the following way. Suppose that 
a game is strictly competitive with respect to the mixed-strategy profiles; that 
is, for any two mixed-strategy profiles s and s, u1 (s) > u1 (s) if and only if 
u2 (s) < u2 (s). If s* is a mixed-strategy Nash equilibrium of the game, then 
s*

1 is a maxmin strategy for player 1 and s*
2 is a maxmin strategy for player 2.

GuidEd ExErcisE

Problem: Are all security strategies rationalizable? Prove this or find a counter-
example.
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Solution: In fact, not all security strategies are rationalizable, as the following 
game demonstrates.

X
2

1 Y

A

B

3, 5 -1, 1

2, 6 1, 2

In this game, the only rationalizable strategy profile is (A, X), yet B is player 
1’s security strategy.

ExErCiSES

1. Determine which of the following games are strictly competitive.

(b)

X Y Z

A

B

C

8, 1 7, 2

9, 0 2, 8

3, 6

4, 5

7, 2 8, 1 6, 4

2
1

(a)

X Y Z

A

B

C

2, 9 6, 5

5, 6 8, 2

7, 4

3, 8

9, 1 4, 7 7, 3

2
1

X

U

Y

D

(d)

1, 1 2, 2

4, 4 3, 3

2
1X

A

Y

B

(c)

1, 1 2, 0

0, 2 1, 1

2
1

2. Find the players’ security strategies for the games pictured in Exercise 1.

3. Give some examples of games people play for entertainment that are strictly 
competitive.
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4. For a two-player game, two pure-strategy Nash equilibria (s1 , s2 ) and (t1 , t2 ) 
are called equivalent if ui (s) = ui (t) for i = 1, 2; they are called interchange-
able if (s1 , t2 ) and (t1 , s2 ) also are Nash equilibria. Mathematically prove that 
any two pure-strategy Nash equilibria of a two-player, strictly  competitive 
game are both equivalent and interchangeable.

5. The guided exercise in this chapter demonstrates that not all security strate-
gies are rationalizable. Find an example in which player 1’s security strat-
egy is dominated (in the first round of the rationalizability construction). 
For your example, what is the relation between player 1’s security level and 
maxmin level?

6. Give an example of a game that is strictly competitive with respect to pure 
strategies but is not strictly competitive with respect to mixed strategies.

7. Prove that any zero-sum game is also strictly competitive with respect to 
mixed strategies.
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13 CONTRACT, LAW, AND ENFORCEMENT  
IN STATIC SETTINGS

As indicated in the discussion of the Nash equilibrium concept, many insti-
tutions help align beliefs and behavior to achieve congruous outcomes. In 

particular, contracting institutions—such as the legal system—govern a wide 
variety of relationships in our society. Most economic relationships feature 
some degree of contracting. For example, firms and workers generally negoti-
ate and agree on wages, job assignments, and other aspects of the employment 
relation. Homeowners write contracts with building contractors. Firms contract 
with their suppliers as well as with their customers. Nations contract with one 
another on the subject of terms of trade and security interests.

Contracting does more than alleviate strategic uncertainty. It also helps 
resolve the other two tensions of strategic situations discussed in preceding 
chapters. Specifically, deliberate contracting gives players a way of avoiding 
inefficient coordination. Further, to the extent that the participation of third 
parties changes the “game” to be played by the players, contracts can also miti-
gate conflicts between joint and individual incentives—that is, contracts may 
help align incentives.

In this chapter, I explain how to use game theory to define and study contract-
ing, I describe the various ways in which contracts can be enforced, and I pre sent 
some examples of how legal institutions facilitate cooperation. I begin with 
some definitions.1 First, and most important, is the concept of a contract. The 
U.S. legal system generally regards a contract as a “promise or a set of promises 
for the breach of which the law gives a remedy, or the performance of which the 
law in some way recognizes as a duty.”2 Although it is a useful working defini-
tion in the legal world, this definition is too much a product of the development 
of formal legal institutions to serve us well at the general conceptual level. I use 
the following, more comprehensive, definition.

A contract is an agreement about behavior that is intended to be 
enforced.

1The concepts noted here are covered more deeply in J. Watson, “Contract and Game Theory: Basic Concepts 
for Settings with Finite Horizons,” University of California, San Diego, working paper, 2005.
2Section 1, Restatement (Second) of Contracts, American Law Institute, 1981.
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As the definition suggests, we ought to differentiate between contracting and 
enforcing contracts.

I call interaction between two or more economic agents a contractual rela-
tionship if the parties, with some deliberation, work together to set the terms 
of their relationship. By “work together,” I mean that the parties negotiate and 
agree on a course of action. Some aspects of their agreement may include the 
interaction of third parties, such as judges or arbitrators. Often, we wish to study 
the involvement of these third parties without actually modeling their prefer-
ences, in which case we will call the third parties “external players.” (Players 
whose preferences we address, such as the players in all the games that we have 
analyzed to this point, are considered “internal players.”) An external player 
may be considered to take actions on the basis of information about the contrac-
tual relationship that is verifiable to this external party.

We can roughly divide any contractual relationship into two phases: a 
contracting phase, in which players set the terms of their contract, and an imple-
mentation phase, in which the contract is carried out and enforced. I do not 
explicitly model the contracting phase in this chapter. Instead, I focus on simple 
static games that highlight the nature of contract and methods of enforcement.3

There are three methods of contract enforcement that are worth isolating 
with game theory. First, a contract is said to be self-enforced if the players have 
the individual incentives to abide by the terms of the contract. A contract is said 
to be externally enforced if the players are motivated to behave in accordance 
with a contract by the actions of an external player, such as a judge or arbitra-
tor. Finally, a contract is said to be automatically enforced if implementing the 
contract is instantaneous with the agreement itself. People generally rely on a 
combination of these three methods of enforcement.

We will study automatically enforced contracts later, through the analysis of 
joint decision problems in Chapter 20. To illustrate the other two enforcement meth-
ods and to address some of the deeper issues regarding contracting institutions, 
let us consider a specific example. Suppose Jessica and Mark, a happily married 
couple, wish to remodel their home. Remodeling requires the efforts of both an 
architect and a building contractor. The architect’s job is to make precise measure-
ments of the house, determine the work to be done, and decide what materials and 
techniques should be used in the process. Suppose Mark himself is an architect, 
so he plays the architect’s role in the remodeling project. The duty of the building 
contractor is to handle the physical construction, with the assistance of workers 
whom he or she hires. Let us name the building contractor Denny. Jessica, an attor-
ney, will use her legal expertise to design a contract between Denny and the couple.

3In the next part of the book (in particular, in Chapters 18–21), I analyze the contracting phase as a bargaining 
problem.
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156 13: Contract, Law, and Enforcement in Static Settings

I begin by reviewing the technology of the relationship, which is the 
game-theoretic representation of productive interaction in the contractual rela-
tionship. Production (the remodeling job) entails the inputs of Mark and Denny, 
whose interaction is represented by the normal-form game pictured in Figure 
13.1. I call it the underlying game. Mark is player 1 and Denny is player 2. 
Simultaneously and independently, they each choose between investing effort in 
the project (I) and not investing (N). For Mark, the investment of effort entails 
architectural work that may be individually costly, but it makes Denny’s job 
much easier and increases the value of the project. Denny’s investment refers to 
effort expended that increases the quality of the remodeling work.

The payoff numbers are in thousands of dollars. Each player wants to maxi-
mize the number of dollars that he receives. Let us focus on the case in which

z1 + z2 > x1 + y2 , z1 + z2 > x2 + y1 , and z1 + z2 > 0.

In words, this means that the sum of the players’ monetary payoffs—the joint 
value of their relationship—is highest when (I, I) is played. In fact, if the play-
ers have the ability to transfer money between themselves (that is, give money 
to each other), then (I, I) is the only efficient outcome of the underlying game. 
This is because both players can always be made better off when they share a 
larger joint value than when they share a smaller joint value.4 For the contract-
ing problems studied in this chapter, I make the reasonable assumption that the 
parties can make monetary transfers. Thus, given that (I, I) is the best outcome, 
our fundamental question is: Can the players enforce a contract specifying that 
(I, I) will be played?

The players can easily implement (I, I) if this profile is a Nash equilibrium 
of the underlying game. In other words, an agreement to play (I, I) is a self-
enforced contract only if (I, I) is a Nash equilibrium, which is the case if

z1 Ú x1 and z2 Ú x2 .

4For example, suppose z1 = z2 = 5, x1 = 6, and y2 = 2, and so the joint value of (I, I) is 10 and the joint value 
of (N, I) is 8. Without transfers, player 1 prefers (N, I) to (I, I). However, if player 2 were to transfer 2 units to 
player 1 when (I, I) is played, then both players would prefer (I, I) to (N, I). In Chapter 18, I elaborate on this 
point about transfers and efficiency.

FIGURE 13.1 

Technology of the  

contractual relationship.
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z1, z2 y1, x2

x1, y2 0, 0
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However, if either of these inequalities fails to hold, then the players cannot rely 
on self-enforcement to support the outcome (I, I). They need the participation of 
a third party, whose actions may serve to change the nature of the game between 
Mark and Denny. A court is such a third party.

The court enters the picture as follows: After Mark and Denny choose 
whether to invest—so that the outcome of the underlying game is realized— 
the court may step in and compel a transfer of money between them. The court 
will not impose any transfer if (I, I) is played, because in this case the players 
have cooperated as desired. But, if one or both players has deviated by select-
ing N, then the court takes remedial action. Let m denote the transfer required 
by the court; assume it is a transfer from Denny to Mark. Thus, Mark’s payoff 
increases by m while Denny’s payoff decreases by m. If m < 0, then it means 
that Mark actually gives Denny money.

You might imagine that in some scenarios, the court’s intervention does not 
lead to a transfer between the players but rather leads to an outcome whereby 
both players lose money. For example, court costs impose a transfer from both 
players, at least jointly. For now, we shall leave aside such costs and concentrate 
on transfers from one player to another.

The court-imposed transfer m may depend on the outcome of the underlying 
game. For instance, the transfer may be different if (I, N) occurred than it would 
be if (N, I) occurred. In terms of the underlying game, then, there are possibly 
four different transfers, one associated with each cell of the matrix. Assuming 
the players know what the transfers will be, the court’s intervention changes the 
game played between Mark and Denny. Instead of the underlying game, they 
actually play the game depicted in Figure 13.2. This game adds the transfers to 
the underlying game, implying the players’ true payoffs. Note that no transfer 
is made when (I, I) occurs, as heretofore assumed. Transfers in the other cells 
are denoted a, b, and g. In each case, these numbers represent a transfer from 
Denny (player 2) to Mark (player 1). The game in Figure 13.2 is called the 
induced game.

The induced game captures the two most important types of contract 
enforcement: self-enforcement and external enforcement. External enforcement 
is associated with how the actions of the external party (the court) change the 
game to be played by the contracting agents—that is, how the formal contract 

FIGURE 13.2 

Induced game. I
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z1, z2 y1 + b, x2 - b

x1 + a, y2 - a g, - g
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between Mark and Denny influences the behavior of the court and, in turn, their 
own payoffs in the induced game. Technically, external enforcement transforms 
the underlying game into the induced game. Self-enforcement relates to the fact 
that in the end, the players can only sustain a Nash equilibrium in the induced 
game. Let us presume that the players will jointly select the best Nash equilib-
rium in the induced game.

The key to effective external enforcement is the extent to which the court-
imposed monetary transfers can be chosen arbitrarily. In regard to Figure 13.2, 
what determines the transfers a, b, and g? Can the players select them before the 
game is played? If so, to what extent are the players constrained? The answers to 
these questions lie in a deeper understanding of the external enforcement insti-
tution. To this end, it is worthwhile to think about two contractual settings. In 
the first setting, the court allows people to write contracts as they see fit and the 
court enforces contracts verbatim. In the second setting, the court puts tighter 
constraints on the set of feasible contracts.

CompLEtE ContraCting in DiSCrEtionary EnvironmEntS

Return your thoughts to the example of a remodeling project. Suppose the court 
allows the players to write a complete contract, which specifies a transfer for 
each of the outcomes of the underlying game. That is, the players can sign a 
document assigning values to a, b, and g. After the underlying game is played, 
the court reviews this document and observes the outcome of the game. The 
court then enforces the agreement between the players by compelling them to 
make the appropriate transfer.5

Enter Jessica and her legal sensibilities. She notices that an appropriately 
designed contract can easily induce the efficient outcome (I, I). This is accom-
plished by specifying externally enforced transfers sufficient to make (I, I) a 
Nash equilibrium in the induced game. Any a and b will do, as long as

z1 Ú x1 + a and z2 Ú x2 − b.

For example, consider the technology represented in Figure 13.3. Jessica might 
recommend that Mark and Denny sign a document specifying a = −3, b = 0, 
and g = 0. In words, this contract instructs the court to enforce a transfer of 
3 from Mark to Denny in the event that Mark does not invest while Denny 

5The contracting process (how players establish a contract) is addressed in Chapters 18 and 20 in Part III of 
this book. For now, it is enough to focus on maximizing the joint value of the contractual relationship by an 
appropriately specified externally enforced contract and coordination by the players on the best self-enforced 
component (Nash equilibrium).
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159Complete Contracting in Discretionary Environments

does invest. This externally enforced component implies the induced game 
pictured in Figure 13.4. Because (I, I) is a Nash equilibrium in the induced 
game, the agreement to play (I, I) is self-enforced.

The lesson from the preceding example is that under certain conditions, 
complete contracts allow the players to induce any profile in the underlying 
game, regardless of the technology of the relationship—that is, regardless of the 
payoffs in the underlying game. The essential condition is that the court must 
be able to differentiate between all of the different outcomes of the underly-
ing game. For example, the court must be able to verify whether each player 
selected I or N in the game. Then the court knows when to impose transfer a, 
when to impose b, and so on. We call this informational condition full verifi-
ability. To summarize:

Result: With full verifiability, there is an enforced contract yielding the 
efficient outcome (that which maximizes the players’ total payoff).

In legal terms, full verifiability means that sufficient evidence exists to prove to 
the court exactly what the outcome of the underlying game was.6

Unfortunately, full verifiability is more often the exception than the rule. 
Usually there is not sufficient evidence to completely reveal the outcome of the 
underlying game. For example, the court may have no way of knowing whether 
Mark or Denny individually invested in the remodeling project. The court may 
be able to confirm only whether the end result is good or poor. A good job indi-
cates that both Mark and Denny invested as promised; a bad job reveals that one 
or both players did not invest.

6Although the model does not address how the evidence is produced and by whom, it is reasonable at this level 
of analysis to suppose that the evidence will make its way to the court.

FIGURE 13.3 

Specific example.

FIGURE 13.4 
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To be more specific, suppose the remodeling job entails the design and 
construction of cabinetry. The court can observe only whether, in the end, the 
cabinets fit together seamlessly. If they do, then the court can conclude that 
both Mark and Denny invested. If the cabinets do not fit together, then the court 
knows that at least one of the players failed to invest. However, the court does 
not know if the faulty outcome was the result of Mark’s failure to supply the 
correct measurements and instruction or the result of Denny’s failure to take 
care during construction. This is an example of limited verifiability, defined 
as a setting in which the court cannot perfectly verify the players’ productive 
actions.

In the limited-verifiability setting, Jessica observes that it is impossible to 
specify different externally enforced transfers for each cell of the game matrix. 
Because the court cannot distinguish between (I, N), (N, I), and (N, N), the 
contract must specify the same transfer for each of these outcomes. In legal 
terms, the players sign a document directing the court to impose transfers on 
the basis of what the court verifies about the relationship. Because the court 
can verify only whether the cabinets fit, the transfer can be conditioned only on 
whether this is the case. In game-theory terms, the externally enforced compo-
nent of the contract consists of a single number a, yielding the induced game 
pictured in Figure 13.5.

It can be difficult, even impossible, to support (I, I) with limited verifiabil-
ity. To see this, note that although raising a does reduce player 2’s incentive to 
play N, it increases player 1’s incentive to select N. In order for (I, I) to be a 
Nash equilibrium of the induced game, a must be selected to balance the incen-
tives of the players. Specifically, we need

z1 Ú x1 + a and z2 Ú x2 − a.

Rearranging terms simplifies this to

x2 − z2 … a … z1 − x1 .

We conclude that there is an a that satisfies these inequalities if and only if 
z1 + z2 Ú x1 + x2 .

FIGURE 13.5 

Induced game with limited 

verifiability.
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As an example, take the underlying game shown in Figure 13.3. Setting 
a = −3 yields the induced game in Figure 13.6, for which (I, I) is a Nash equi-
librium. Next consider the underlying game shown in Figure 13.7. Under limited 
verifiability, (I, I) cannot be enforced. (Check that there is no a that makes this 
a Nash equilibrium of the induced game.) However, as with all technologies, 
(I, I) can be supported with full verifiability. Thus, limited verifiability puts 
real constraints on players’ ability to achieve efficient outcomes. Contractual 
imperfections, such as limited verifiability, lead to the three strategic tensions 
identified earlier in this book.7

ContraCting with Court-impoSED BrEaCh rEmEDiES

Courts do not always enforce what players write into their contracts. In fact, 
in the United States, courts are more likely to impose transfers on the basis of 
certain legal principles, rather than be dictated to by the contract document. 
Further, contracts in the real world tend not to be complete specifications of 
transfers as a function of verifiable information. There are several reasons why 
players write such “incomplete” contracts. For example, it may be expensive or 
time-consuming to list all of the contingencies that may arise in a contractual 
relationship. More importantly, players may count on the court to “complete” a 
contract (fill in the gaps) during litigation, trusting that the court will be able to 
determine the appropriate remedial action. Because courts are active with regard 

7In addition, the three tensions discussed earlier operate on the level of contracting. For example, players 1 and 
2 may contract separately from players 3 and 4, yet these two contractual relationships may affect one another 
in prisoners’ dilemma fashion. Players 1 and 2 may have the narrow incentive to select a contract of form “D” 
and players 3 and 4 may have the same incentive, yet all four would prefer a grand contract specifying “C” in 
each bilateral relationship.

FIGURE 13.6 
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FIGURE 13.7 

Another specific example. I
2

1 N

I

N

10, 10 -4, 12

12, -4 0, 0

Watson_c13_154-172hr.indd   161 2/4/13   12:03 PM



162 13: Contract, Law, and Enforcement in Static Settings

to assessing relationships and imposing transfers, the players need not write a 
detailed contract up front.

An externally enforced contract is often merely a statement of how the play-
ers intend to behave in their relationship. For example, Mark and Denny may 
agree to play (I, I) in the game. That is, Mark promises to supply Denny with 
accurate measurements and thorough instructions, whereas Denny promises to 
exercise care in the building process. The players may never even mention the 
possibility that one or both of them may deviate from this plan, much less what 
the legal remedy should be in such a case. In this sense, the contract is incom-
plete. The players’ contract provides no guidance to the court for the eventuality 
in which one of the players fails to invest.

In this section, I sketch three legal principles that guide damage awards 
in U.S. commercial cases.8 The principles apply in the setting of incomplete 
contracts, where either the players do not specify a transfer for each contingency 
or the court ignores the players’ statement of transfers. For simplicity, I assume 
that the externally enforced component of a contract is simply a joint statement 
by the players describing the actions that they intend to take in the underlying 
game. For the examples, we are interested in the contract specifying (I, I). A 
deviation from this profile by one or both players is called a breach. If one 
player commits a breach, then this player is called the defendant and the other 
player is called the plaintiff. On verifying a breach, the court imposes a breach 
remedy, which implies a transfer between the players. For now, assume that the 
court can fully verify the outcome of the underlying game—that is, that there 
is full verifiability. With reference to Figure 13.2, the court’s breach remedy 
defines a, b, and g.

Under the legal principle of expectation damages, the court forces the 
defendant to transfer to the plaintiff the sum of money needed to give the plain-
tiff the payoff that he or she would have received had the contract been fulfilled. 
In terms of the underlying game in Figure 13.1, player 1’s expectation is z1 
and player 2’s expectation is z2 . Thus, if Mark (player 1) breaches, then he is 
forced to pay Denny an amount to make Denny’s payoff z2 . This implies that 
a = y2 − z2 . Likewise, the transfer imposed if Denny breaches is b = z1 − y1 . 
For simplicity, we can let g = 0. Under expectation damages, the induced game 
is that depicted in Figure 13.8.

In the induced game, (I, I) is a Nash equilibrium if and only if

z1 Ú x1 + y2 − z2 and z2 Ú x2 + y1 − z1 .

8The standard breach remedies analyzed here were studied by S. Shavell, “Damage Measures for Breach of 
Contract,” Bell Journal of Economics 11 (1980): 466–490. For an overview of contract law, you can browse 
through a law school textbook such as R. Barnett, Contracts: Cases and Doctrine, 3rd ed. (New York: Aspen 
Law & Business, 2003).
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Rearranging these inequalities yields

z1 + z2 Ú x1 + y2 and z1 + z2 Ú x2 + y1 ,

which should be familiar to you—they are the inequalities that define conditions 
under which (I, I) is efficient. Thus:

Result: Under expectation damages with the underlying game of Figure 
13.1, (I, I) is enforceable if and only if (I, I) is efficient.

This result is quite strong because it means that expectation damages alleviate 
the tension between individual and joint incentives. In fact, even if the players 
do not know the values xi , yi , and zi at the time of contracting, these damages 
encourage the efficient outcome. Specifically, if the agents formally agree to 
play (I, I) and then observe the values xi , yi , and zi before deciding whether to 
invest, then they will have the incentive to breach only if (I, I) turns out to be 
inefficient—in which case breach is an efficiency-enhancing choice.

Expectation damages are the ideal court remedy, both in theory and in 
practice. Courts generally impose expectation awards whenever possible. But 
expectation requires a great deal of information—more information than exists 
in many economic settings. First, the court must be able to confirm which 
of the two players has breached the contract (full verifiability). Second, the 
players must know the payoff parameters before deciding whether to invest. 
Third, and most critically, the court must be able to determine the payoffs in 
the breach and nonbreach outcomes of the underlying game (in particular, zi 
and yi ).

The parameter yi is sometimes easily verified by courts. For example, yi 
may include expenses borne by the defendant, for which the defendant can 
produce receipts. That is, Denny may be able to prove how much he spent on 
materials and assistants. On the other hand, a court may find it very difficult 
to determine zi , in particular after breach. If the cabinetry is not built properly, 
how can the court accurately estimate the value that would have resulted if the 
job had been completed with care? An even better example arises in a joint 
venture on the development of a new product. If contractual breach destroyed 

FIGURE 13.8 
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the chance that the product could be brought to market, then one can hardly 
expect the court accurately to estimate the value that the product would have 
generated.

The second breach remedy applies well to cases in which zi cannot be 
observed. Under the principle of reliance damages, the court imposes a trans-
fer that returns the plaintiff to the state in which he or she would have been but 
for the contract. That is, the court determines the payoff that the plaintiff would 
have received had no contract been written, and then the court forces a transfer 
sufficient to give the plaintiff this total payoff. The idea behind this legal prin-
ciple is that the plaintiff should be compensated for the initial investment that 
he makes in the contractual relationship—an investment that, in a contractual 
commitment, places one party in the position of relying on the other to fulfill 
the terms of the contract. For example, when Mark makes detailed drawings of 
his house, he relies on Denny to follow the drawings with care during construc-
tion. A player is due compensation for his investment if the other player does 
not honor the contract.

In our model, we can capture the “no contract” value in two ways. First, we 
might view this value as a particular value wi that player i would have received 
had the underlying game not been played. Second, we might suppose that the 
underlying game is played with or without a contract, in which case the absence 
of a contract implies the play of a Nash equilibrium in the underlying game. Our 
choice between these alternatives should be sensitive to the actual case at hand. 
For simplicity, let us use the second modeling approach. Assuming that yi … 0 
for i = 1, 2, (N, N) is a Nash equilibrium of the underlying game; this is our 
prediction for the no-contract outcome.

With reference to Figures 13.1 and 13.2, reliance damages imply a = y2 
and b = −y1 , and so the induced game is the one shown in Figure 13.9. Note 
that (I, I) is a Nash equilibrium in the induced game if and only if

z1 Ú x1 + y2 and z2 Ú x2 + y1 .

Unless the defendant’s damage yi is sufficiently large, reliance awards may not 
support the efficient outcome.

The third common legal principle on breach refers to restitution damages, 
which seek to cancel any unjust enrichment that the defendant obtained by 
breaching the contract, relative to the no-contract state. The best way to think 
about this principle is to imagine the following comparison that a mischievous-
minded Denny might make. On one hand, he could enter into a contract with 
Mark with the thought of breaching it. For example, Denny may value Mark’s 
detailed drawings independently of the project at hand (he can present them to 
a future customer perhaps). Denny may be able to take advantage of Mark in 
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other ways as well, say, by raiding Jessica and Mark’s refrigerator and watching 
television while they are out of the house. On the other hand, Denny can obtain 
zero by not having a contract with Mark. The breach value x2 represents the 
unjust enrichment (relative to the no-contract outcome yielding him zero) that 
an opportunistic Denny can obtain from the contract.

Restitution damages imply a = −x1 and b = x2 , which yields the induced 
game pictured in Figure 13.10. Note that (I, I) is a Nash equilibrium in the 
induced game if and only if z1 Ú 0 and z2 Ú 0. Restitution awards do not imply 
the efficient outcome in two cases: (1) when one value of zi is negative, and (2) 
when both values of zi are positive yet (I, I) is not efficient.

As Jessica readily points out to Mark and Denny, expectation damages are 
best; however, such damages require the court to know the value of the hypo-
thetical performance outcome in the event that the contract is actually breached. 
When zi cannot be estimated with precision, the court may adopt a reliance or 
restitution test. Reliance requires the court to know the plaintiff’s expenditures 
related to the contract, as well as the value of the plaintiff’s foregone opportuni-
ties. Restitution requires knowledge of the defendant’s unjust enrichment.

Complicating factors often make it difficult to estimate the payoff param-
eters. For example, evaluating the plaintiff’s foregone opportunities can be a 
slippery exercise. If Mark and Denny had not entered into a contract, would 
Mark have benefited from searching for another building contractor? How much 
effort should Mark have expended in looking for an alternative contractor? How 
much effort should Mark expend to minimize damage to his house after a breach 
by Denny? The answers to these questions and more can be provided—or are at 
least addressed—by your local attorney and economist.

FIGURE 13.9 
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guiDED EXErCiSE

Problem: Consider a contractual relationship, where the technology of the rela-
tionship is given by the following matrix:

I
2

1 N

I

N

6, 8 0, 9

7, 0 0, 0

(a)  Suppose that the players write a contract whereby they agree to play (I, I). 
Draw the matrix that describes the induced game under the assumption that 
the court enforces expectation damages.

(b)  Suppose that the players can write a complete contract, but that they are in 
a setting of limited verifiability, where the court can verify only whether N 
was played by one or both of the players (but the court cannot verify which 
of the players chose N). Is there a contract that induces play of (I, I)?

Solution:
(a)  Recall that with expectation damages, the defendant must pay the plaintiff 

the amount that would make the plaintiff’s payoff the same as it would be 
if the contract were fulfilled. For instance, if player 1 breaches the contract, 
leading to profile (N, I), then player 1 is compelled to transfer 8 to player 2. 
The induced game is therefore the following:

I
2

1 N

I

N

6, 8 6, 3

-1, 8 0, 0

(b)  No, (I, I) cannot be induced. To prevent player 1 from deviating, the court 
must require player 1 to transfer at least 1 unit to player 2 if cell (N, I) is 
reached in the underlying game. On the other hand, to prevent player 2 from 
deviating, the court must require player 2 to transfer at least 1 unit to player 
1 if cell (I, N) is reached in the underlying game. Limited verifiability re-
quires the transfers specified for cells (N, I) and (I, N) to be the same, which 
contradicts these two conditions.
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EXErCiSES

1. Consider a contractual setting in which the technology of the relationship is 
given by the following underlying game:

I
2

1 N

I

N

5, 5 -1, 1

7, -1 0, 0

Suppose an external enforcer will compel transfer a from player 2 to player 
1 if (N, I) is played, transfer b from player 2 to player 1 if (I, N) is played, 
and transfer g from player 2 to player 1 if (N, N) is played. The players wish 
to support the investment outcome (I, I).
(a)  Suppose there is limited verifiability, so that a = b = g is required. 

Assume that this number is set by the players’ contract. Write the 
matrix representing the induced game and determine whether (I, I) can 
be enforced. Explain your answer.

(b)  Suppose there is full verifiability, but that a, b, and g represent reli-
ance damages imposed by the court. Write the matrix representing the 
induced game and determine whether (I, I) can be enforced. Explain 
your answer.

2. Consider a contractual setting in which the technology of the relationship is 
given by the following partnership game:

I
2

1 N

I

N

4, 4 -4, 9

2, -4 0, 0

Suppose the players contract in a setting of court-imposed breach remedies. 
The players can write a formal contract specifying the strategy profile they 
intend to play; the court observes their behavior in the underlying game and, 
if one or both of them cheated, imposes a breach transfer. The players wish 
to support the investment outcome (I, I).
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(a)  Write the matrix representing the induced game under the assumption 
that the court imposes expectation damages. Can a contract specifying 
(I, I) be enforced? Explain your answer.

(b)  Write the matrix representing the induced game under the assumption 
that the court imposes restitution damages. Can a contract specifying 
(I, I) be enforced?

(c)  Write the matrix representing the induced game under the assumption 
that the court imposes reliance damages. Can a contract specifying (I, I) 
be enforced with reliance transfers? Explain your answer.

(d)  Suppose litigation is costly. When a contract is breached, each player 
has to pay a court fee of c in addition to the reliance transfer imposed 
by the court. What is the induced game in this case?

(e)  Under what condition on c can (I, I) be enforced with reliance transfers 
and court costs?

(f)  Continue to assume the setting of part (d). Suppose the court intervenes 
after a breach only if the plaintiff brings suit. For what values of c does 
the plaintiff have the incentive to sue?

(g)  How does your answer to part (e) change if the court forces the losing 
party to pay all court costs?

3. Consider a setting of complete contracting in a discretionary environment, 
where the court will impose transfers as specified by the players. For each 
of the following two underlying games, how much should the players be 
jointly willing to pay to transform the setting from one of limited verifiabil-
ity, where the court cannot distinguish between (I, N), (N, I), and (N, N) but 
knows whether (I, I) was played, to one of full verifiability, where the court 
knows exactly what the players did? To answer this question, you must de-
termine the outcomes in the two different information settings. Here are the 
two underlying games:

I

(a) (b)

2
1 N

I

N

5, 5 -5, 6

8, -4 0, 0

I
2

1 N

I

N

4, 7 -4, 8

2, -2 0, 0

4. Reconsider the pedestrian-injury example of Exercise 8 in Chapter 11. Sup-
pose you are a prominent legal expert. The government has asked for your 
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advice on a proposed law specifying punishment of bystanders who fail to 
call for help. If the law is enforced, then with some probability a “do noth-
ing” bystander will be forced to pay a fine.
(a)  In words, explain how this law changes the game played between the 

bystanders. If you can, sketch and solve a version of the model incorpo-
rating the fine and the probability that a bystander is prosecuted.

(b)  Compare the following two rules: (1) a bystander can be prosecuted if 
he or she fails to call, regardless of whether another person calls; and 
(2) a bystander can be prosecuted for not calling only if no one else calls 
(in which case the pedestrian’s injury is not treated, resulting in lifelong 
health problems).

(c)  What kind of bystander law would you recommend? Explain your crite-
rion (efficiency?).

5. Which is more critical to effective external enforcement: breach or verifi-
ability? Explain.

6. Which remedy is more likely to achieve efficiency: expectation damages or 
restitution damages? Explain.

7. The technologies of interaction for two different contractual relationships 
are given by matrices A and B.

I

A B

2
1 N

I

N

3, 8 -6, 9

5, -1 0, 0

I
2

1 N

I

N

6, 7 3, 2

10, -5 0, 0

Answer the following questions for both technology A and technology B.
(a)  Suppose the players can obtain externally enforced transfers by writ-

ing a contract. Under the assumption that the court can verify exactly 
the outcome of production, what value can the players obtain and what 
contract is written? Describe both the externally and self-enforced 
components.

(b)  Repeat part (a) under the assumption that the court can only verify 
whether (I, I) is played—that is, it cannot distinguish between (I, N), 
(N, I), and (N, N).
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(c)  Explain or calculate the outcome for the setting of court-imposed 
breach remedies. Separately study expectation, reliance, and restitution. 
Assume (0, 0) is the benchmark, nonrelationship payoff for reliance and 
restitution.

8. Suppose a manager (player 1) and a worker (player 2) have a contractual re-
lationship with the following technology of interaction. Simultaneously and 
independently, the two parties each select either low (L) or high (H) effort. 
A party that selects high effort suffers a disutility. The worker’s disutility 
of high effort (measured in dollars) is 2, whereas the manager’s disutility of 
high effort is 3. The effort choices yield revenue to the manager, as follows: 
If both choose L, then the revenue is zero. If one party chooses L while the 
other selects H, then the revenue is 3. Finally, if both parties select H, then 
the revenue is 7. The worker’s payoff is zero minus his disutility of effort 
(zero if he exerted low effort), and the manager’s payoff is her revenue mi-
nus her disutility of effort.
(a)  Draw the normal-form matrix that represents the underlying game.
(b)  If there is no external enforcement, what would be the outcome of this 

contractual relationship?
(c)  Suppose there is external enforcement of transfers but that there is 

limited verifiability in that the court can only observe the revenue 
generated by the parties. Explain how this determines which cells of the 
matrix the court can distinguish between.

(d)  Continuing to assume limited verifiability, what is the best outcome that 
the parties can achieve and what contract will they write to achieve it? 
(Assume maximization of joint value.)

(e)  Now assume that there is full verifiability. What outcome will be 
reached and what contract will be written?

9. Suppose that Shtinki Corporation operates a chemical plant, which is lo-
cated on the Hudson River. Downstream from the chemical plant is a group 
of fisheries. The Shtinki plant emits some byproducts that pollute the river, 
causing harm to the fisheries. The profit Shtinki obtains from operating the 
chemical plant is a positive number X. The harm inflicted on the fisheries 
due to water pollution is measured to be Y in terms of lost profits. If the 
Shtinki plant is shut down, then Shtinki loses X while the fisheries gain Y. 
Suppose that the fisheries collectively sue Shtinki Corporation. It is easily 
verified in court that Shtinki’s plant pollutes the river. However, the values 
X and Y cannot be verified by the court, although they are commonly known 
to the litigants.
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 Suppose that the court requires the fisheries’ attorney (player 1) and the 
Shtinki attorney (player 2) to play the following litigation game. Player 1 
is supposed to announce a number y, which the court interprets as the fish-
eries’ claim about their profit loss Y. Player 2 is to announce a number x, 
which the court interprets as a claim about X. The announcements are made 
simultaneously and independently. Then the court uses Posner’s nuisance 
rule to make its decision.9 According to the rule, if y > x, then Shtinki 
must shut down its chemical plant. If x Ú y, then the court allows Shtinki 
to operate the plant, but the court also requires Shtinki to pay the fisheries 
the amount y. Note that the court cannot force the attorneys to tell the truth. 
Assume the attorneys want to maximize the profits of their clients.
(a)  Represent this game in the normal form by describing the strategy 

spaces and payoff functions.
(b)  For the case in which X > Y, compute the Nash equilibria of the litiga-

tion game.
(c)  For the case in which X < Y, compute the Nash equilibria of the litiga-

tion game.
(d)  Is the court’s rule efficient?

10. Discuss a real-world example of a contractual situation with limited verifi-
ability. How do the parties deal with this contractual imperfection?

11. Consider a two-player contractual setting in which the players produce as a 
team. In the underlying game, players 1 and 2 each select high (H) or low 
(L) effort. A player who selects H pays a cost of 3; selecting L costs noth-
ing. The players equally share the revenue that their efforts produce. If they 
both select H, then revenue is 10. If they both select L, then revenue is 0. If 
one of them selects H and the other selects L, then revenue is x. Thus, if both 
players choose H, then they each obtain a payoff of 12 # 10 − 3 = 2; if player 
1 selects H and player 2 selects L, then player 1 gets 12 # x − 3 and player 2 
gets 12 # x; and so on. Assume that x is between 0 and 10.
 Suppose a contract specifies the following monetary transfers from 
player 2 to player 1: a if (L, H) is played, b if (H, L) is played, and g 
if (L, L) is played.
(a)  Suppose that there is limited verifiability in the sense that the court can 

observe only the revenue (10, x, or 0) of the team, rather than the play-
ers’ individual effort levels. How does this constrain a, b, and g?

9See R. Posner, Economic Analysis of Law, 5th ed. (Boston: Little, Brown, 1997). The exercise here is from 
I. Kim and J. Kim, “Efficiency of Posner’s Nuisance Rule: A Reconsideration,” Journal of Institutional and 
Theoretical Economics 160 (2004): 327–333.
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(b)  What must be true about x to guarantee that (H, H) can be achieved with 
limited verifiability?

12. Consider the following two-player team production problem. Each player 
i chooses a level of effort ai Ú 0 at a personal cost of a2

i . The players se-
lect their effort levels simultaneously and independently. Efforts a1 and a2 

generate revenue of r = 4(a1 + a2 ). There is limited verifiability in that 
the external enforcer (court) can verify only the revenue generated by the 
players, not the players’ individual effort levels. Therefore, the players are 
limited to revenue-sharing contracts, which can be represented by two func-
tions f1 : [0,  ) S [0,  ) and f2 : [0,  ) S [0,  ). For each player i, fi (r) is 
the monetary amount given to player i when the revenue is r. We require 
f1 (r) + f2 (r) … r for every r.
 Call a contract balanced if, for every revenue level r, it is the case that 
f1 (r) + f2 (r) = r. That is, the revenue is completely allocated between the 
players. A contract is unbalanced if f1 (r) + f2 (r) < r for some value of r, 
which means that some of the revenue is destroyed or otherwise wasted.
(a)  What are the efficient effort levels, which maximize the joint value 

4(a1 + a2 ) − a2
1 − a2

2?
(b)  Suppose that the players have a revenue-sharing contract specify-

ing that each player gets half of the revenue. That is, player i gets 
(r>2) − a2

i = 2(a1 + a2 ) − a2
i . What is the Nash equilibrium of the 

effort-selection game?
(c)  Next consider more general contracts. Can you find a balanced contract 

that would induce the efficient effort levels as a Nash equilibrium? If 
so, describe such a contract. If not, see if you can provide a proof of this 
result.

(d)  Can you find an unbalanced contract that would induce the efficient 
effort levels as a Nash equilibrium? If so, describe such a contract. If 
not, provide a proof as best you can.

(e)  Would the issues of balanced transfers matter if the court could verify 
the players’ effort levels? Explain.
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Analyzing Behavior  
in Dynamic Settings

P A r t  I I I

Rationalizability and Nash equilibrium are based on the 
normal-form representation of a game. As demonstrated 
in Part II of this book, these concepts generate useful and 
precise conclusions regarding how people behave in many 
applied settings. In this part, I focus on extensive-form 
games and I show how features of the extensive form suggest 
refined versions of the rationalizability and Nash equilibrium 
concepts.1 I also embark on a detailed analysis of several 
classes of games that command the interest of economists and 
researchers in other disciplines: models of competition between 
firms, employment relations, negotiation, reputation, and parlor 
games. The analysis pays close attention to the information 
that players have at different points in a game. In addition, 
it considers how players should look ahead to evaluate how 
others will respond to their actions. It is an important lesson to 
think about the consequences of your actions before making a 
choice.

1Note that there is no difficulty in applying the standard forms of rationalizability and Nash equilibrium to games in the extensive 
form because every extensive form generates a single normal form (to which we apply the concepts). But, as you will see, some 
straightforward refinements present themselves vividly when we consider the extensive form.
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DETAILS OF THE EXTENSIVE FORM 14

Before proceeding to the analysis of extensive-form games, I will elaborate 
on the technical aspects of the extensive-form representation.1 As I de-

scribed in Chapter 2, an extensive-form game is defined by a tree that has been 
properly constructed and labeled. Those who love to flaunt technical jargon will 
appreciate knowing that, in formal mathematical terms, a tree is a “directed 
graph.” I do not think there is any reason to flaunt technical jargon.

Recall that trees consist of nodes connected by branches. Each branch is an 
arrow, pointing from one node to another. Thus, you can start from a given node 
and trace through the tree by following arrows. Nodes that can be reached in this 
manner are called successors of the node at which you start. Branches from a 
given node point to its immediate successors. Analogously, by tracing backward 
through the tree from a given node, you can define a node’s predecessors and 
immediate predecessor. In Figure 14.1, nodes b and c are successors of node a. 
Node b is an immediate successor of node a and the immediate predecessor of 
node c. Obviously, a given node x is a successor of node y if and only if y is a 
predecessor of x. Also note that for nodes x, y, and z, if x is a predecessor of y 
and y is a predecessor of z, then it must be that x is a predecessor of z. That is, 
trees have a “transitive precedence relation.”

A tree starts with the initial node and ends at terminal nodes (from which no 
arrows extend). We would like the initial node clearly to designate the “begin-
ning” of the tree, and so we impose the following rule on trees:

Tree Rule 1 Every node is a successor of the initial node, and the ini-
tial node is the only one with this property.

A path through the tree is a sequence of nodes that (1) starts with the initial 
node, (2) ends with a terminal node, and (3) has the property that successive 
nodes in the sequence are immediate successors of each other. Each path is one 
way of tracing through the tree by following branches. For example, in Figure 
14.1, one path starts at the initial node, goes to node a and then node b, and 
ends at node c. We require that terminal nodes exist and that each terminal node 

1If you want to get really technical, read the formal definition of an extensive-form game in D. M. Kreps and 
R. Wilson, “Sequential Equilibria,” Econometrica 50 (1982): 863–894.
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176 14: Details of the Extensive Form

completely and uniquely describes a path through the tree. Thus, no two paths 
should cross. The following rule captures this requirement.

Tree Rule 2 Each node except the initial node has exactly one immedi-
ate predecessor. The initial node has no predecessors.

To check your understanding of paths and precedence, I recommend drawing 
some trees to verify that paths do not cross as long as Tree Rule 2 holds.2

Remember that branches represent actions that the players can take at deci-
sion nodes in the game. We label each branch in a tree with the name of the 
action that it represents.

Tree Rule 3 Multiple branches extending from the same node have dif-
ferent action labels.

Information sets represent places where players have to make decisions. 
Formally, an information set is a set of nodes between which a player cannot 
distinguish when making a decision. The concept of an information set adds the 
following two rules for trees.

Tree Rule 4 Each information set contains decision nodes for only one 
of the players.

Tree Rule 5 All nodes in a given information set must have the same 
number of immediate successors and they must have the same set of ac-
tion labels on the branches leading to these successors.

2“Family trees” do not satisfy Tree Rule 2 because humans reproduce sexually. In a family tree, one normally 
associates a node with a single individual, and so everyone has two immediate predecessors (a mother and a 
father). Of course, a family tree is not a game. But families play games and you know “the family that plays 
together stays together.”

FIGURE 14.1 

A tree.

a

b
c

Initial node

Terminal nodes
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Regarding Tree Rule 4, it does not make sense to have, say, an informa-
tion set containing nodes a and b if a is a decision node for player 1 and b is a 
decision node for player 2, as shown in Figure 14.2(a). It would imply that at 
some point in the game, the players do not know who is to make a decision. The 
intuition behind Tree Rule 5 is that if a player has a different number of avail-
able actions at nodes a and b, then he must be able to distinguish between these 
nodes (that is, they are not in the same information set). A tree that violates Tree 
Rule 5 is pictured in Figure 14.2(b).

In addition to the tree rules, it is generally reasonable to assume that play-
ers remember their own past actions as well as any other events that they have 
observed. A game satisfying this assumption is said to exhibit perfect recall. 
Figure 14.3 depicts a setting of imperfect recall. In this example, player 1 first 
chooses between U and D and then chooses between X and Y. That nodes a and 
b are contained in the same information set means that player 1 has forgotten 
whether he chose U or D when he makes the second choice. Although there 
are real-world examples of imperfect recall (Where did I park my car?), game 
theory focuses on models with perfect recall. Some game theorists have studied 
imperfect recall, but they seem to have misplaced their notes.

In summary, an extensive-form game consists of a properly labeled tree 
obeying rules 1 through 5. If every information set of the extensive form is a 

FIGURE 14.2 

Crazy information sets.

FIGURE 14.3 

Imperfect recall.
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single node—if there are no dashed lines in the picture—then we say that the 
game is of perfect information; otherwise, the game is of imperfect information. 
In a game of imperfect information, there is at least one contingency in which 
the player on the move does not know exactly where he is in the tree.

One issue that has not yet been addressed herein is how to model random 
events not under the control of the players, such as whether it rains when the 
Super Bowl is played or whether there is a drought in a particular growing 
season. Such random events (“moves of nature”) require analysis that is best put 
off until later, which in this book means discussion in Part IV.

On the subject of drawing game trees, I have one more point to make. As you 
have seen, in some games a player can choose from an infinite number of actions. 
For example, consider a simple market game between two firms in which firm 1 
first decides how much to spend on advertising and then firm 2, after observing 
firm 1’s choice, decides whether to exit or stay in the market. Suppose that firm 
1 may choose any advertising level between zero and one (million dollars). This 
firm may choose advertising levels of .5, .3871, and so forth. Because there are an 
infinite number of possible actions for firm 1, we cannot draw a branch for each 
action. One way of representing firm 1’s potential choices, though, is to draw two 
branches from firm 1’s decision node, designating advertising levels of zero and 
one, as in Figure 14.4(a). These branches are connected by an arc, which shows 
that firm 1 can select any number between zero and one. We label this graphical 
configuration with a variable (in this case, the letter a), which stands for firm 
1’s action. In the interior of the arc, we draw a generic node that continues the 
tree. Note that in the game illustrated in Figure 14.4(a), the payoffs of the play-
ers depend on a. In another version of the game, player 2 does not observe the 
advertising level of firm 1, as depicted in Figure 14.4(b).

I conclude this chapter with a simple model of bargaining that has played a 
significant role in economic analysis. Economists spend a lot of time studying how 
people trade goods. In some markets, goods are traded through posted prices and 
with very little negotiation. In other markets, buyers and sellers bargain over the 

FIGURE 14.4 

Advertising/exit.
a

1
Exit

Stay
in

2

1
 
- a, 0

a
 
- a2, 1/4 - a/2

(a)

a
1

Exit

Stay
in

2

1
 
- a, 0

a
 
- a2, 1/4 - a/2

(b)
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price at which they will trade. Negotiation is a part of buying homes, automo-
biles, souvenirs in the shops of tourist destinations, merchandise at swap meets, 
and in many other markets. As a rule, regardless of what is for sale, one can always 
bargain over the price. Because bargaining is such a widespread means of estab-
lishing the terms of trade, economists, business people, and everyday consumers 
seek to understand how negotiation takes place and how to master its art.

Imagine that person 1 wishes to sell a painting to person 2. Person 1, the 
seller, has no interest in the painting; it is worth nothing to her. On the other 
hand, the painting is worth $100 to the buyer. Thus, if the painting is sold for 
any price between 0 and $100, both parties will be better off than if the painting 
is not sold. There are many procedures by which bargaining over the price can 
take place. I will later try to help you develop an understanding through some 
simple models. For now, consider the simplest model of negotiation, called 
 ultimatum-offer bargaining.

Suppose that if the parties do not reach an agreement over the price quickly, 
then the opportunity for trade disappears. In fact, there is only time for one take-
it-or-leave-it offer by one of the parties. For the sake of argument, assume that 
the seller can make the offer. She states a price at which she is willing to sell the 
painting, and the buyer then either accepts it (“Yes”) or rejects it (“No”). If the 
buyer rejects the price, then he and the seller must part without making a trade. 
If the buyer accepts the price, then they trade the painting at this price. This 
simple game is represented in Figure 14.5. Note the payoffs. If the painting is 
not traded, both parties obtain nothing. If the painting is traded, then the seller 
obtains the price and the buyer gets the value of the trade to her (the difference 
between what the painting is worth to her and the price).

rEcAllIng thE StrAtEgy DEFInItIon

Before beginning to analyze sequential-move games, it is critically important 
to make sure that you completely understand the definition of “strategy.” Other-
wise, you’re in for some major discomfort as you try to learn the material in this 
and the next parts of this book.

Consider the ultimatum-offer bargaining game just described. In this game, 
player 1’s strategy is simply a number p, which we can assume is between 0 

FIGURE 14.5 

Ultimatum-offer bargaining.
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and 100. Thus, the strategy space for player 1 is S1 = [0, 100]. Player 2’s strat-
egy is from a more complicated space. Note that player 2 has an infinite number 
of information sets, one for each of the feasible offers of player 1. For instance, 
one information set corresponds to player 1 having just made the offer p = 28; 
another information set follows the offer p = 30.75; another follows the offer 
p = 62; and so on. Because there is an infinite number of points in the interval 
[0, 100], player 2 has an infinite number of information sets.

Remember that a strategy for a player is a complete contingent plan. Thus, 
player 2’s strategy must specify player 2’s choice between Yes and No at every 
one of player 2’s information sets. In other words, player 2’s strategy describes 
whether she will accept an offer of p = 28, whether she will accept an offer of 
p = 30.75, whether she will accept an offer of p = 62, and so on. Formally, 
player 2’s strategy in this game can be expressed as a function that maps player 
1’s price offer p to the set {Yes, No}. That is, considering p ∈ [0, 100], we can 
write player 2’s strategy as some function s2 : [0, 100] S {Yes, No}. Then, for 
whatever offer p that player 1 makes, player 2’s response is s2( p).

Here are some examples of strategies for player 2 in the ultimatum-offer 
bargaining game. A really simple strategy is a constant function. One such 
strategy specifies s2 ( p) = Yes for all p; this strategy accepts whatever player 
1 offers. Another type of strategy for player 2 is a “cutoff rule,” which would 
accept any price at or below some cutoff value p

–
 and otherwise would reject. For

a given number p
–

, this strategy is defined by

s2 ( p) = c Yes if p … p
–

No if p > p
–

 .

I suggest that for practice, you describe some other strategies for player 2.

gUIDED EXErcISE

Problem: Provide an example to show that more than one strategy profile can 
correspond to a single path through an extensive-form tree.

Solution: In the following extensive-form game, the strategy profiles (A, ac) 
and (A, ad) induce the same path.

A

B

1

2

2

a

b

c

d 0, 3.5

3, 3

0, 4

3, 3
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EXErcISES

1. Do normal-form games exhibit perfect or imperfect information? Explain.

2. Given an extensive-form game, prove that each pure-strategy profile  induces 
a unique path through the tree.

3. Consider the following two-player game: First, player 1 selects a number 
x, which must be greater than or equal to zero. Player 2 observes x. Then, 
simultaneously and independently, player 1 selects a number y1 and player 
2 selects a number y2 , at which point the game ends. Player 1’s payoff is 
u1 = y1 y2 + x y1 − y 2

1 − (x3>3), and player 2’s payoff is u2 = − ( y1 − y2 )2. 
Represent this game in the extensive form.

4. Draw the extensive form of the following game, a version of the Cournot 
duopoly game (analyzed in Chapter 10). Two firms compete in a homoge-
neous good market, where the firms produce exactly the same good. The 
firms simultaneously and independently select quantities to produce. The 
quantity selected by firm i is denoted qi and must be greater than or equal to 
zero, for i = 1, 2. The market price is given by p = 12 − q1 − q2 . For sim-
plicity, assume that the cost to firm i of producing any quantity is zero. Fur-
ther, assume that each firm’s payoff is defined as its profit. That is, firm i’s 
payoff is (12 − qi − qj ) qi , where j denotes firm i’s opponent in the game.

5. Consider the ultimatum-offer bargaining game described in this chapter and 
recall the cutoff-rule strategy for player 2.
(a)  Suppose that player 1 selects the strategy p = 50 and player 2 selects 

the cutoff-rule strategy with p
–
= 50. Verify that these strategies form a 

Nash equilibrium of the game. Do this by describing the payoffs players 
would get from deviating.

(b)  Show that for any p ∈ [0, 100], there is a Nash equilibrium of the game 
in which an agreement is reached at this price. Describe the equilibrium 
strategy profile and explain.

6. Consider a variant of the game described in Exercise 4. Suppose that the 
firms move sequentially rather than simultaneously. First, firm 1 selects its 
quantity q1 , and this is observed by firm 2. Then, firm 2 selects its quantity 
q2 , and the payoffs are determined as in Exercise 4, so that firm i’s payoff is 
(12 − qi − qj ) qi . As noted in Exercise 6 of Chapter 3, this type of game is 
called the Stackelberg duopoly model. This exercise asks you to find some 
of the Nash equilibria of the game. Further analysis appears in Chapter 15.
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 Note that firm 1’s strategy in this game is a single number q1 . Also 
note that firm 2’s strategy can be expressed as a function that maps firm 1’s 
quantity q1 into firm 2’s quantity q2 . That is, considering q1 , q2 ∈ [0, 12], 
we can write firm 2’s strategy as a function s2 : [0, 12] S [0, 12]. After firm 
1 selects a specific quantity q1 , firm 2 would select q2 = s2 ( q1 ).
(a) Draw the extensive form of this game.
(b)  Consider the strategy profile (q1 , s2 ), where q1 = 2 and s2 is defined as 

follows:

s2 ( q1 ) = c 5 if q1 = 2

12 − q1 if q1  2
 .

That is, firm 2 selects q2 = 5 in the event that firm 1 chooses q1 = 2; other-
wise, firm 2 picks the quantity that drives the price to zero. Verify that these 
strategies form a Nash equilibrium of the game. Do this by describing the 
payoffs players would get from deviating.
(c)  Show that for any x ∈ [0, 12], there is a Nash equilibrium of the game in 

which q1 = x and s2 (x) = (12 − x)>2. Describe the equilibrium strat-
egy profile (fully describe s2 ) and explain why it is an equilibrium.

(d)  Are there any Nash equilibria (q1 , s2 ) for which s2 ( q1 )  (12 − q1)>2? 
Explain why or why not.
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Sequential Rationality and 
Subgame PeRfection 15

To this point, our analysis of rational behavior has centered on the normal 
form—where we examine strategies and payoff functions. Although the 

normal-form concepts are valid for every game (because an extensive form 
can be translated into the normal form), they are most convincing for games in 
which all of the players’ decisions are made simultaneously and independently. 
I want you now to consider games with interesting dynamic properties, where 
the extensive form more precisely describes the order of moves and the informa-
tion structure.

To see that there are some interesting issues regarding comparison of the 
normal and extensive forms, study the game pictured in Figure 15.1. There are 
two firms in this market game: a potential entrant (player 1) and an incumbent 
(player 2). The entrant decides whether or not to enter the incumbent’s industry. 
If the entrant stays out, then the incumbent gets a large profit and the entrant gets 
zero. If the potential entrant does enter the industry, then the incumbent must 
choose whether or not to engage in a price war. If the firm triggers a price war, 
then both firms suffer. If the incumbent accommodates the entrant, then they 
both obtain modest profits.

Pictured in Figure 15.1 are both the extensive- and the normal-form repre-
sentations of this market game. A quick look at the normal form will reveal that 
the game has two Nash equilibria (in pure strategies): (I, A) and (O, P). The 
former equilibrium should not strike you as controversial. The latter equilibrium 
calls for an explanation. Suppose the players do not select their strategies in 

figuRe 15.1
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184 15: Sequential Rationality and Subgame Perfection

real time (as the game progresses), but rather choose their strategies in advance 
of playing the game as suggested by the normal form. Perhaps they write their 
strategies on slips of paper, as instructions to their managers regarding how to 
behave. The entrant prefers not to enter if she expects the incumbent to initiate 
a price war. That is, she responds to the threat that player 2 will trigger a price 
war in the event that player 1 enters the industry. For his part, the incumbent has 
no incentive to deviate from the price-war strategy when he is convinced that 
the entrant will stay out. Note that the incumbent’s thought process here consists 
of an ex ante evaluation; that is, the incumbent is willing to plan on playing the 
price-war strategy when he believes that his decision node will not be reached.

Is the (O, P) equilibrium really plausible? Many theorists think not, because 
games are rarely played by scribbling strategies on paper and ignoring the real-
time dimension. In reality, player 2’s threat to initiate a price war is incredible. 
Even if player 2 plans on adopting this strategy, would he actually carry it out in 
the event that his decision node is reached? He would probably step back for a 
moment and say, “Whoa, Penelope! I didn’t think this information set would be 
reached. But given that this decision really counts now, perhaps a price war is 
not such a good idea after all.” The incumbent will therefore accommodate the 
entrant. Furthermore, the entrant ought to think ahead to this eventuality. Even 
though the incumbent may “talk tough,” claiming that he will initiate a price war 
if entry occurs, the entrant understands that such behavior would not be ratio-
nal when the decision has to be made. Thus, the potential entrant can enter the 
industry with confidence, knowing that the incumbent will capitulate.1 There are 
many examples of games such as these, where an equilibrium specifies an action 
that is irrational, conditional on a particular information set being reached.

IncRedIble ThReaTS In The STackelbeRg duoPoly game

Here is another example. Consider the Stackelberg duopoly game described 
in exercise 6 of Chapter 14.2 In this game, firm 1 selects a quantity 
q1 ∈ [0, 12], which is observed by firm 2, and then firm 2 selects its quantity 

1Children sometimes play games like these with their parents. Parents may threaten to withhold a trip to the 
ice-cream parlor unless a child eats his vegetables. But the parents may have an independent interest in going 
to the ice-cream parlor, and, if they go, then they will have to take the child with them, lest he be left at home 
alone. They can punish the child by skipping sundaes, but they would also be punishing themselves in the 
process. A shrewd child knows when his parents do not have the incentive to carry out punishments; such 
children grow up to be economists or attorneys. They also feed peas to their dogs from time to time.
2Heinrich von Stackelberg was one of the first to study sequential moves in markets. The source is H. von 
Stackelberg, Marktform un Gleichgewicht (Vienna: Springer, 1934). A translation is The Theory of the Market 
Economy, A. T. Peacock, trans. (London: William Hodge, 1952).
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185Sequential Rationality

q2 ∈ [0, 12]. Firm 1’s payoff is (12 − q1 − q2 )q1 , and firm 2’s payoff is 
(12 − q1 − q2 )q2 . Remember that firm 2’s strategy can be expressed as a func-
tion s2 :  [0, 12] S [0, 12] that maps firm 1’s quantity into firm 2’s quantity in 
response. This is because each value of q1 yields a distinct information set for 
firm 2. Part (c) of the exercise asked you to confirm that for any x ∈ [0, 12], there 
is a Nash equilibrium of the game in which q1 = x and s2 (x) = (12 − x)>2.

Let us check this assertion for x = 0, the case in which firm 1 is supposed 
to produce q1 = 0 and firm 2 is supposed to follow with the quantity q2 = 6. 
In words, by producing nothing, firm 1 leaves the entire market to firm 2. First 
verify that q2 = 6 is the payoff-maximizing quantity for firm 2 when firm 1 
produces 0; clearly q2 = 6 maximizes (12 − q2 )q2 . Next, note that this calcula-
tion is not enough to verify Nash equilibrium because we have not yet specified 
the strategy for firm 2. We have so far only specified that s2 (0) = 6; we have 
not yet defined s2 (q1 ) for q1  0. Furthermore, we need to check whether firm 
1 would have the incentive to deviate from q1 = 0.

Consider the following strategy for firm 2: s2 (0) = 6 and s2 (q1 ) = 12 − q1 
for every q1  0. Note that if firm 1 produces a positive amount, then firm 2 will 
produce exactly the amount that pushes the price (and therefore firm 1’s payoff) 
down to 0. Clearly, against strategy s2 , firm 1 cannot gain by deviating from 
q1 = 0. Furthermore, against q1 = 0, firm 2 has no incentive to deviate from s2 . 
To see this, observe that by changing the specification s2 (0) = 6, firm 2’s payoff 
would decrease. Moreover, changing the specification of s2 (x) for any x  0 
would have no effect on firm 2’s payoff, as player 1’s strategy is q1 = 0. Thus, 
(0, s2) is a Nash equilibrium.

Notice that the strategy s2 just described comprises a host of incredible 
threats. For instance, suppose that firm 1 were to select q1 = 6. What is the 
rational response of firm 2? If firm 2 were to follow through with strategy s2, 
then this firm’s payoff would be 0. But firm 2 would get a strictly positive payoff 
by choosing any quantity that is strictly between 0 and 6. You can check that 
firm 2’s optimal choice is q2 = 3 in this case. The bottom line is that although 
(0, s2) is a Nash equilibrium, it is not consistent with rationality at all of firm 2’s 
information sets. In fact, strategy s2 prescribes rational behavior at only the 
information sets given by q1 = 0 and q1 = 12.

SequenTIal RaTIonalITy

As these examples indicate, more should be assumed about players than that 
they select best responses ex ante (from the point of view of the beginning of 
the game). Players ought to demonstrate rationality whenever they are called on 
to make decisions. This is called sequential rationality.
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186 15: Sequential Rationality and Subgame Perfection

Sequential rationality: An optimal strategy for a player should maxi-
mize his or her expected payoff, conditional on every information set 
at which this player has the move. That is, player i’s strategy should 
 specify an optimal action from each of player i’s information sets, even 
those that player i does not believe (ex ante) will be reached in the game.

If sequential rationality is common knowledge between the players (at every 
information set), then each player will “look ahead” to consider what players 
will do in the future in response to her move at a particular information set.

To operationalize the notion of sequential rationality, one has to deal with 
some intricacies regarding limitations on the beliefs players have about each 
other at different information sets. In addition, there are versions that build on 
rationalizability (iterated dominance) and others that build on Nash equilibrium. 
Over the past few decades, researchers have developed a number of refinements 
based on different assumptions about beliefs and the scope of best-response 
behavior. In this chapter, I’ll introduce you to three of the most basic concepts. 
The key one, called subgame perfect Nash equilibrium, is the most straightfor-
ward and is widely applied in following chapters.

backwaRd InducTIon

Perhaps the simplest way of representing sequential rationality is through a 
procedure that identifies an optimal action for each information set by work-
ing backward in the game tree. Consider, for instance, a game of perfect infor-
mation, which you’ll recall has only singleton information sets (there are no 
dashed lines in the extensive-form diagram). One can start by looking at the 
decision nodes that are immediate predecessors of only terminal nodes. At such 
a decision node, the game ends after the relevant player makes her choice and 
so, to determine the optimal action, there is no need to think about the behav-
ior of other players. Essentially, the player on the move has a choice among 
some terminal nodes, and we assume that she will select the payoff-maximizing 
action. Let us call the other actions “dominated.”

The procedure then moves to evaluate decision nodes whose immediate 
successors are either terminal nodes or the nodes we already evaluated. From 
each node in this second class, the payoff consequences of each action are clear 
because the player on the move can anticipate how other players will behave 
later. The process continues all the way back to the initial node.

Backward induction procedure: This is the process of analyzing a 
game from the end to the beginning. At each decision node, one strikes 
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187backward Induction

from consideration any actions that are dominated, given the terminal 
nodes that can be reached through the play of the actions identified at 
successor nodes.

For a demonstration of backward induction, examine the game in Figure 
15.2. There are two nodes at which player 1 makes a decision. At the second 
node, player 1 decides between E and F. On reaching this node, player 1’s only 
rational choice is E. We can therefore cross out F as a possibility. Player 2 knows 
this and, therefore, in her lower decision node she ought to select C (which she 
knows will eventually yield the payoff 3 for her). We thus cross out action D for 
player 2. Furthermore, A is the best choice at player 2’s upper decision node, 
so we cross out B. Finally, we can evaluate the initial node, where player 1 has 
the choice between U and D. He knows that if he chooses U, then player 2 will 
select A and he will get a payoff of 1. If he chooses D, then player 2 will select 
C, after which he will select E, yielding a payoff of 3. Player 1’s optimal action 
at the initial node is therefore D; action U should be crossed out.

Using the process of backward induction in this example, we have identified 
a single sequentially rational strategy profile: (DE, AC). In fact, it is also easy to 
check that (DE, AC) is a Nash equilibrium. Strategy DE is a best response for 
player 1 to player 2’s strategy AC; further, AC is a best response to DE for player 2.

The backward induction procedure identifies a unique strategy profile for 
every game of perfect information that has no “payoff ties” (where a player 
would get the same payoff at multiple terminal nodes). The procedure is also 
well defined and meaningful for perfect-information games with payoff ties, but 
in this case it can lead to more than one strategy profile. Further, it can be applied 
even to some games with nontrivial information sets (as an exercise later shows), 
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188 15: Sequential Rationality and Subgame Perfection

but it is dodgy in general. Sticking with games of perfect information, regardless 
of payoffs, the backward induction procedure is well defined. For each game, 
you will obtain a subset of strategy profiles, at least one of which is a Nash 
equilibrium. This conclusion becomes an existence result for pure-strategy 
 equilibrium.

Result: Every finite game with perfect information has a pure-strategy 
Nash equilibrium. Backward induction identifies an equilibrium.3

If there are ties in the payoffs, then there may be more than one such equilib-
rium, and there may be more than one sequentially rational strategy profile.

Subgame PeRfecTIon

Because the backward induction procedure can be applied to only a limited 
class of games, we must start from a different foundation to represent sequential 
rationality in general. One useful direction is to start with the concept of Nash 
equilibrium and then think of refinements based on the consideration of sequen-
tial rationality. In other words, for any given game, we can calculate all of the 
Nash equilibria and then remove the ones that violate sequential rationality. To 
do this, we need to define what it means to “violate sequential rationality.” The 
most straightforward definition is based on the Nash equilibrium concept itself, 
along with the notion of a subgame.

Given an extensive-form game, a node x in the tree is said to initiate a 
subgame if neither x nor any of its successors are in an information set 
that contains nodes that are not successors of x. A subgame is the tree 
structure defined by such a node x and its successors.

This definition may seem complicated on first sight, but it is not difficult 
to understand. Take any node x in an extensive form. Examine the collection of 
nodes given by x and its successors. If there is a node y that is not a successor 
of x but is connected to x or one of its successors by a dashed line, then x does 
not initiate a subgame. In other words, once players are inside a subgame, it is 
common knowledge between them that they are inside it. Subgames are self-
contained extensive forms—meaningful trees on their own. Subgames that start 
from nodes other than the initial node are called proper subgames. Observe that 
in a game of perfect information, every node initiates a subgame.

3H. W. Kuhn, “Extensive Games and the Problem of Information,” in Contributions to the Theory of Games, 
vol. II (Annals of Mathematics Studies, 28), ed. H. W. Kuhn and A. W. Tucker (Princeton, NJ: Princeton 
University Press, 1953), pp. 193–216.
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189Subgame Perfection

To test your comprehension, examine the game in Figure 15.3. Note that this 
game is a three-player game. The initial node initiates a subgame, because the 
entire game is itself a subgame. Node y also initiates a subgame, because y is 
not tied to any other nodes by a dashed line and all of y’s successors are termi-
nal nodes. Node x, in contrast, does not initiate a subgame, because one of its 
successors (node z) is in the same information set as a node that is not one of its 
successors (node w). In other words, starting from node x, there is a contingency 
in which player 3 does not know whether he is at a successor of x. By the same 
reasoning, neither z nor w initiates a subgame. Thus, this extensive form has two 
subgames: (1) the entire game, and (2) the proper subgame starting at node y.

Here is the refinement of Nash equilibrium that incorporates sequential 
rationality by evaluating subgames individually:

A strategy profile is called a subgame perfect Nash equilibrium (SPE) 
if it specifies a Nash equilibrium in every subgame of the original game.4

The basic idea behind subgame perfection is that a solution concept should 
be consistent with its own application from anywhere in the game where it 

4In 1994, Reinhard Selten was awarded the Nobel Prize in economic sciences for his work on this and another 
“perfection” refinement of Nash equilibrium. Corecipients of the prize were John Nash and John Harsanyi. 
Harsanyi studied games with incomplete information, which is the topic of Part IV of this book. Selten’s contribu-
tions originated with “Spieltheoretische Behandlung eines Oligopolmodells mit Nachfragetragheit,” Zeitschrift 
fur die gesamte staatswissenschaft 121 (1965): 301–324, 667–689. and “Reexamination of the Perfectness 
Concept for Equilibrium Points in Extensive Games.” International Journal of Game Theory 4 (1975): 25–55.
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190 15: Sequential Rationality and Subgame Perfection

can be applied. Because Nash equilibrium can be applied to all well-defined 
extensive-form games, subgame perfect Nash equilibrium requires the Nash 
condition to hold on all subgames.

To understand how to work with the concept of subgame perfection, consider 
the game pictured in Figure 15.4. Note first that this game has one proper 
subgame, which starts at the node reached when player 1 plays U at the initial 
node. Thus, there are two subgames to evaluate: the proper subgame and the 
entire game. Because strategy profiles tell us what the players do at every infor-
mation set, each strategy profile specifies behavior in the proper subgame even 
if this subgame would not be reached. For example, consider strategy profile 
(DA, X). If this profile is played, then play never enters the proper subgame. But 
(DA, X) does include a specification of what the players would do conditional 
on reaching the proper subgame; in particular, it prescribes action A for player 
1 and action X for the player 2.

Continuing with the example, observe that two normal-form games appear 
next to the extensive form in Figure 15.4. The first is the normal-form version of 
the entire extensive form, whereas the second is the normal-form version of the 
proper subgame. The former reveals the Nash equilibria of the entire game; we 
examine the latter to find the Nash equilibria of the proper subgame.

In the entire game, (UA, X), (DA, Y), and (DB, Y) are the Nash equilib-
ria. But not all of these strategy profiles are subgame perfect. To see this, 
observe that the proper subgame has only one Nash equilibrium, (A, X). 
The strategies (DA, Y) and (DB, Y) are not subgame perfect, because they 
do not specify Nash equilibria in the proper subgame. In particular, (DA, Y) 
stipulates that (A, Y) be played in the proper subgame, yet (A, Y) is not  
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191The Spe of the Stackelberg Duopoly Game

an equilibrium. Furthermore, (DB, Y) specifies that (B, Y) be played in the 
subgame, yet (B, Y) is not an equilibrium. Thus, there is a single SPE in this 
example: (UA, X).

The subgame perfection concept requires equilibrium at every subgame, 
meaning that if any particular subgame is reached, then we can expect the play-
ers to follow through with the prescription of the strategy. This is an important 
consideration, whether or not a given equilibrium actually reaches the subgame 
in question. The example in Figure 15.4 illustrates this point vividly. Nash equi-
librium (DA, Y) entails a kind of threat that the players jointly make to give 
player 1 the incentive to select D at his first information set. But the threat is 
not legitimate. In the proper subgame, (A, Y) is about as stable as potassium in 
water. Player 1 has the strict incentive to deviate from this prescription.

Several facts are worth noting at this point. First, and most obvious, recog-
nize that an SPE is a Nash equilibrium because such a profile must specify a 
Nash equilibrium in every subgame, one of which is the entire game. We thus 
speak of subgame perfection as a refinement of Nash equilibrium. Second, for 
games of perfect information, backward induction yields subgame perfect equi-
libria. Third, on the matter of finding subgame perfect equilibria, the procedure 
just described is useful for many finite games. One should examine the matrices 
corresponding to all of the subgames and locate Nash equilibria.

Calculating the subgame perfect equilibria of infinite games can be more 
challenging because it is sometimes difficult to locate Nash equilibria in these 
games. I recommend trying a type of backward-induction procedure where you 
start by examining subgames at the end of the extensive form. Look for the 
Nash equilibria of these subgames. If each of these subgames has a unique Nash 
equilibrium, then, in any SPE, this is the exact outcome that must occur condi-
tional on the subgame being reached. You can then work your way toward the 
beginning of the tree, evaluating larger and larger subgames as you go. This 
procedure is illustrated next.

The Spe of The STackelberG Duopoly Game

Consider the Stackelberg duopoly game described earlier in this chapter. Firm 
1 selects q1 ∈ [0, 12], which is observed by firm 2, and then firm 2 selects 
q2 ∈ [0, 12]. Firm 1’s payoff is (12 − q1 − q2 ) q1 , and firm 2’s payoff is 
(12 − q1 − q2 ) q2 . Recall that every value of q1 yields a distinct information set 
for firm 2. Each of these information sets is a single decision node that initiates 
a subgame, where firm 2 chooses q2 and the game then ends. In other words, 
there is an infinite number of proper subgames—one for every feasible value of 
q1 . Each of these subgames has a unique Nash equilibrium.
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192 15: Sequential Rationality and Subgame Perfection

The Nash equilibrium of such a subgame is simply the choice q2 that maxi-
mizes firm 2’s payoff. The optimal choice depends on the value of q1 , so we 
should write it as a function of q1 . You should verify that for a fixed value of q1 ,

 

max
q2∈[0, 12]

(12 − q1 − q2 ) q2

is solved by q2 = (12 − q1 )>2. Thus, in the subgame that follows firm 1’s selec-
tion of any particular q1 , firm 2’s rational response is to select q2 = (12 − q1 )>2. 

This implies that firm 2’s payoff will be

a12 − q1 −
12 − q1

2
b 12 − q1

2
= a6 −

q1

2
b

2

 ,

and firm 1’s payoff will be

a12 − q1 −
12 − q1

2
bq1 = a6 −

q1

2
bq1 .

This last expression gives firm 1’s payoff as a function of firm 1’s own quantity 
choice, anticipating firm 2’s optimal response. Hence, firm 1’s best choice of q1 
is that which maximizes 16 − q1>22q1 , which is q1 = 6 .

So, we have found the unique SPE of this Stackelberg duopoly game. 
It is the strategy profile (6, s2 ), where firm 2’s strategy s2 is defined by 
s2(q1 ) = (12 − q1)>2 for all q1 ∈ [0, 12]. It is important to remember that firm 
2’s strategy is a function that specifies the optimal action at every one of firm 
2’s information sets. You should compare the sequentially rational strategy of 
firm 2 with the ones used in the construction of various Nash equilibria at the 
beginning of this chapter.

Technical noTeS

Let’s pause a moment for station identification. I like this sentence, but I suppose 
that it has no place in a game-theory textbook. So let me take the opportunity to 
give you an additional definition, a useful result, and a philosophical note. Here 
is the definition:

For a given node x in a game, a player’s continuation value (also called 
continuation payoff) is the payoff that this player will eventually get 
contingent on the path of play passing through node x.

Implicit in the notion of continuation value is a theory of how the players will 
behave at the node in question and all of its successors. This could be any theory 
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of behavior. The continuation value at a node x is thus the payoff at the terminal 
node that would be reached from x given that the players will behave as speci-
fied in the theory.

For an illustration, look at the game pictured in Figure 15.2 and let back-
ward induction be our solution concept. We can summarize the rounds of the 
backward induction procedure in terms of continuation values. The first round 
of the backward induction procedure establishes that player 1 would select E at 
his second decision node. Thus, upon reaching this node, the players anticipate 
that the game will end with the payoff vector (3, 3), so each player’s continua-
tion value is 3 at player 1’s second decision node. Moving backward in the tree, 
we see that player 2 will get this continuation value if she selects C at her lower 
decision node. This value beats the payoff of 2 that she would receive from D. 
Because player 2 would therefore choose C, her continuation value at her lower 
decision node is 3. Player 1’s continuation payoff is also 3 at this node. Because 
player 2 would select A at her upper decision node, player 1’s continuation 
value is 1 there. At the initial node, player 1 can choose U and get a continuation 
value of 1 or he can select D and get a continuation value of 3, so he selects D.

The Stackelberg duopoly game provides another example of continuation-
value calculations. In this example, our behavioral concept can be subgame 
perfect Nash equilibrium or backward induction (they yield the same results 
here). As shown earlier in this chapter, contingent on firm 1 selecting a quantity 
q1 , firm 2’s optimal action leads to the payoff vector

a a6 −
q1

2
bq1 , a6 −

q1

2
b

2

b , 

so this is the vector of continuation values at firm 2’s information set following 
firm 1’s selection of q1 . At the initial node, firm 1 selects q1 to maximize the 
continuation value 16 − q1>22q1 .

There are some variations in the way that continuation values are calculated 
in applications. In some games, payoffs are the sum of amounts received over 
time. For example, in a market game where firms compete over two periods of 
time, their payoffs are the sum of profits received in period 1 and profits received 
in period 2. For settings such as these, it can be helpful to define continuation 
values to be net of past receipts. For instance, we could say that a firm’s continua-
tion value from the start of the second period is the profit that this firm will receive 
from then (not including the firm’s profit in the first period). Furthermore, in some 
games, the players discount the amounts that they receive over time. Then it is 
convenient to define the continuation values to be discounted to the start of the 
continuation point. You will see examples of these variations later in this book.

As you can see, thinking in terms of continuation values can help you keep 
track of the implications of rational behavior in the “continuation of the game” 
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starting from any node or information set. Another useful tool is a mathematical 
result about what needs to be checked to verify that a given strategy profile is a 
subgame perfect equilibrium. Note that for any strategy profile s, we can calcu-
late the continuation values associated with s. To do this, we simply construct, 
from any particular node, the path to a unique terminal node that s implies.

Recall that to check whether s is a subgame perfect Nash equilibrium, we 
have to ask the following question for every player i and every subgame: Fixing 
s−i , is there a strategy s=i that yields a strictly higher payoff for player i than 
does si in the subgame? The next result shows that this analysis is equivalent to 
looking at single deviations from si , meaning that s=i differs from si at only one 
information set. Note that the continuation values associated with (si , s−i ) and 
(s=i  , s−i ) are the same at all nodes that are successors of nodes in the information 
set where si and s=i prescribe different actions. Therefore, it is easy to evaluate 
whether player i gains from this deviation.

Result (one-deviation property): Consider any finite extensive-form 
game. A strategy profile s* is a subgame perfect Nash equilibrium if 
and only if, for each player i and for each subgame, no single deviation 
would raise player i’s payoff in the subgame.

Throughout the rest of this book, we will at least implicitly be using the concept 
of continuation value and the one-deviation property.

The final topic for this section is a philosophical note about alternatives 
and difficulties in modeling how players assess each other’s rationality in 
extensive-form games. Consider the game from Figure 3.1(b), which is repro-
duced here:

2, 2 1, 3 3, 4

4, 2
1 2

O O B

1 AII

As you can verify, backward induction leads to the strategy profile (OA, O), 
and this is the unique subgame perfect equilibrium. To put sequential rationality 
into words, we have the following story: If player 1’s second decision node is 
reached, then this player will definitely select action A. Player 2 can anticipate 
this (knowing that player 1 is sequentially rational), so player 2 would definitely 
select O at her decision node. Finally, because player 1 knows that player 2 is 
rational, player 1 optimally selects O at the initial node.

The story has an implicit assumption that deserves further inspection: If 
player 2’s decision node is reached, should she really believe that player 1 is 
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195conditional dominance and forward Induction

sequentially rational? It’s a tough question, with different answers based on 
different ways of thinking about deviations. The logic of sequential rationality 
implies that player 2’s decision node will not be reached, so at this node perhaps 
player 2 should actually believe that player 1 is not sequentially rational. But 
then the logic of the story breaks down, for player 2 might rationally select I, 
now thinking that the irrational player 1 will later pick B.

This is an argument against backward induction and subgame perfection as 
reasonable solution concepts, and theorists and experimental economists have 
studied alternatives. However, there is a different perspective on beliefs that 
supports sequential rationality: Players sometimes make mistakes. If player 2 
thinks that player 1 occasionally makes mistakes when choosing his actions, she 
can reasonably conclude that his selection of I was a mistake rather than a sign 
of irrationality. Further, she can reasonably expect that player 1 will select A if 
given the chance later, so she optimally chooses O.

The logic of sequential rationality is thus saved for now. In fact, it is the key 
concept in the analysis of dynamic games and the most widely applied. It may 
not always be appropriate, however, as the discussion above indicates.

condITIonal domInance and foRwaRd InducTIon

I conclude this chapter with an informal presentation of the third basic repre-
sentation of sequential rationality, a refinement of rationalizability and iterated 
dominance. The idea is to evaluate best response and dominance conditional on 
players’ information sets. That is, for a strategy si of player i, we test whether 
si can be rationalized at each of player i’s information sets. We remove si from 
consideration if there is an information set for player i from which si is not a best 
response (or equivalently, is dominated). An iterative removal process gives the 
implications of common knowledge of sequential rationality.

Recall from Chapter 6 that there is a tight connection between best response 
and dominance in the normal form. It turns out that the connection extends 
to the concepts of sequential best response and conditional dominance, which 
are the sequential-rationality versions of best response and dominance. Adding 
a common knowledge assumption, these are the basis for extensive-form 
rationalizability and iterated conditional dominance.5 I’ll present the iterated 

5Extensive-form rationalizability was introduced in “Rationalizable Strategic Behavior and the Problem of 
Perfection” by D. Pearce, Econometrica 52 (1984): 1029–1050. It was clarified by P. Battigalli in “On Ratio-
nalizability in Extensive Games,” Journal of Economic Theory 74 (1997): 40–61. Conditional dominance 
is defined and studied in “Conditional Dominance, Rationalizability, and Game Forms” by M. Shimoji and 
J. Watson, Journal of Economic Theory 83 (1998): 161–195. Shimoji and Watson (1998) prove the relation 
between extensive-form rationalizability and conditional dominance.
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196 15: Sequential Rationality and Subgame Perfection

conditional dominance construction here because it is simpler to describe and to 
use in applications .  .  . and because I was instrumental in inventing and analyz-
ing it (shameless self-promotion time!).

To define conditional dominance and the iterated procedure, we’ll need a 
few more definitions. For any extensive-form game of interest, let H denote 
the set of information sets and let Hi comprise the information sets for player 
i. For any strategy profile s ∈ S and any information set h ∈ H, we can say that 
s reaches h if a node in h is on the path through the tree that s induces. In other 
words, if the players behave as profile s prescribes, then information set h will 
be reached in the game. Write S(h) as the set of strategy profiles that reach h.

Given a nonempty subset of strategy profiles Y K Y1 × Y2 ×g × Yn , let 
us say that player i’s strategy si is dominated in Y if si ∈ Yi and there is a mixed 
strategy σi ∈ Yi such that ui (σi , s−i 

) > ui (si , s−i 

) for each s−i ∈ Y−i . This is 
just a more formal description of dominance than that shown in Chapter 6. Here 
I am being more careful to precisely describe the set of strategies to be used in 
the payoff comparisons.

In reference to the information sets H and a nonempty subset of strategy 
profiles X K X1 × X2 ×g × Xn , player i’s strategy si is said to be 
conditionally dominated if there is an information set h ∈ Hi such that 
si is dominated in X  S(h).

To repeat this in everyday language, a strategy si is conditionally dominated 
if the following holds for some information set h of player i: Restricting atten-
tion to strategies that both (i) reach the information set h and (ii) are in X, we 
find that strategy si is dominated. Thus, this simply extends the notion of domi-
nance to be evaluated at individual information sets. The role that the set X plays 
is also straightforward and will be familiar to you from the rationalizability 
construction. It is the set of strategies that have survived to the current round of 
the iterated deletion procedure.

Iterated conditional dominance works the same way that iterated dominance 
does. Here is what you do: First, letting X = S, remove all of the conditionally 
dominated strategies for each player and define R1 to be the strategy profiles 
that remain. Then, letting X = R1, remove all of the conditionally dominated 
strategies (in reference to H and the “reduced game” strategies R1), and define 
R2 as the strategy profiles that remain. Continue this process to identify smaller 
and smaller sets of strategy profiles, R3, R4, c, until no more strategies can 
be deleted. Let R denote the resulting set of strategy profiles—those that survive 
this iterated conditional dominance procedure.

For an illustration of iterated conditional dominance, consider the game 
shown in Figure 15.5. In the first round of conditional dominance, none 
of player 2’s strategies are removed, and nothing is deleted conditional on 
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player 1’s second information set. However, at player 1’s first information set (the 
initial node), her strategy WX is dominated by both ZX and ZY.  To see this, note 
that by playing WX, player 1 can get a payoff of no more than 3, whereas she 
obtains 4 by selecting ZY or ZX. No other strategies are dominated. Thus, after 
one round of conditional dominance, the remaining strategy profiles are given by

R1 = {WY, ZX, ZY} × {A, B}.

Things get a bit more interesting in the second round of conditional domi-
nance. Letting h2 denote player 2’s information set, note that

S(h2) = {WX, WY} × {A, B}.

Because WX is not contained in R1, we have that

S(h2)  R1 = {WY} × {A, B}.

In words, this means that player 2 reasons as such: “I am inclined to think that 
player 1 is rational. I may not have expected that player 1 would select W, 
but now that my information set has been reached, how can I rationalize what 
player 1 has done? She surely is not playing the strategy WX, for she could 
have guaranteed herself a higher payoff by choosing action Z at the beginning 
of the game. Therefore, she must intend to select Y.” This is an example of 
forward induction, meaning that player 2 uses an observation about player 1’s 
past behavior to predict what she will do in the future.

Player 2’s strategy A is conditionally dominated in the second round. That 
is, it is dominated in R1  S(h2 ). After two rounds, the remaining strategy 
profiles are given by

R2 = {WY, ZX, ZY} × {B}.

In the third round, player 1’s strategies ZX and ZY are conditionally dominated, 
leaving R = {(WY, B)}. Iterated conditional dominance leads to a unique 
prediction in this game.

A

B

6, 2

0, 0

0, 0

3, 3

2

1

1
X

Y

X

Y

W

Z 4, 4

FIGURE 15.5

Example of iterated  

conditional dominance.
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Guided exeRciSe

Problem: Consider the ultimatum bargaining game described at the end of 
Chapter 14. In this game, the players negotiate over the price of a painting that 
player 1 can sell to player 2. Player 1 proposes a price p to player 2. Then, after 
observing player 1’s offer, player 2 decides whether to accept it (yes) or reject 
it (no). If player 2 accepts the proposal, then player 1 obtains p and player 2 
obtains 100 − p. If player 2 rejects the proposal, then each player gets zero. 
Recall that, as noted in Exercise 5 of Chapter 14, this game has many Nash equi-
libria. Verify that there is a subgame perfect Nash equilibrium in which player 
1 offers p* = 100 and player 2 has the strategy of accepting any offer p … 100 
and rejecting any offer p > 100.

Solution: The exercise here is to verify that a particular strategy profile is a 
subgame perfect equilibrium. We do not have to determine all of the subgame 
perfect equilibria. Note that there is an infinite number of information sets for 
player 2, one for each possible offer of player 1. Each one of these information 
sets consists of a single node and initiates a simple subgame in which player 2 
says “yes” or “no” and the game ends. The suggested strategy for player 2, which 
accepts (says “yes”) if and only if p … 100, implies an equilibrium in every 
such subgame. To see this, realize that player 2 obtains a payoff of 100 − p if 
he accepts, whereas he receives 0 if he rejects, so accepting is a best response 
in every subgame with p … 100; rejecting the offer is a best response in every 
subgame with p Ú 100. For p = 100, both accepting and rejecting are best 
responses; thus, player 2 is indifferent between accepting and rejecting when 
p = 100. We are assuming that in this case of indifference, player 2 accepts.

Having verified that player 2 is using a sequentially rational strategy, which 
implies equlibirium in every proper subgame, let us turn to the entire ultimatum 
game (from the initial node) and player 1’s incentives. Observe that the offer 
p* = 100 is a best response for player 1 to the strategy of player 2. If player 1 
offers this price, then, given player 2’s strategy, player 2 will accept it and player 
1’s payoff would be 100. In contrast, if player 1 were to offer a higher price, then 
player 2 would reject it and player 1 would get a payoff of zero. Furthermore, 
if player 1 were to offer a lower price p < 100, then player 2 would accept it 
and player 1 would obtain a payoff of only p. Also note that in the entire game, 
player 2’s strategy is a best response to player 1’s strategy of offering p* = 100 
because player 2 accepts this offer. 

We have thus established that the suggested strategy profile induces a Nash 
equilibrium in all of the subgames, including the entire game, and so we have a 
subgame perfect Nash equilibrium. You will find further analysis of the ultima-
tum bargaining game in Chapter 19, where it is shown that the equilibrium we 
have just identified is, in fact, the unique subgame perfect equilibrium.
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exeRcISeS

1. Consider the following extensive-form games.

(a) 2, 6 1, 4 1, 5

2, 3
1 2

A C E

1 FDB

(b) 

C

A

B

D

2, 1

7, 9

1, 2

3, 8

2

1

1

1

1

1

G

H

I

J

E

F

2 0, 5

10, 4K

L

8, 3

4, 0M

N

(c) 

A

B

7, 5, 5

4, 3, 1

2
5, 0, 0

2, 2, 2

1, 2, 6

3, 2, 13

1

X

Y

X

Y
C

I

O

Solve the games by using backward induction.

2. Compute the Nash equilibria and subgame perfect equilibria for the follow-
ing games. Do so by writing the normal-form matrices for each game and its 
subgames. Which Nash equilibria are not subgame perfect?
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(a) 

A

W

Z

B

2, 1

8, 5

4, 6

3, 0

2

2

1

1
X

Y

X

Y

C

D 3, 2

6, 4

(b) 

A

U

D

B

2, 3

5, 4

2

1

C

D

2

1

2, 6

0, 2

6, 2E

F

3. Consider the following game.

G

H
7, 3

9, 2

1

1

2

I

J 4, 5
5, 4

2, 4

3, 6

6, 7

8, 1

C

D

K

L

1

1

2

M

N

E

F

1

A

B

(a)  Solve the game by backward induction and report the strategy profile 
that results.

(b) How many proper subgames does this game have?

4. Calculate and report the subgame perfect Nash equilibrium of the game 
described in Exercise 3 in Chapter 14.
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5. In the envelope game, there are two players and two envelopes. One of the 
envelopes is marked “player 1,” and the other is marked “player 2.” At the 
beginning of the game, each envelope contains one dollar. Player 1 is given 
the choice between stopping the game and continuing. If he chooses to stop, 
then each player receives the money in his own envelope and the game ends. 
If player 1 chooses to continue, then a dollar is removed from his envelope 
and two dollars are added to player 2’s envelope. Then player 2 must choose 
between stopping the game and continuing. If he stops, then the game ends 
and each player keeps the money in his own envelope. If player 2 elects to con-
tinue, then a dollar is removed from his envelope and two dollars are added to 
player 1’s envelope. Play continues like this, alternating between the players, 
until either one of them decides to stop or k rounds of play have elapsed. If nei-
ther player chooses to stop by the end of the kth round, then both players obtain 
zero. Assume players want to maximize the amount of money they earn.
(a) Draw this game’s extensive-form tree for k = 5.
(b) Use backward induction to find the subgame perfect equilibrium.
(c)  Describe the backward induction outcome of this game for any finite 

integer k.

6. Consider a variation of the television station broadcast game of Exercise 4 
in Chapter 7. Suppose the stations interact sequentially. First, MBC chooses 
between 6:00 and 7:00. Then, after observing MBC’s choice, RBC decides 
between 6:00 and 7:00. Finally, after observing the behavior of both MBC 
and RBC, CBC chooses either 6:00 or 7:00. Payoffs are as given before. 
Draw the extensive form of this sequential game and compute the subgame 
perfect equilibrium. Is the outcome different from that in the simultaneous-
play game? Explain.

7. Consider a game in which player 1 first selects between I and O. If player 1 se-
lects O, then the game ends with the payoff vector (x, 1) (x for player 1), where 
x is some positive number. If player 1 selects I, then this selection is revealed 
to player 2 and then the players play the battle-of-the-sexes game in which 
they simultaneously and independently choose between A and B. If they coor-
dinate on A, then the payoff vector is (3, 1). If they coordinate on B, then the 
payoff vector is (1, 3). If they fail to coordinate, then the payoff vector is (0, 0).
(a) Represent this game in the extensive and normal forms.
(b) Find the pure-strategy Nash equilibria of this game.
(c)  Calculate the mixed-strategy Nash equilibria and note how they depend on x.
(d)  Represent the proper subgame in the normal form and find its equilibria.
(e)  What are the pure-strategy subgame perfect equilibria of the game? Can 

you find any Nash equilibria that are not subgame perfect?
(f) What are the mixed-strategy subgame perfect equilibria of the game?

Watson_c15_183-203hr.indd   201 2/4/13   12:05 PM



202 15: Sequential Rationality and Subgame Perfection

8. Imagine a game in which players 1 and 2 simultaneously and independently 
select A or B. If they both select A, then the game ends and the payoff vec-
tor is (5, 5). If they both select B, then the game ends with the payoff vector 
(−1, −1). If one of the players chooses A while the other selects B, then the 
game continues and the players are required simultaneously and independent-
ly to select positive numbers. After these decisions, the game ends and each 
player receives the payoff (x1 + x2 )>(1 + x1 + x2 ) , where x1 is the positive 
number chosen by player 1 and x2 is the positive number chosen by player 2.
(a) Describe the strategy spaces of the players.
(b) Compute the Nash equilibria of this game.
(c) Determine the subgame perfect equilibria.

9. Consider the following two-player game. First, player 1 selects a real num-
ber x, which must be greater than or equal to zero. Player 2 observes x. Then, 
simultaneously and independently, player 1 selects a number y1 and player 
2 selects a number y2 , at which point the game ends. Player 1’s payoff is

u1 = y1 y2 + xy1 − y 2
1 −

x3

3
 ,

and player 2’s payoff is
u2 = − (y1 − y2 )2.

Calculate and report the subgame perfect Nash equilibrium of this game.

10. This exercise will help you see that subgame perfection does not embody 
the notion of forward induction presented at the end of this chapter.
(a)  Consider the game in Figure 15.5. Calculate and report the subgame 

perfect Nash equilibrium strategy profiles. Are all of these equilibrium 
strategy profiles consistent with iterated conditional dominance? If not, 
comment on the equilibrium belief of player 2 and how it differs from 
the belief identified in the iterated conditional dominance procedure.

(b)  For the game described in Exercise 7, can you find a subgame perfect equi-
librium that does not survive the iterated conditional dominance procedure?

11. Consider the following game.

C

A

B

D

5, 7

4, 3

1, 2

3, 4

2

1

1

1

1

1

G

H

I

J

E

F

2 2, 8

6, 5K

L

3, 6

9, 1M

N
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(a) How many proper subgames does this game have?
(b)  Solve the game by backward induction and report the strategy profile 

that results.
(c)  Find the set of strategies that survive iterated conditional dominance. 

Compare these with the strategy you found for part (b).
(d)  Compare the path through the tree that results from the strategy you 

found for part (b) with the paths that are consistent with iterated condi-
tional dominance.

12. Suppose players 1 and 2 will play the following prisoners’ dilemma.

C D

C

D

5, 5 0, 8

7, 0 1, 1

2
1

 Prior to interacting in the prisoners’ dilemma, simultaneously each 
player i announces a binding penalty pi that this player commits to pay 
the other player j in the event that player i defects and player j cooperates. 
Assume that these commitments are binding. Thus, after the announce-
ments, the players effectively play the following induced game.6

C
2

1 D

C

D

5, 5 p2, 8 - p2

7 - p1, p1 1, 1

(a)  What values of p1 and p2 are needed to make (C, C) a Nash equilibrium 
of the induced game?

(b)  What values of p1 and p2 will induce play of (C, C) and would arise in 
a subgame perfect equilibrium of the entire game (penalty announce-
ments followed by the prisoners’ dilemma)? Explain.

(c)  Compare the unilateral commitments described here with contracts (as 
developed in Chapter 13).

6This exercise is based on C.-Z. Qin, “Penalties and Rewards as Inducements to Cooperate,” 2005 working 
paper, University of California, Santa Barbara. See also M. Jackson and S. Wilkie, “Endogenous Games and 
Mechanisms: Side Payments Among Players,” Review of Economic Studies 72 (2005): 543–566.
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16 TOPICS IN INDUSTRIAL ORGANIZATION

One of the first areas of economic research to be transformed by the game-
theory revolution is the field of industrial organization—the study of mar-

ket structure, firm behavior, and overall industry performance. Game theory 
provides a useful methodology for the study of market dynamics, such as how 
firms compete or collude over time and how a firm can attain a monopoly and 
exercise monopoly power. You have already seen a dynamic model of industry 
competition: the Stackelberg game. In this chapter, I sketch a few more exam-
ples of how game theory is used to study industrial organization.

Advertising And Competition

To generate profit, firms must do more than just produce goods or services. 
They must also market their products to consumers or other firms. For exam-
ple, when computer software company Columbus Research designs a new 
software package to handle inventory control, it cannot expect all of its poten-
tial customers to beat down the door in search of the software. Most potential 
customers will probably not even know about the software when it is first 
available. By advertising, Columbus Research can make customers aware of 
its new product, as well as tout its advantages over competing products of 
other firms.

Advertisements come in many forms and have different effects on demand 
and welfare. Some advertisements function to announce the availability of a 
new product; for example, a toothpaste producer may run a television adver-
tisement to let potential customers know that it has added to its product line 
a new toothpaste that cleans teeth and freshens breath. An advertisement that 
highlights a product’s advantages (“It freshens breath twice as well as did our 
older formula”) is called a positive advertisement. A negative advertisement 
highlights the disadvantages of competing products (“The other major brand 
leaves your teeth feeling gritty”). Politicians often use negative advertisements, 
leaving voters gritting their teeth. An extreme form of negative advertisement 
attempts to make people feel bad unless they purchase a particular product. 
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Sadly, this form is effective with the young (“You are ugly unless you wear our 
SikRapper tennis shoes”) and the old (“If you are bald, then you are ugly, so you 
better try our hair-growth formula”).

Firms advertise to increase the demand for their products. Sometimes the 
increased demand is achieved at the expense of competing firms, as is often the 
case with advertisements that accentuate the disadvantages of the competing 
products. For example, firm A may point out that firm B’s product is prone to 
failure, causing the demand for A’s product to increase and the demand for B’s 
product to decrease. In other cases, advertisements by one firm can increase 
demand for all firms in the industry. For example, when a major producer of 
clothing (such as Levi’s) advertises its line of jeans, it may increase consum-
ers’ general interest in jeans and boost the demand of all producers. Here is 
a simple model of strategic interaction when advertising enhances industry 
demand.

Consider an elaboration of the Cournot duopoly game in which firm 1 
engages in advertising before the firms compete in the market. Firm 1 selects an 
advertising level a, which is a number greater than or equal to zero. Advertising 
has a positive effect on the demand for the good sold in the industry, enhanc-
ing the price that the consumers are willing to pay for the output of both firms. 
In particular, the market price is p = a − q1 − q2 , where q1 is the output of 
firm 1 and q2 is the output of firm 2. After firm 1 selects a, it is observed by the 
other firm. Then the two simultaneously and independently select their produc-
tion levels. Assume for simplicity that the firms produce at zero cost. However, 
firm 1 must pay an advertising cost of 2a3>81.

This game has an infinite number of proper subgames—namely, the Cournot 
duopoly game that is played after firm 1 chooses a (for each of the possible 
advertisement levels). Each subgame has an infinite action space, making it 
difficult to begin the analysis by searching for Nash equilibria of the full game. 
Because we know that the Cournot game has a unique Nash equilibrium and 
because this equilibrium must be a part of any subgame perfect equilibrium, it 
is easier to begin by identifying the equilibrium of each of the proper subgames. 
That is, we should study the game by working backward.

Suppose a subgame is reached following advertisement level a selected by 
firm 1. To find the Nash equilibrium of the subgame, compute the best-response 
functions of the players. Player 1’s profit is

(a − q1 − q2 )q1 −
2a3

81
 .

Noting that a is a constant (having already been chosen by firm 1), we take 
the derivative of this payoff function with respect to q1 . To find this firm’s best 
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response to q2 , we set this derivative equal to zero and solve for q1 , yielding

q*
1 = BR1 (q2 ) =

a − q2

2
 .

Likewise, firm 2’s best-response function is

BR2 (q1 ) =
a − q1

2
 .

Solving this system of equalities to find where they are both satisfied, we obtain 
q1 = q2 = a>3. The equilibrium price is p = a>3. Plugging these values into 
the firms’ profit functions, we see that firm 1’s profit as a function of a is

z1 (a) =
a2

9
−

2a3

81
 .

This is firm 1’s continuation value in the subgame.
Next, evaluate firm 1’s choice of an advertisement level at the beginning of 

the game. Looking ahead, firm 1 knows that by advertising at level a, it induces a 
subgame whose equilibrium yields a profit of z1(a). Firm 1 maximizes this contin-
uation value. The profit-maximizing choice of advertising level is found by taking 
the derivative of z1 (a) and setting it equal to zero. That is, the optimal a satisfies

2a

9
−

6a2

81
= 0.

Solving for a, we obtain a* = 3, which completes the analysis.
The strategy profile identified is a* = 3, q1 (a) = a>3, and q2 (a) = a>3. 

Note that q1 and q2 are reported as functions of a. This is critically important 
because a strategy specifies what a player does at every information set at which 
he or she takes an action. There are an infinite number of information sets in this 
game. In particular, each player has a distinct information set for every possible 
value of a, and so a strategy must prescribe an action for each of them. Thus, 
q1 (a) = a>3 means: “At the information set following action a by firm 1, set 
the quantity equal to a>3.” To report less than this function would be failure to 
completely specify the subgame perfect equilibrium.

A model of limit CApACity

In 1945, the Aluminum Company of America (Alcoa) dominated aluminum 
production in the United States, controlling 90 percent of the raw ingot market. 
As a result of this supremacy, one of the seminal antitrust cases of the post–
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World War II era, United States v. Alcoa, was initiated and considered by the 
Supreme Court. In his decision to break up the aluminum giant, Judge Learned 
Hand ruled that Alcoa was indeed guilty of anticompetitive practices. Central 
to Hand’s argument was Alcoa’s rapid accumulation of capacity for aluminum 
production, exceeding the levels that demand for its output seemingly warranted. 
This excess capacity, it was argued, was intended to thwart the entry efforts of 
Alcoa’s potential competitors. In essence, Alcoa was sacrificing some profitabil-
ity by overdeveloping its production facilities to maintain industrial dominance.1

A game-theoretic model demonstrates how excess capacity can limit entry 
in an industry.2 Suppose two firms are considering whether and how to enter a 
new industry in which a specialized electronic component will be produced. 
Industry demand is given by the inverse demand function p = 900 − q1 − q2 , 
where p is the market price, q1 is the quantity produced by firm 1, and q2 is the 
quantity produced by firm 2. To enter the industry, a firm must build a produc-
tion facility. Two types of facility can be built: small and large. A small facility 
requires an investment of $50,000, and it allows the firm to produce as many 
as 100 units of the good at zero marginal cost. Alternatively, the firm can pay 
$175,000 to construct a large facility that will allow the firm to produce any 
number of units at zero marginal cost. A firm with a small production facility is 
called capacity constrained; a firm with a large facility is called unconstrained.

The firms make their entry decisions sequentially. First, firm 1 must choose 
among staying out of the industry, building a small facility, and building a large 
facility. Then, after observing firm 1’s action, firm 2 must choose from the same 
alternatives. If only one of the firms is in the industry, then it selects a quantity 
and sells its product at the price dictated by market demand. If both firms are 
in the industry, then they compete by selecting quantities (as in the Cournot 
model). All output decisions are subject to capacity constraints in that a firm 
with a small production facility cannot produce more than 100 units.

To find the subgame perfect equilibrium of this game, let us begin by 
analyzing the subgames following the firms’ entry decisions. First suppose that 
only firm i is in the industry. Holding aside the firm’s sunk entry cost, this firm 
obtains revenue of (900 − qi )qi by producing qi . This is maximized by select-
ing qi = 450, which yields revenue of $202,500. (You should check this.) Of 
course, firm i can produce 450 units only if it had earlier invested in a large 
production facility. Otherwise, it can produce only 100 units, which generates 
revenue of $(900 − 100)(100) = $80,000. Factoring in the entry cost, if firm i 

1See United States v. Aluminum Co. of America, 148 F.2d 416 (2d Cir. 1945) or read any good industrial 
organization textbook.
2This is a variant of the Stackelberg model discussed in Chapter 15.
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builds a large production facility and is alone in the industry, then it obtains a 
profit of $202,500 − 175,000 = $27,500. If firm i builds a small facility and is 
alone in the industry, then it gets $80,000 − 50,000 = $30,000.

Next consider quantity decisions when both firms are in the industry. Net 
of its entry cost, firm i ’s revenue is (900 − qi − qj )qi . Here qi is the quantity 
selected by firm i, and qj is the quantity selected by firm j. Firm i ’s best-response 
function is found by taking the derivative with respect to qi while holding qj 
fixed. This yields

BRi (qj ) = 450 −
qj

2
 .

If neither firm has a capacity constraint, then the Nash equilibrium of 
this Cournot game is q1 = q2 = 300 (we get this result by solving q1 =  
450 − q2>2 and q2 = 450 − q1>2), which yields each firm revenue of 
$(900 − 300 − 300)(300) = $90,000.

Yet, one or both firms may be capacity constrained. If both firms have 
small production facilities, then each will produce only 100 units (neither 
has an incentive to produce less when the other produces 100), yielding each 
firm $(900 − 100 − 100)(100) = $70,000. Finally, if one firm is capacity 
constrained, then it will produce 100 while the other will produce the uncon-
strained best response to 100, which is 450 − 100>2 = 400. In this case, 
the price is 900 − 100 − 400 = 400, the constrained firm gets a revenue of 
$40,000, and the unconstrained firm earns a revenue of $160,000.

In summary, with the entry cost factored in, if both firms have large production 
facilities, then each firm obtains a profit of $90,000 − 175,000 = −$85,000. 
If both firms have small production facilities, then each firm gets 
$70,000 − 50,000 = $20,000. If firm i has a small facility and firm j has a 
large facility, then firm i earns $40,000 − 50,000 = −$10,000 and firm j gets 
$160,000 − 175,000 = −$15,000.

The foregoing analysis fully characterizes the firms’ equilibrium behavior 
in the subgames that follow their entry decisions. We next turn to the entry 
decisions, which can be analyzed with the help of Figure 16.1. The figure 
represents the first part of the extensive-form game, in which the firms decide 
whether to enter the industry. In Figure 16.1, N stands for “not enter,” S means 
build a small production facility, and L means build a large production facility. 
Note that because we have solved for the equilibrium quantities, we know the 
continuation values following the entry decisions. These payoffs are written 
directly in Figure 16.1 in units representing thousands. For example, as already 
computed, if both firms enter with large production facilities, then equilibrium 
in the Cournot phase implies that each firm obtains − $85,000.
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To finish the analysis, we can solve the extensive form in Figure 16.1 by 
using backward induction. This method is justified because in Figure 16.1 
every node initiates a subgame. Note that S is firm 2’s optimal action at its top 
decision node, S is its best alternative at the middle decision node, and N is 
its preference at the bottom decision node. In words, it is optimal for firm 2 
to enter and build a small production facility if and only if firm 1 either does 
not enter the industry or enters with a small facility; otherwise, firm 2 would 
not enter. Thus, at the initial node, firm 1 knows that it will obtain zero if it 
selects N, 20 if it chooses S, and 27.5 if it selects L. Firm 1’s optimal action is 
thus L. In summary, the subgame perfect equilibrium of this entry game has 
firm 1 playing L, firm 2 choosing SSN, and the firms selecting quantities as 
heretofore described.

In the end, firm 1 invests in a large production facility and firm 2 decides not 
to enter the industry. This result is interesting because, without competition in 
the industry, firm 1 would have been better off investing in the small production 
facility (yielding $30,000 instead of $27,500). That is, in the absence of firm 
2’s entry threat, firm 1 would prefer to hold a monopoly in the industry with a 
small production facility. But firm 1 must consider the possibility that firm 2 will 
enter. A rational firm 1 calculates that overinvesting in capacity—by building a 
large facility—commits it to being a tough competitor in the event that firm 2 
decides to enter the industry. This makes entry unprofitable for firm 2.

dynAmiC monopoly

Retail firms frequently adjust prices. Sometimes price adjustments are due to 
changes in wholesale prices, but more often the adjustments have to do with 
customer demand. Consider the market for 3D television monitors. Not all 

FIGURE 16.1
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consumers have the same interest in buying such a product; in other words, 
demand is differentiated. The “high-value” customers are people who either 
have a real need for the 3D technology or just love to buy the newest gadget on 
the market. “Low-value” customers would be interested in purchasing 3D moni-
tors but only if these are priced to compete with standard displays.

Facing this heterogeneous consumer population—as is the case in most 
markets—retailers wish to extract a high price from the high-value customers 
and a lower price from the low-value customers. Although legal constraints and 
arbitrage force retailers to charge the same price to all people, a retailer can use 
time to its advantage. A common scheme is to initially set a high price that is 
intended to attract only the high-value customers. Then, after selling to the high-
value folks, the retailer will drop the price in the hopes of capturing the demand 
of low-value customers.

Superficially, this scheme appears to give the retailer a very high profit 
by allowing it to extract the surplus of trade from both the high- and the low-
value customers. In other words, the retailer gets both types of customers 
to pay the most that they are willing to pay for the product. But the retailer 
does face some constraints. First, competition with other retailers may exert 
downward pressure on prices. Second, the retailer must realize that customers 
will behave strategically—in particular, high-value customers may delay their 
purchase of 3D monitors if they anticipate that the price will fall over time. 
In this section, I sketch a simple model that helps us explore the second stra-
tegic aspect.3 The model focuses on a monopoly setting (where a single firm 
is in the industry), and therefore it ignores the matter of competition between 
firms.

Suppose a single firm sells 3D monitors. Call the manager of this firm Tony. 
To keep things simple, suppose there are only four potential customers: Hal, 
Hilbert, Laurie, and Lauren. These five players interact over two periods of 
time, which I call period 1 and period 2. Think of period 1 as a quarter of the 
year (say, January through March) and period 2 as the following quarter. Each 
customer’s benefit from owning a 3D monitor depends on which periods he 
or she owns the product. Hal could really use such a monitor at work where 
he studies molecular structures—he is a high type. Hal would get a benefit of 
$1200 by using a 3D monitor in period 1, and he would get a benefit of $500 
from its use in period 2. Laurie, in contrast, doesn’t really need a 3D monitor—
she is a low type. In period 1, Laurie would obtain a benefit of $500 from a 3D 
monitor; in period 2, her benefit would be $200. Hilbert is a high type just like 

3Game-theoretic analysis of this issue first appeared in J. I. Bulow’s “Durable-Goods Monopolists,” Journal of 
Political Economy 90 (1982): 314–332, and N. L. Stokey’s “Rational Expectations and Durable Goods Pric-
ing,” Bell Journal of Economics 12 (1982): 112–128.
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Hal; Lauren is a low type just like Laurie. The customers’ values of owning a 
3D monitor are summarized in Figure 16.2.

To be clear about the benefits, note that if Hilbert owns a 3D monitor for both 
periods 1 and 2, then his total ownership value is $1700. Therefore, if Hilbert 
pays p for the monitor at the beginning of period 1, then his payoff is 1700 − p. 
If Hilbert waits until period 2 to purchase the monitor at price p, then Hilbert’s 
payoff is 500 − p (because he does not own the monitor in period 1, he gets 
no benefit in this period). Hal’s payoff is defined the same way. Laurie’s and 
Lauren’s payoffs are defined analogously, given their individual ownership bene-
fits of $500 in period 1 and $200 in period 2. Tony’s payoff is his total revenue 
from the sale of 3D monitors, minus some fixed production cost, which I ignore.

The game is played as follows. At the beginning of period 1, Tony selects a 
price p1 . After observing the price, Hal, Hilbert, Laurie, and Lauren simultane-
ously decide whether to purchase 3D monitors at this price. After a customer 
has purchased a monitor, he or she has no need to make another purchase (a 
monitor purchased in period 1 is used in both periods 1 and 2). Further, Tony 
has four units available, so the customers are not competing with one another 
for a scarce product. At the beginning of period 2, Tony selects another price 
p2 . After observing this price, any customer who did not purchase a monitor 
in period 1 may then buy one at price p2 . (From here on, I will say “monitor” 
instead of “3D monitor.”)

This is a complicated game with many (an infinite number of) subgames 
and a very large extensive-form tree representation. The game has a unique 
subgame perfect equilibrium, which you can find by working backward through 
the extensive form. But rather than subject you to the complete analysis, which 
can be confusing, I shall present a few pricing strategies for Tony and explain 
why one of them characterizes the subgame perfect equilibrium.

I start with a useful fact:

Regardless of p1 , if at least one of the high-type customers (Hal, Hilbert) 
and neither of the low types (Laurie, Lauren) purchases in period 1, 
then it is optimal for Tony to select p2 = 200 in period 2.

To understand why this is true, first note that Tony would never choose p2 < 200 
as long as there is a sale to be made. For example, suppose Laurie does not 

1 2

Benefit to Hal and Hilbert

Benefit to Laurie and Lauren

Period Period

1200 500

500 200

FIGURE 16.2

The customers’ values of  

owning a 3D monitor.
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purchase a monitor in period 1 and then Tony picks p2 = 150. Laurie will defi-
nitely buy the monitor at this price, for doing so would give her a payoff of 
200 − 150 = 50, whereas not purchasing it would give her 0 (because the game 
ends at the end of period 2). In fact, in period 2 both Laurie and Lauren will 
buy a monitor at any price less than or equal to $200. If p2 = 200, then the low 
types will be indifferent between buying and not buying; I assume that they will 
each decide to purchase in this case.4 Likewise, Hal and Hilbert will purchase 
monitors in period 2 at any price less than or equal to $500, assuming that they 
did not purchase in period 1.

Second, note that p2 = 200 is obviously best if both Hal and Hilbert 
already purchased in period 1. Further, if one of the high-type customers did not 
purchase in period 1, then Tony has a simple choice: set p2 = 200 and sell to all 
three remaining customers or set p2 = 500 and sell only to the single high-type 
customer. The former option generates a profit of $600, whereas the latter yields 
$500. Thus, p2 = 200 is best.

Pricing Scheme A: Induce all of the customers to purchase in period 1.
Let us determine the highest price Tony can charge in period 1 that will guaran-
tee that Hal, Hilbert, Laurie, and Lauren all purchase in this period. Certainly 
Laurie and Lauren will not purchase monitors in period 1 if the price is greater 
than $500 + 200 = $700; if either did so, she would obtain a negative payoff, 
whereas she can always get 0 by sticking to window shopping. In addition, 
Laurie and Lauren each knows that she cannot obtain a positive payoff by wait-
ing until period 2 to buy a monitor (as p2 Ú 200). Thus, each low type will defi-
nitely buy a monitor in period 1 as long as the price does not exceed her owner-
ship value of 700. The high types also will buy monitors at this price because it 
will give them each a payoff of 1700 − 700 = 1000, which exceeds what they 
could get by waiting until period 2 (which is less than 500 − 200 = 300 as 
p2 Ú 200). Thus, if Tony selects p1 = 700, then all four customers will purchase 
in period 1. This pricing strategy yields a payoff of 2800 for Tony.

Pricing Scheme B: Induce all of the customers not to purchase in period 1.
Tony can ensure that no customer buys a monitor in period 1 by setting p1 strictly 
above 1700, the ownership value of the high-type customers. Then, Hal, Hilbert, 
Laurie, and Lauren will all be without a monitor until the beginning of period 2. 
At this point, Tony could sell to all four customers at the price p2 = 200 or sell 

4In reality, Tony may have to set a price below $200 to make sure that the low types have the incentive to 
purchase. Our theory says that the price can be just slightly below $200 (such as $199.99), which can be made 
as close to $200 as desired. Thus, Tony can effectively charge p2 = 200. In fact, in equilibrium, the customers 
will purchase when they are indifferent. This is used later as well.
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only to Hal and Hilbert at the price p2 = 500. The latter yields a payoff of 1000, 
whereas the former yields 800 for Tony; thus, p2 = 500 is best with scheme B.

Pricing Scheme C: Induce the high types (Hal and Hilbert) to purchase in 
period 1 and the low types (Laurie and Lauren) to purchase in period 2.
By setting p1 above 700 but not too high, Tony can induce only the high types to 
purchase in period 1. As already noted, Laurie and Lauren will not purchase at 
such a price; further, as long as at least one high type purchases in period 1, we 
know that p2 = 200 will be selected by Tony in period 2. Anticipating p2 = 200, 
each high type knows that he would obtain 500 − 200 = 300 by waiting until 
period 2 to buy a monitor. Purchasing in period 1 at price p1 gives a high type a 
payoff of 1200 + 500 − p1 . Thus, Hal and Hilbert have the incentive to purchase 
in period 1 if and only if 1700 − p1 Ú 300, which simplifies to p1 … 1400. The 
best such price for Tony is p1 = 1400. Thus, when Tony chooses p1 = 1400, he 
obtains a payoff of 2 # 1400 in period 1 (from the sales to Hal and Hilbert) and 
200 # 2 in period 2 (from the sales to Laurie and Lauren), for a total of 3200.

The foregoing analysis completely identifies Tony’s options.5 Comparing 
the payoffs from the various pricing schemes reveals that scheme C is Tony’s 
best course of action. Intuitively, Tony wants to find a way of discriminating 
between the high- and low-type customers. But, because he must charge them 
the same price in each period, he can only use time to differentiate between them. 
Time is useful in this regard because there is a sense in which Hal and Hilbert 
are less patient than are Laurie and Lauren. The high types’ value of owning a 
3D monitor from period 1—relative to the value of purchasing it in period 2—is 
much greater than is the case with the low types. To see this, observe that Hal’s 
and Hilbert’s ownership value from period 1 is 1200 + 500 = 1700, which is 
1200 more than the value of 500 that they would each get by waiting until period 
2 to buy a monitor. In contrast, Laurie’s and Lauren’s value from period 1 is only 
500 more than their value from period 2. Because Hal and Hilbert gain very 
little by waiting until period 2, Tony can extract most of their ownership value 
by setting a very high period 1 price.

priCe guArAntees As A Commitment to HigH priCes

As described earlier, under some conditions retail firms have an incentive to 
decrease prices over time to extract surplus from customers with different 
valuations. You might think that such a pricing policy is good for a firm—it 

5Given the customers’ ownership values, there is no way for Tony to induce the low types to purchase in period 
1 and the high types to purchase in period 2. In any case, it would not be optimal for Tony to select such a 
pricing scheme.
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helps the firm obtain profit from each type of customer. In fact, the incentive 
to decrease prices over time may actually have the opposite effect on profit. To 
make sense of my claim, let us continue with the dynamic monopoly example.

Consider again the optimal pricing scheme, C. Recall that when selecting 
the period 1 price p1 , Tony must consider the customers’ strategic calcula-
tions. In particular, all of the players know that if the low-type customers do not 
purchase and at least one of the high types does purchase a monitor in period 
1, then in period 2 Tony will have the incentive to select p2 = 200. (You will 
recall that this is the “useful fact” noted on page 212.) Tony’s scheme C pricing 
policy is therefore a balancing act. On one hand, Tony wants to deal only with 
Hal and Hilbert in period 1, raising the price as high as they are willing to pay. 
On the other hand, once Hal and Hilbert have purchased monitors, Tony wants 
to decrease the price and sell two more units to Laurie and Lauren. Because Hal 
and Hilbert anticipate the second-period price, Tony can get them to pay only 
$1400 in period 1.

By comparison, consider how much Tony would make if he could somehow 
commit never to deal with Laurie and Lauren. For example, suppose that in 
period 1 Tony could make a legally enforceable promise not to sell monitors in 
period 2. Then suppose Tony chose a period 1 price of p1 = 1700, or just below 
this amount. In this case, Hal and Hilbert would purchase monitors in period 1. 
(By purchasing a monitor, a high type’s payoff would be 1700 − p1 ; if he did 
not purchase a monitor, then the high type would get 0, because no monitors 
would be sold in period 2.) Laurie and Lauren would not purchase at this high 
price. However, Tony’s payoff would be $3400, which is greater than the payoff 
he would get without the ability to commit. Thus, commitment helps Tony.

There are many ways in which firms achieve commitment to prices over 
time. One of the most common ways is through the use of “price guarantees,” 
whereby a retailer offers to refund the difference between its current price and 
any lower price that it sets on the same item in the near future. That is, if today 
the store sells you a television for $300 and then tomorrow it lowers its price 
on the same television to $250, you can claim a $50 refund. You probably have 
seen advertisements or been reassured by a salesperson to this effect. Consum-
ers usually think of price guarantees as something favorable to them, but in fact 
this may not be the case.

The dynamic monopoly model can be used to demonstrate how price 
guarantees can be good for firms and bad for consumers. Suppose that Tony 
institutes a price-guarantee policy and selects a period 1 price of p1 = 1700. 
Suppose that at least one of the high types—Hal, for example—purchases a 
monitor in period 1. Then, if Tony wants to sell monitors to Laurie and Lauren 
in period 2, he has to reduce the price to 200. This gives Tony at most 600 in 
period 2 revenue (sales to Hilbert, Laurie, and Lauren). However, Hal will claim 

Watson_c16_204-223hr.indd   214 2/4/13   12:06 PM



215dynamic price Competition with Capacity Constraints

a refund of 1700 − 200 = 1500 from Tony, far offsetting the sales gain. Thus, 
the price guarantee helps Tony commit not to reduce the price, thus allowing 
him to achieve the payoff of 3400.

Intuitively, a price guarantee works like any other contractual commitment—
it helps the retailer tie its hands in the future. To the extent that the retailer 
controls the terms of the sales contract, we should expect it to include such 
contractual provisions when they benefit the retailer. The consumers’ remedy 
lies in seizing more control of the contract specification process or relying on 
the legal system to limit retailers’ use of commitment mechanisms.

dynAmiC priCe Competition witH CApACity ConstrAints

In some industries, firms compete over time by setting prices, and they also face 
capacity constraints. An important example is the airline industry. For instance, 
consider nonstop air travel from Houston, Texas, to London, England, on a 
particular date. As of the writing of this edition of the book, two airlines offered 
this service: British Airways and United Airlines. Both allocate a Boeing 777 
airplane with a fixed number of seats in various classes of service (including 
about 167 in standard coach class).

These airlines face an interesting pricing problem. Potential customers come 
to the market at different times. Leisure travelers may look for seats several 
weeks in advance, whereas business travelers may do so closer to the date of 
travel. Also, leisure travelers typically have a lower valuation of the service than 
do business travelers. The airlines have to decide what prices to set for the seats 
over time. They want to manage their capacities (167 seats) to maximize profit 
and compete with each other.

Settings like this one are very complicated. If British Airways were alone in 
the market, the pricing problem would be difficult enough. Profit maximization 
would require pricing advance-purchase tickets (mainly to leisure travelers) at a 
level that ensures there are sufficient tickets available to business travelers who 
are willing to pay a higher price closer to the date of travel. In the competitive 
environment of duopoly, British Airways must also consider United Airlines’ 
pricing.

To get a feel for the strategic elements and possible outcomes in this market 
scenario, I will present here an extension of the duopoly example developed in 
Chapter 11 (in the text and in Exercise 16). Recall that price competition in a 
homogeneous-good market (the Bertrand model) leads firms to price at marginal 
cost, and they do not earn profits in equilibrium. With capacity constraints, they 
generally earn positive profits in equilibrium. Furthermore, the equilibrium 
typically entails randomized prices.
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Consider the setting of the model in Chapter 11. Two firms produce a homo-
geneous good and compete by selecting prices. The firms produce at zero cost 
and face capacity constraints. Specifically, suppose that each firm can produce 
and sell at most twenty units. Rather than having the firms interact at one time 
with one set of customers, as in Chapter 11, suppose that the firms interact over 
two periods of time, where different types of customers are present. In period 1, 
there are forty customers ready to purchase the good. Each of these customers 
has a valuation (willingness to pay) of 1>5. In period 2, there are ten custom-
ers and each of these has a valuation of 1. Each customer is present in only one 
period. Therefore, customers present in period 1 who do not purchase will not 
be present in period 2. In period 1, the firms simultaneously set prices and caps 
on the number of units to sell. The caps must be at or below the firms’ capacity 
constraints. After observing each other’s first-period sales, the firms simulta-
neously select prices in period 2 and sell the demanded quantities (up to their 
capacity constraints).

To establish a benchmark, consider first a version of the model in which all 
of the customers are present in the market at the same time, and the firms select 
prices once. Assume for simplicity that if both types of customers are interested 
in purchasing at a given price, then the high-valuation ones are served before 
those with low valuations. In the Nash equilibrium of this game, the firms both 
price at p = 1>5, and they sell twenty units each. Each firm earns a payoff 
(profit) of (20)(1>5) = 4. To see why higher prices cannot form an equilibrium, 
suppose both firms were to price at 1. At this price, the firms would split the 
market and sell to only the high-valuation customers. That is, each firm would 
sell five units and get a payoff of 5. However, a firm would benefit by deviating 
to a slight lower price and capturing all of the high-valuation customers.

Returning to the two-period model, observe that the interaction in the second 
period is exactly the model analyzed in Exercise 16 of Chapter 11. Specifically, 
at the beginning of period 2, the firms face ten high-valuation customers and 
have capacity constraints c1 and c2 , where ci is the residual capacity for firm i 
after the sales from period 1. We therefore already know the Nash equilibrium 
of each subgame that starts in period 2, and this gives us the continuation values 
from the start of period 2 as a function of c1 and c2 . We shall look for a subgame 
perfect equilibrium of the entire game, so we can analyze the interaction in 
period 1 using these continuation values. Note that these continuation values are 
defined to be net of profits in period 1.

As stated in Exercise 16 of Chapter 11, the continuation values from the 
start of period 2 are as follows. If c1 , c2 Ú 10, then the continuation values are 
0 for each firm. If c1 = c2 = 5, then the continuation values are 5 for each firm. 
Finally, if cj ∈ [5, 10) and ci Ú cj , then firm i ’s continuation value is 10 − cj 
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and firm j ’s continuation value is (10 − cj ) cj>ci . Although it is not stated in 
Chapter 11, if cj < 5, then firm j ’s continuation value would be lower.6

I will next describe a subgame perfect Nash equilibrium for this game. In 
period 1, firms 1 and 2 both select a price of 1>5 and a sales cap of 15. In period 
2, the firms behave as described in Exercise 16 of Chapter 11, as a function of 
the actual values of c1 and c2 . The payoff (total profit) for each firm is

15 # (1>5) + 5 = 8.

To see that this specification of behavior constitutes an SPE, note what would 
happen if a player deviates in the first period. Because there are forty customers 
in period 1 and the firms start with capacity constraints of twenty, each firm can 
sell however many units it wishes (up to twenty units) at any price at or below 
1>5. Thus, a firm could not gain by choosing a price other than 1>5.

The first-period competition is all about the sales caps. Suppose firm i 
were to deviate by selecting a sales cap below 15. Note that this would have 
no effect on its continuation value in period 2, which is 10 − cj . The deviation 
thus lowers firm i ’s payoff by lowering its first-period sales. Next suppose that 
firm i were to deviate by selecting a sales cap above 15. In this case, firm i gets 
1>5 from each additional customer that it serves in the first period, but firm 
i loses 1 for each foregone second-period customer. Thus, the firms have no 
incentive to deviate from the above specification of behavior.

The interesting thing about this example is that by dealing with the custom-
ers in groups over time, competitive pressure between the firms is softened. The 
firms are able to engineer essentially a shared monopoly in the second period 
by the selection of their first-period market positions. Firms obtain higher SPE 
payoffs in the dynamic game than they do in the benchmark setting.

guided exerCise

Problem: A manufacturer of automobile tires produces at a cost of $10 per 
tire. It sells units to a retailer who in turn sells the tires to consumers. Imagine 
that the retailer faces the inverse demand curve p = 200 − (q>100). That is, if 
the retailer brings q tires to the market, then these tires will be sold at a price of 
p = 200 − (q>100). The retailer has no cost of production, other than whatever 
it must pay to the manufacturer for the tires.

6To keep things simple, I did not describe how the firms would split the market in the event that they chose the 
same price without sufficient capacity for each firm to get half of the customers. Regardless of the “rationing 
rule” in this case, there will be no equilibrium in which a firm leaves a residual capacity of less than 5 for 
period 2 (by selling more than fifteen units in period 1).
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(a)  Suppose that the manufacturer and retailer interact as follows. First, the 
manufacturer sets a price x that the retailer must pay for each tire. Then, the 
retailer decides how many tires q to purchase from the manufacturer and 
sell to consumers. The manufacturer’s payoff (profit) is q(x − 10), whereas 
the retailer’s profit is

a200 −
q

100
bq − xq = 200q −

q2

100
− xq.

Calculate the subgame perfect equilibrium of this game.
(b)  Suppose that the manufacturer sells its tires directly to consumers, 

bypassing the retailer. Thus, the manufacturer can sell q tires at price 
p = 200 − (q>100). Calculate the manufacturer’s profit-maximizing 
choice of q in this case.

(c)  Compare the joint profit of the manufacturer and retailer in part (a) with the 
manufacturer’s profit in part (b). Explain why there is a difference. This is 
called the double-marginalization problem.

Solution:

(a)  Start by calculating the retailer’s optimal quantity q as a function of the 
manufacturer’s choice of x. Given x, the retailer selects q to maximize

200q −
q2

100
− xq.

The first-order condition for optimization implies that the retailer chooses 
quantity q*(x) = 10,000 − 50x. Thus, the manufacturer can anticipate sell-
ing exactly q*(x) units if it prices at x, which means that the manufacturer’s 
payoff, as a function of x, will be

q*(x)(x − 10) = (10,000 − 50x)(x − 10) = 10,500x − 50x2 − 100,000.

Taking the derivative of this expression and setting it equal to zero yields 
the first-order condition for the manufacturer’s optimization problem at the 
beginning of the game. Solving for x, we find that the manufacturer sets 
x* = 105. Thus, the equilibrium quantity is q = q*(105) = 4750. This 
implies p = 152.50.

(b) In this case, the manufacturer’s profit is

a200 −
q

100
bq − 10q.

Taking the derivative of this expression and setting it equal to zero yields the 
manufacturer’s optimal quantity, which is qn = 9500. This implies p = 105.
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(c)  Calculating the firms’ equilibrium payoffs in part (a), we see that the joint 
profit is

(152.50 − 10) # 4,750 = 676,875.

The manufacturer’s profit in part (b) is

95 # 9,500 = 902,500.

The difference arises because in a market in which a monopoly firm must 
set a single price per unit of output, the monopolist optimally raises the 
price above marginal cost. This implies an inefficiently low level of trade. 
In part (a), such a monopoly distortion occurs twice—by the manufacturer 
to the retailer, and again by the retailer to the consumers. But in part (b), dis-
tortion occurs just once because the monopolist manufacturer sells directly 
to consumers.

exerCises

1. Consider the model of advertising and Cournot competition analyzed in this 
chapter. Suppose the two firms could write an externally enforced contract 
that specifies an advertising level a and a monetary transfer m from firm 2 to 
firm 1. Would the firms write a contract that specifies a = 3? If not, to what 
level of advertising would they commit?

2. Continuing with the advertising model, suppose the firms compete on price 
rather than quantity. That is, quantity demanded is given by Q = a − p, 
where p is the price consumers face. After firm 1’s selection of the level of 
advertising, the firms simultaneously and independently select prices p1 and 
p2 . The firm with the lowest price obtains all of the market demand at this 
price. If the firms charge the same price, then the market demand is split 
equally between them. (To refresh your memory of the price-competition 
model, review the analysis of Bertrand competition in Chapter 10.) Find the 
subgame perfect equilibrium of this game and explain why firm 1 advertises 
at the level that you compute.

3. Consider a variation of the limit-capacity model analyzed in this chapter. 
Suppose that instead of the firms’ entry decisions occurring sequentially, the 
firms act simultaneously. After observing each other’s entry decisions, mar-
ket interaction proceeds as in the original model. Find the subgame perfect 
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Nash equilibria of this new model and compare it/them with the subgame 
perfect equilibrium of the original model.

4. This exercise extends the analysis of the Stackelberg duopoly game (from 
Chapter 15) to include fixed costs of production. The analysis produces a 
theory of limit quantity, which is a quantity the incumbent firm can produce 
that will induce the potential entrant to stay out of the market.
 Suppose two firms compete by selecting quantities q1 and q2 , respec-
tively, with the market price given by p = 1000 − 3q1 − 3q2 . Firm 1 (the 
incumbent) is already in the market. Firm 2 (the potential entrant) must 
decide whether or not to enter and, if she enters, how much to produce. 
First the incumbent commits to its production level, q1 . Then the potential 
entrant, having seen q1 , decides whether to enter the industry. If firm 2 
chooses to enter, then it selects its production level q2 . Both firms have the 
cost function c(qi ) = 100qi + F , where F is a constant fixed cost. If firm 2 
decides not to enter, then it obtains a payoff of 0. Otherwise, it pays the cost 
of production, including the fixed cost. Note that firm i in the market earns 
a payoff of pqi − c(qi ).
(a)  What is firm 2’s optimal quantity as a function of q1 , conditional on 

entry?
(b)  Suppose F = 0. Compute the subgame perfect Nash equilibrium of 

this game. Report equilibrium strategies as well as the outputs, prof-
its, and price realized in equilibrium. This is the Stackelberg or entry-
accommodating outcome.

(c)  Now suppose F > 0. Compute, as a function of F, the level of q1 
that would make entry unprofitable for firm 2. This is called the limit 
quantity.

(d)  Find the incumbent’s optimal choice of output and the outcome of 
the game in the following cases: (i) F = 18,723, (ii) F = 8,112, 
(iii) F = 1,728, and (iv) F = 108. It will be easiest to use your answers 
from parts (b) and (c) here; in each case, compare firm 1’s profit from 
limiting entry with its profit from accommodating entry.

5. Consider a slight variation of the dynamic monopoly game analyzed in this 
chapter. Suppose there is only one high-type customer (Hal) and only one 
low-type customer (Laurie).
(a)  Analyze this game and explain why p2 = 200 is not optimal if Hal does 

not purchase a monitor in period 1. Find the optimal pricing scheme for 
Tony. Discuss whether Tony would gain from being able to commit to 
not selling monitors in period 2.
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(b)  Finally, analyze the game with one of each type of customer and owner-
ship benefits given in the following figure. In this case, would Tony gain 
from being able to commit to not selling monitors in period 2?

1 2

Benefit to Hal

Benefit to Laurie

Period Period

1200 300

500 200

6. Imagine a market setting with three firms. Firms 2 and 3 are already operat-
ing as monopolists in two different industries (they are not competitors). 
Firm 1 must decide whether to enter firm 2’s industry and thus compete 
with firm 2 or enter firm 3’s industry and thus compete with firm 3. Produc-
tion in firm 2’s industry occurs at zero cost, whereas the cost of production 
in firm 3’s industry is 2 per unit. Demand in firm 2’s industry is given by 
p = 9 − Q, whereas demand in firm 3’s industry is given by p = 14 − Q, 
where p and Q denote the price and total quantity in firm 2’s industry and p 
and Q denote the price and total quantity in firm 3’s industry.
 The game runs as follows: First, firm 1 chooses between E2 and E3. (E2 

means “enter firm 2’s industry” and E3 means “enter firm 3’s industry.”) 
This choice is observed by firms 2 and 3. Then, if firm 1 chooses E2, firms 1 
and 2 compete as Cournot duopolists, where they select quantities q1 and q2 
simultaneously. In this case, firm 3 automatically gets the monopoly profit 
of 36 in its own industry. In contrast, if firm 1 chooses E3, then firms 1 and 
3 compete as Cournot duopolists, where they select quantities q =1 and q =3 
simultaneously; and in this case, firm 2 automatically gets its monopoly 
profit of 81>4.
(a)  Calculate and report the subgame perfect Nash equilibrium of this 

game. In the equilibrium, does firm 1 enter firm 2’s industry or firm 3’s 
industry?

(b)  Is there a Nash equilibrium (not necessarily subgame perfect) in which 
firm 1 selects E2? If so, describe it. If not, briefly explain why.

7. Consider the location game (in Chapter 8) with nine possible regions at 
which vendors may locate. Suppose that, rather than the players moving 
simultaneously and independently, they move sequentially. First, vendor 1 
selects a location. Then, after observing the decision of vendor 1, vendor 2 
chooses where to locate. Use backward induction to solve this game (and 
identify the subgame perfect Nash equilibrium). Remember that you need 
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to specify the second vendor’s sequentially optimal strategy (his best move 
conditional on every different action of vendor 1).

8. Consider the following market game: An incumbent firm, called firm 3, is 
already in an industry. Two potential entrants, called firms 1 and 2, can 
each enter the industry by paying the entry cost of 10. First, firm 1 decides 
whether to enter or not. Then, after observing firm 1’s choice, firm 2 decides 
whether to enter or not. Every firm, including firm 3, observes the choices 
of firms 1 and 2. After this, all of the firms in the industry (including firm 
3) compete in a Cournot oligopoly, where they simultaneously and inde-
pendently select quantities. The price is determined by the inverse demand 
curve p = 12 − Q, where Q is the total quantity produced in the industry. 
Assume that the firms produce at no cost in this Cournot game. Thus, if firm 
i is in the industry and produces qi , then it earns a gross profit of (12 − Q)qi 
in the Cournot phase. (Remember that firms 1 and 2 have to pay the fixed 
cost 10 to enter.)
(a)  Compute the subgame perfect equilibrium of this market game. Do so 

by first finding the equilibrium quantities and profits in the Cournot 
subgames. Show your answer by designating optimal actions on the tree 
and writing the complete subgame perfect equilibrium strategy profile. 
[Hint: In an n-firm Cournot oligopoly with demand p = 12 − Q and 
0 costs, the Nash equilibrium entails each firm producing the quantity 
q = 12>(n + 1).]

(b)  In the subgame perfect equilibrium, which firms (if any) enter the 
industry?

9. This exercise will help you think about the relation between inflation and 
output in the macroeconomy. Suppose that the government of Tritonland 
can fix the inflation level p

#
 by an appropriate choice of monetary policy. 

The rate of nominal wage increase, W
#
, however, is set not by the govern-

ment but by an employer–union federation known as the ASE. The ASE 
would like real wages to remain constant. That is, if it could, it would set 
W
#
= p

#
. Specifically, given W

#
 and p

#
, the payoff of the ASE is given by 

u(W
#
, p
#
) = − (W

#
− p

#
)2. Real output y in Tritonland is given by the equation 

y = 30 + (p
#
− W

#
). The government, perhaps representing its  electorate, 

likes output more than it dislikes inflation. Given y and p
#
, the government’s 

payoff is v(y, p
#
) = y − p

# >2 − 30. The government and the ASE interact 
as follows. First, the ASE selects the rate of nominal wage increase. Then 
the government chooses its monetary policy (and hence sets inflation) af-
ter observing the nominal wage increases set by the ASE. Assume that 
0 … W

#
… 10 and 0 … p

#
… 10.
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(a)  Use backward induction to find the level of inflation p
#
, nominal wage 

growth W
#
, and output y that will prevail in Tritonland. If you are famil-

iar with macroeconomics, explain the relationship between backward 
induction and “rational expectations” here.

(b)  Suppose that the government could commit to a particular monetary 
policy (and hence inflation rate) ahead of time. What inflation rate 
would the government set? How would the utilities of the government 
and the ASE compare in this case with that in part (a)?

(c)  In the “real world,” how have governments attempted to commit to 
particular monetary policies? What are the risks associated with fixing 
monetary policy before learning about important events, such as the 
outcomes of wage negotiations?

10. Regarding the dynamic monopoly game, can you find ownership values for 
Hal and Laurie that make scheme A optimal? Can you find values that make 
scheme B optimal?

11. Consider the application on dynamic price competition with capacity con-
straints presented at the end of this chapter. In the game described in the text, 
is there a subgame perfect Nash equilibrium in which the players choose 
sales caps of less than 15 in the first period? If so, describe such an equilib-
rium and show that the firms cannot gain by deviating. If not, explain why.
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As a kid, you probably played tic-tac-toe with your friends or siblings. In 
this game, two players take turns claiming cells of a 3 × 3 matrix (a matrix 

with three rows and three columns). Player 1 claims a cell by writing an “X” in 
it; player 2 writes an “O” in each cell that he claims. A player can claim only 
one cell per turn. The game ends when all of the cells have been claimed or 
when one of the players has claimed three cells in a line (by claiming an entire 
row, column, or diagonal). If a player has claimed three cells in a line, then he 
wins and the other player loses. If all of the cells are claimed and neither player 
has a line, then the game is declared a tie. Figure 17.1 depicts the playing of a 
game in which player 1 wins.

Tic-tac-toe is a game of skill—nothing in the game is left to chance (no 
coins are flipped, no dice rolled, etc.). It is also a game of perfect information, 
because players move sequentially and observe each other’s choices. Further, it 

FIGURE 17.1

A game of tic-tac-toe.

Tic-tac-toe
matrix

Round 1
(Player 1

moves first)

Round 2 Round 3

X X

O

X X

O

Round 4
(Player 2

blocks a line)

Round 5 Round 6
(Player 2
blocks)

Round 7
(Player 1
wins with
diagonal)

X X

O

O

X X

X

O

X X

O

O X

X O

O X

X

O

O

X

O
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is a finite game. These facts imply that the result on page 188 (Chapter 15) holds 
for tic-tac-toe: this game has a pure-strategy Nash equilibrium. What else do 
we know about tic-tac-toe? It is a two-player, strictly competitive game: either 
player 1 wins and player 2 loses, or player 2 wins and player 1 loses, or the play-
ers tie. Thus, the result on page 149 (Chapter 12) also applies, meaning that each 
player’s Nash equilibrium strategy is a security strategy for him.

Let’s review. One of the outcomes (1 wins, 2 wins, tie) occurs in a Nash 
equilibrium. Because the equilibrium strategies are security strategies, each 
player can guarantee himself this equilibrium outcome. For example, suppose 
“1 wins” is the equilibrium outcome. Then our mathematical analysis proves 
that player 1 has a winning strategy, which guarantees that he will win the game 
regardless of what his opponent does. On the other side of the table, player 2 has 
a strategy that guarantees at least a loss, regardless of what player 1 does. In this 
case, player 2’s security strategy is not very helpful to her, but player 1’s secu-
rity strategy is quite helpful to him. The game is “solved” as long as player 1 is 
smart enough to calculate his security strategy.

In fact, “1 wins” is not the equilibrium outcome of tic-tac-toe. The Nash 
equilibrium actually leads to the tie outcome. Thus, our mathematical analysis 
implies that each player has a strategy guaranteeing a tie. In other words, when 
smart, rational players engage in tic-tac-toe, the game always ends in a tie. You 
probably knew this already, because most people figure it out relatively early in 
life. As a matter of fact, discovering the solution to tic-tac-toe is one of the major 
stepping stones of childhood development. I am sure child psychologists put it 
just before the dreaded Santa Claus realization on the time line of youth, at least 
for kids destined to become game theorists.

The neat thing about the results in Chapters 12 and 15 is that they apply 
generally. There are lots of two-player, strictly competitive, perfect-information, 
finite games. On one end of the complexity spectrum, we have tic-tac-toe; on the 
other end are games such as chess, which also ends with either 1 wins, 2 wins, 
or tie (also called “a draw”).1 Putting the results together, we get:

Result: Take any two-player, extensive-form game that (a) is finite, 
(b) has perfect information, and (c) is strictly competitive.

•	  If the possible outcomes of the game are “1 wins,” “2 wins,” and “tie,” 
then either one of the players has a winning strategy or both players 
have strategies guaranteeing at least a tie.

•	  If the possible outcomes of the game are only “1 wins” and “2 wins,” 
then either player 1 has a winning strategy or player 2 has a winning 
strategy.

1The rules of chess, including the “50 moves rule,” make this game finite.
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This result proves something about chess. In chess, either one of the players has 
a winning strategy or both players have a strategy guaranteeing a tie.2 At this 
point, no one knows which of these statements is true; chess is too complicated 
to solve by finding a Nash equilibrium. The best human chess players rely on 
experience and the ability to look ahead a few turns to beat their opponents. 
Computer programs such as IBM’s Deep Blue can now play at the grandmaster 
level and will soon be able to beat any unassisted human. But, as Garry Kasp-
arov observes, chess will remain fascinating as the focus shifts to competition 
between computer programs.3

You might find it useful to make a list of games that you have played to 
which the preceding result applies. Then see what you can deduce about the 
games by using the theory you have learned. The following exercises will push 
you in this direction.

Guided exercise

Problem: Suppose there are two players and two baskets of colored balls. 
The red basket contains m red balls. The blue basket contains n blue balls. The 
numbers n and m are common knowledge between the players. Consider a 
perfect-information game in which, starting with player 1, the players take turns 
individually removing one ball from one of the baskets. The player who removes 
the last red ball loses the game. Demonstrate that player 1 has a winning strategy 
if m + n is an even number and player 2 has a winning strategy if m + n is an 
odd number.

Solution: To win, a player must leave her opponent with one red ball and no 
blue balls (an odd total). Consider the strategy of always removing a blue ball 
as long as at least one blue ball remains, and otherwise removing a red ball. If 
m + n is even, then the first player is guaranteed to win with this strategy. If 
m + n is odd, then player 2 wins with this strategy.

exercises

1. Consider the following game between two players. The players take turns 
moving a rock among cells of an m × n matrix. At the beginning of the 

2Mathematician Ernst Zermelo is credited with doing some of the early game-theoretic work on chess. The 
result presented here uses the two building-block results on pages 149 and 188, which are due to John von 
Neumann and Harold Kuhn, respectively.
3The subject is discussed in M. Newborn, Kasparov versus Deep Blue (Montreal: McGill University Press, 
1996).
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game (before the first move), the rock is placed in the bottom-right cell of 
the matrix [cell (m, n)]. Player 1 goes first. At each turn, the player with the 
move must push the rock into one of the three cells above or to the left (or 
both) of the cell where the rock currently sits. That is, the player may move 
the rock to the cell above the current position, to the cell to the left of the 
current position, or to the cell diagonal to the current position in the up-left 
direction, as pictured below.

A player may not move the rock outside of the matrix. The player who is 
forced to move the rock into the top-left cell of the matrix [cell (1, 1)] loses 
the game.
(a)  Suppose the dimensions of the matrix are 5 × 7. Does either player 

have a strategy that guarantees a victory? If so, which of the two players 
has such a strategy?

(b)  In general, under what conditions on m and n does player 1 have a 
winning strategy and under what conditions does player 2 have a winning  
strategy?

2. The game Cliff runs as follows. There are two players, each of whom has 
a pocketful of pennies, and there is an empty jar. The players take turns 
tossing pennies into the jar, with player 1 moving first. There are two rules: 
(a) When a player is on the move, he must put between one and four pennies 
in the jar (that is, he must toss at least one penny in the jar, but he cannot toss 
more than four pennies in the jar), and (b) the game ends as soon as there are 
sixteen or more pennies in the jar. The player who moved last (the one who 
caused the number of pennies to exceed fifteen) wins the game. Determine 
which of the players has a strategy that guarantees victory, and describe the 
winning strategy.
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3. Consider Marienbad, a variation of the game described in the Guided Ex-
ercise of this chapter. As before, players take turns removing balls from the 
baskets, except that players are allowed to remove as many balls as they wish, 
provided that each player removes balls from only one of the baskets in each 
round. For example, player 1 might remove three red balls in one round and 
four blue balls in another round. Each player must remove at least one ball 
when it is his turn to move. The player who is forced to remove the last ball 
(whichever basket it is in) is declared the loser. As the result of this chapter 
establishes, one of the players has a winning strategy in this game. Explain 
which player has the winning strategy and how the identity of the winning 
player depends on m and n. If you can, also describe the winning strategy.

4. Consider a variant of the game in Exercise 1, in which the player who moves 
the rock into cell (1, 1) wins the game.
(a)  Does one of the players have a strategy that guarantees him a win? If so, 

which player has a winning strategy?
(b)  Now consider a three-player version of the game, whereby play rotates 

between the players, starting with player 1. That is, player 1 moves 
first, followed by player 2, then player 3, then back to player 1, and so 
on. Players are allowed to move the rock just as described above. The 
player who moves the rock into cell (1, 1) wins and gets a payoff of 1; 
the other two players lose, each obtaining 0. Is there a subgame perfect 
equilibrium in which player 1 wins? Is there a subgame perfect equilib-
rium in which player 2 wins? Is there a subgame perfect equilibrium in 
which player 3 wins?

5. Chomp is a game in which two players take turns choosing cells of an m × n 
matrix, with the rule that if a cell has been selected, then it and all cells be-
low and/or to the right of it are removed from consideration (graphically, 
filled in) and cannot be selected in the remainder of the game. That is, if cell 
( j, k) is selected, then one fills in all cells of the form ( j, k) with j Ú  j and 
k Ú k. The player who is forced to pick the top-left corner cell [cell (1, 1)] 
loses; the other player wins. Player 1 moves first. Analyze this game and 
determine which player has a strategy guaranteeing victory. Explain how 
the identity of the player with the winning strategy depends on m and n. 
Can you calculate the winning strategy, for at least some cases of m and n?4

4Chomp was invented by mathematician David Gale. You can read about it and hundreds of other parlor 
games in D. Gale, Tracking the Automatic Ant (New York: Springer-Verlag, 1998) and E. R. Berlekamp, J. H. 
Conway, and R. K. Guy, Winning Ways for Your Mathematical Plays, vols. 1 and 2 (New York: Academic 
Press, 1982).
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6. Consider a three-player version of Chomp. Play rotates between the three 
players, starting with player 1. That is, player 1 moves first, followed by 
player 2, then player 3, then back to player 1, and so on. The player who is 
forced to select cell (1, 1) loses the game and gets a payoff of 0. The player 
who moved immediately before the losing player obtains 1, whereas the 
other player wins with a payoff of 2.
(a) Does this game have a subgame perfect Nash equilibrium?
(b)  Do you think any one of the players has a strategy that guarantees him 

a win (a payoff of 2)?
(c)  Can you prove that player 1 can guarantee himself any particular payoff? 

Sketch your idea.

7. Consider a board game played on an m × n matrix. Player 1 has an unlim-
ited supply of white chips, and player 2 has an unlimited supply of black 
chips. Starting with player 1, the players take turns claiming cells of the 
matrix. A player claims a cell by placing one of her chips in this cell. Once 
a cell is claimed, it cannot be altered. Players must claim exactly one cell 
in each round. The game ends after mn rounds, when all of the cells are 
claimed. At the end of the game, each cell is evaluated as either a “victory 
cell” or a “loss cell.” A cell is classified as a victory if it shares sides with at 
least two cells of the same color. That is, there are at least two cells of the 
same color that are immediately left, right, up, or down from (not diagonal 
to) the cell being evaluated. A player gets one point for each of the vic-
tory cells that she claimed and for each of the loss cells that her opponent 
claimed. The player with the most points wins the game; if the players have 
the same number of points, then a tie is declared.
(a)  Under what conditions on m and n do you know that one of the players 

has a strategy that guarantees a win? Can you determine which player 
can guarantee a win? If so, provide some logic or a proof.

(b)  Repeat the analysis for a version of this game in which a victory cell 
must share sides with at least three cells of the same color.
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Contracting is a fundamental part of everyday economic life. Firms and their 
employees, consultants and clients, doctors and patients, children and par-

ents, and members of a team are examples of relations governed by contract. 
Many things may be covered in a contract. A sales agreement, for example, may 
specify a quantity of items, a price to be paid for them, and terms of delivery. An 
employment contract specifies the worker’s duties, the firm’s responsibilities, 
and a wage or salary. An agreement between team members or family members 
determines how they will coordinate their behavior over time.

Recall that any contractual relationship can be divided into two phases: a 
contracting phase, in which players set the terms of their contract, and an imple-
mentation phase, in which the contract is carried out and enforced. The nature of 
contract and forms of enforcement were addressed in Chapter 13 and are further 
discussed in Chapter 20. In this chapter, I begin the analysis of how the problem 
of contract selection is resolved. I focus on the two-player case.

Contracts are usually determined through a negotiation process. Busi-
nesses negotiate over the prices and specifications of intermediate goods (those 
traded between firms), people bargain over the price to be paid for articles at 
garage sales (tag sales if you live in New England), and smart shoppers try to 
get discounts at stores by offering prices slightly below those marked. People 
buying or selling a house usually engage in a long bargaining process. First-
graders even know how to negotiate shrewdly the trade of lunch items. As you 
can see, negotiation is a fundamental process in everyday economic life.

Bargaining: Value Creation and diVision

Many contracts that people negotiate have to do with the trade of goods, services, 
and money. Economists, who view themselves as undisputed experts on the 
topic of trade, have always emphasized one important insight: people want to 
trade because, in a society in which goods are scarce (that is, not available in 
quantities that would satisfy everyone), trade can create value.1 Suppose I have 

1Economists are well known for studying trade in markets, where people and firms meet to buy, sell, or barter. 
An active market clearly indicates value from trade.

18 Bargaining ProBlems
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a pizza and you have a television. If we each consume what we individually 
own, then you will be hungry for food and I will be hungry for entertainment. 
In contrast, we could agree to a trade whereby you let me watch television in 
exchange for half of my pizza. The trade may make us both better off, in which 
case we say that the trade creates value.

Creating value is one thing—dividing value is another. What if I suggest 
giving you one-quarter of the pizza in exchange for viewing the television? This 
trade may still make us both better off than if no trade took place, but now the 
terms of trade are more favorable to me than before. When you and I negoti-
ate, not only do we have to look for valuable trades, but we also have to jointly 
decide how to divide the value. Our inherent bargaining strengths, the procedure 
by which we negotiate, and the general contracting environment all contribute 
to the terms of our final agreement. For example, if you are a tough negotiator, 
then perhaps you will force me to accept a trade giving you most of the pizza in 
exchange for the right to watch television.

To divide value, people often utilize a divisible good. In the pizza/television 
example, pizza most easily serves this role: the pizza can be cut to achieve any 
proportional split between you and me. If we want an outcome in which I get 
most of the value of trade, then we can specify that I obtain most of the pizza. In 
contrast, if we want you to get most of the value, then we should specify that you 
get most of the pizza. In principle, we can also “divide” the television by, say, 
allowing me to watch only the first half of a movie that I wish to see. But dividing 
the movie can destroy its value (Who would want to watch only the first half of 
a movie, unless it is a dud?), which makes it a poor candidate for dividing value.

There is a special good that facilitates arbitrary division of the gains from 
trade: money. In trade, money is often exchanged for some other good or service. 
In a sales context, the price (money transferred from the buyer to the seller) 
determines the division of value.2 In the labor market, wages may play this role.3

Note that negotiation and value creation do not have to entail a direct 
exchange. For example, a firm and worker might negotiate over whether to 
pursue business tactic A (tailoring the firm to a specific group of consumers, for 
example) over business tactic B (emphasizing a quick response to competitors’ 
market behavior). Both players care about the business tactic, and implementing 
it may require the consent and coordination of both the firm and the worker. Yet, 

2The archetypical market setting is one in which there is a single market price for a particular good being sold. 
This price is taken as given by firms wishing to sell the product and by consumers wishing to purchase it. Such 
a price is thought to prevail under the ideal conditions of perfect competition—conditions that most students 
of intermediate microeconomics can recall. In this chapter and the next, we develop an understanding of how 
the price is determined through negotiation.
3Money is not very useful when people have liquidity constraints or when their preferences over money differ 
substantially.
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it may be a stretch to think of this selection as a direct trade because nothing 
changes hands.

In summary, the main point here is that bargaining can be usefully viewed in 
terms of value creation and value division. If you understand these two compo-
nents, you will have gone a long way toward learning how best to negotiate and 
how bargaining is resolved in the real world. You will also be ready to think 
about bargaining problems in the abstract.

an aBstraCt rePresentation of Bargaining ProBlems

A simple way of mathematically representing a bargaining problem is to 
describe the alternatives available to the parties—that is, the various contracts 
they can make—and to describe what happens if the parties fail to reach an 
agreement. With an understanding of how the relationship will proceed after 
negotiation (and how contracts will be enforced), all of these things can be put 
in terms of payoff vectors. For example, imagine that two players are trying 
to decide whether to start a business partnership. Suppose that if they initiate 
the partnership, then the business will yield a utility of 4 for player 1 and 6 for 
player 2; if they do not form a partnership, then they will each get a payoff of 2. 
Then, instead of thinking about their negotiation in terms of “form a partner-
ship” versus “do not form a partnership,” we can put it in terms of the end result: 
payoff vector (4, 6) versus payoff vector (2, 2). In other words, we can think of 
the players as negotiating directly over the payoffs.

Let V denote the set of payoff vectors defining the players’ alternatives for a 
given bargaining problem. For example, in the partnership story of the preced-
ing paragraph, V = {(4, 6), (2, 2)}. V is called the bargaining set. Let d denote 
the payoff vector associated with the default outcome, which describes what 
happens if the players fail to reach an agreement. The default outcome is also 
called the disagreement point, and it is an element of V. In the partnership story, 
the disagreement point is given by d = (2, 2), because the partnership is not 
formed unless the parties agree to it. In general, each player can unilaterally 
induce the default outcome by withholding his consent on any contract proposal.

In many bargaining problems, players can agree to a monetary transfer as 
a part of the contract. The transfer may signify a wage, salary, or price, or it 
may simply be an up-front payment made by one party to the other. I generally 
assume that money enters the players’ payoffs in an additive way. For example, 
consider a bargaining problem between players 1 and 2. Suppose the players 
negotiate over a monetary transfer from player 2 to player 1 as well as other 
items, such as whether to form a partnership, task assignment, and so forth. Let 
t denote the contracted monetary transfer and let z represent the other items. A 
positive value of t indicates a transfer from player 2 to player 1, whereas a nega-
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tive value indicates a transfer in the other direction. Money is said to enter addi-
tively if player 1’s payoff can be written u1 = v1 (z) + t and player 2’s payoff can 
be written u2 = v2 (z) − t, for some functions v1 and v2 . In other words, vi (z) is 
player i ’s benefit of z in monetary terms, which can then be added to the amount 
of money that this player receives or gives up. When payoffs are additive in 
money, we say that the setting is one of transferable utility, because utility can be 
transferred between players on a one-to-one basis with the use of money.

With transferable utility, the bargaining set can be graphed as a collection 
of diagonal lines, each with a slope of −1. For example, suppose that in the 
preceding partnership story, the players’ alternatives are expanded to include 
monetary transfers. Observe how this bargaining problem can be specified by 
using the v, z, t notation. First, let z = 1 represent forming a partnership and let 
z = 0 represent no partnership. Note that v1 (0) = v2 (0) = 2 , v1 (1) = 4 , and 
v2 (1) = 6 . Thus, if bargaining is resolved with z = 0, then player 1 gets 2 + t 
and player 2 gets 2 − t. If the players agree to z = 1, then player 1 obtains 
4 + t and player 2 receives 6 − t. Payoff vector (4, 6) is in the bargaining set, as 
before, because t = 0 is always feasible. Vector (6, 4) also is in the bargaining 
set because it can be achieved by selecting z = 1 and t = 2. In fact, all vectors 
of the form (4 + t, 6 − t) and (2 + t, 2 − t) are in the bargaining set. Varying 
t traces out the lines shown in Figure 18.1; these lines constitute the bargaining 
set. The disagreement point is (2, 2) because each player can unilaterally impose 
that no partnership be formed and that no transfer be made.

As the picture makes clear, whenever there is transferable utility, the set of 
efficient outcomes is precisely those that maximize the players’ joint value.4 
The joint value is defined as the sum of the players’ payoffs—in other words, 

4Recall that an outcome is called efficient if there is no other outcome that makes one player better off without 
making another player worse off.
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The bargaining set in the 
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the total payoff. To develop your intuition, note that the bargaining set in Figure 
18.1 contains no points upward and to the right of the line through (4, 6). Thus, 
starting at any point on this line, there is no way to increase one player’s payoff 
without decreasing the other’s payoff. In contrast, all of the points on the line 
through (2, 2) are inefficient, because, for each of them, one can find a point on 
the outer line that is more efficient. For example, payoff vector (5, −1) can be 
attained by setting z = 0 and t = 3. However, the players would both get higher 
payoffs—in particular (6, 4)—if they chose z = 1 and t = 2.

Because t is merely a transfer between the players, it does not figure into the 
joint-value calculation. Mathematically, for any z and t, the joint value is given by

[v1 (z) + t] + [v2 (z) − t] = v1 (z) + v2 (z).

The surplus of an agreement is defined as the difference between the joint value 
of the contract and the joint value that would have been obtained had the players 
not reached an agreement. The latter value is just the total payoff of the default 
outcome, d1 + d2 . Thus, the surplus is equal to

v1 (z) + v2(z) − d1 − d2 .

an examPle

Rosemary chairs the English department at a prominent high school; Jerry, a 
former computer specialist and now a professional actor, is interested in work-
ing at the school. These two people have to make a joint decision. First, they 
have to decide whether to initiate an employment relationship (that is, whether 
Jerry will work for the high school). Further, two aspects of employment are on 
the bargaining table: Jerry’s responsibilities on the job (represented by x) and 
Jerry’s salary t. I use x instead of z here because, in this specialized application, 
the variable has to do with items corresponding only to agreement between the 
players (not the default outcome).

Suppose there are two possibilities for job duties: Jerry could be made 
responsible for only the drama courses (x = 0) or Jerry could also be put in 
charge of the softball team (x = 1). Suppose Jerry gets a personal value of 
$10,000 when employed at the high school, owing to the happiness he obtains 
from service work as a drama teacher. But if he coaches the softball team, this 
value decreases by $3,000 because of the effort he must expend in the evenings. 
Rosemary and the school value Jerry’s work as a drama teacher in the amount 
$40,000; she assesses the additional value of Jerry’s work as softball coach to 
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be $5,000. Thus, if the two parties agree to employment, Jerry’s payoff will be 
10,000 − 3,000x + t and Rosemary’s payoff will be 40,000 + 5,000x − t.

Note that using the notation defined in the preceding section, we can write 
Jerry’s payoff as uJ = vJ  (x) + t and Rosemary’s payoff as uR = vR  (x) − t , where

vJ  (x) = 10,000 − 3,000x and vR  (x) = 40,000 + 5,000x.

If the parties do not initiate an employment relationship, then Jerry gets $15,000 
from working on his own and Rosemary gets $10,000, which is her value of 
hiring a less-qualified applicant. (Assume that no transfer can be made in this 
case.) The disagreement point is therefore d = (dJ  , dR  ) where dJ = 15,000 and 
dR = 10,000. The bargaining problem is pictured in Figure 18.2, in which the 
two points noted on the x = 0 and x = 1 lines denote the payoff vectors associ-
ated with t = 0.

In this bargaining problem, an agreement to employ Jerry at the high school 
yields the parties a joint value of

uJ  (x) + uR  (x) = [vJ  (x) + t] + [vR  (x) − t].

Using the exact form of the payoff functions, we have

[10,000 − 3,000x] + [40,000 + 5,000x] = 50,000 + 2,000x.

Jerry and Rosemary have a joint interest in selecting x to maximize this value. 
In Figure 18.2, this corresponds to selecting the diagonal line that is farthest 
out—that is, choosing x = 1 to get the joint value $52,000. Note that increasing 
x from 0 to 1 makes Jerry worse off, but it makes Rosemary so much better off 
that the joint value of the relationship rises. Jerry can be compensated by way of 

FigUre 18.2
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a salary increase, making both parties happy. In this example, the players’ joint 
value from the default outcome is

dJ + dR = 15,000 + 10,000 = 25,000.

Thus, the agreement to set x = 1 generates a surplus of 52,000 − 25,000 =  
27,000.

the standard Bargaining solution

Terms such as “efficiency” and “bargaining power” are sometimes useful in 
discussion of how bargaining problems are resolved. For example, we may 
say that a particular player is expected to obtain most of the surplus because 
she has a lot of bargaining power. Or we may say that players are generally 
expected to bargain efficiently. We can explore these notions by studying their 
noncooperative foundations—that is, by examining how they are related to the 
specific bargaining game that is played. You will be happy to know, in fact, that 
noncooperative analysis of bargaining is the topic of Chapter 19. At this point, 
however, I want you to see how bargaining power and efficiency are defined by 
using the abstract representation of bargaining problems just presented.

Efficiency is an important criterion with which to judge the outcome of a 
negotiation process. As already noted, in settings with transferable utility, an 
outcome is efficient if and only if it maximizes the players’ joint value. Thus, it 
is easy to determine which outcomes are efficient—simply find the value(s) of 
x that yields the largest sum v1 (x) + v2 (x). Let us denote by v* the maximized 
joint value for any given bargaining game.5 As an example, recall that in the 
bargaining problem faced by Jerry and Rosemary, the parties’ joint value is 
maximized by employing Jerry and having him coach softball in addition to 
teaching drama (x = 1); thus, v* = 52,000. In general, efficiency is an attrac-
tive property and, on normative grounds, you would advise players to achieve it. 
On the positive side, however, you might doubt whether people actually realize 
efficient outcomes in some cases.

Bargaining power is associated with how players divide the value of their 
contract. To assess the scope of bargaining power, first recall that each player 
can unilaterally induce the default outcome by refusing to reach an agreement. 
Thus, no rational player would accept an agreement that gives her less than her 
default payoff. As a result, the players really do not negotiate over v*; they 
negotiate over the surplus v* − d1 − d2 . In the job-negotiation example, Jerry 
will not accept an agreement that gives him less than 15,000, and Rosemary will 

5There are cases in which default yields the greatest joint value, so v* is the default payoff.
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not accept an agreement yielding her less than 10,000. Therefore, they actually 
negotiate over the difference between the maximized joint value and the default 
joint value, which is 52,000 − 25,000 = 27,000.

It is useful to summarize bargaining powers by using bargaining weights 
p1 and p2 , where p1 , p2 Ú 0 and p1 + p2 = 1 . We interpret pi as the proportion 
of the surplus obtained by player i. For example, in the bargaining problem of 
Jerry and Rosemary, Jerry obtains proportion pJ of the $27,000 surplus, whereas 
Rosemary obtains proportion pR  .

The standard bargaining solution is a mathematical representation of effi-
ciency and proportional division.6 Each player is assumed to obtain his default 
payoff, plus his share of the surplus. For example, suppose Jerry’s bargaining 
weight is pJ = 1>3 and Rosemary’s bargaining weight is pR = 2>3. Then we 
expect the players to reach an agreement in which Jerry obtains the payoff

u*
J = dJ + pJ(v* − dJ − dR) = 15,000 + (1>3) # 27,000 = 24,000

and Rosemary obtains the payoff

u*
R = dR + pR  (v* − dJ − dR  ) = 10,000 + (2>3) # 27,000 = 28,000.

Note that because pJ + pR = 1, the sum of these payoffs is the joint value 
v* = 52,000. We know that x = 1 is selected. Further, it must be that t is chosen 
to yield the values u*

J  and u*
R  . Looking at Jerry’s payoff, we see that t solves

u*
J = vJ  (1) + t = 24,000;

that is,

10,000 − 3,000 + t = 24,000,

which simplifies to t = 17,000. (We get the same result by looking at Rose-
mary’s payoff.) In the end, the standard bargaining solution predicts that Jerry 
and Rosemary will agree to put him in charge of both the drama courses and 
the softball team (x = 1) and pay him a salary of t = 17,000. This leads to the 
payoff u*

J = 24,000 for Jerry and u*
R = 28,000 for Rosemary.

In a general bargaining problem, you can compute the standard bargaining 
solution as follows.

6The standard bargaining solution is an offshoot of John Nash’s seminal treatment of bargaining problems, 
which is contained in his article “The Bargaining Problem,” Econometrica 18 (1950): 155–162. Nash’s 
model is presented in Appendix D. For an overview of the literature on solutions to bargaining problems, see 
W. L. Thomson, Bargaining Theory: The Axiomatic Approach (San Diego: Academic Press, forthcoming).
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Procedure for calculating the standard bargaining solution:

1. Calculate the maximized joint value v* by determining the value x* that 
maximizes v1 (x) + v2(x) .

2. Note that with the standard bargaining solution, player i obtains the payoff 
di + pi  (v* − d1 − d2 ) where di is player i ’s default payoff. Thus, the 
transfer t will satisfy

d1 + p1 (v* − d1 − d2 ) = v1 (x*) + t

for player 1 and

d2 + p2 (v* − d1 − d2 ) = v2 (x*) − t

for player 2. These two equations are equivalent.
3. Solve one of these equations for t to find the transfer that achieves the re-

quired split of the surplus.

a note aBout legal default rules

The standard bargaining solution can be used to make a simple point about 
different paths to efficient outcomes—a point associated with Nobel laureate 
Ronald Coase. The idea is typically referred to as “the Coase theorem” even 
though it is informal and imprecise. I’ll illustrate the point by recounting a story 
along the lines of one that Coase discussed.7

Suppose that a cattle rancher and a corn farmer own and operate adjacent 
parcels of land. Currently there is no fence between the ranch and the farm, so 
the rancher’s cattle can freely enter the farmer’s field and destroy some of his 
corn. This results in a loss of 300 to the farmer each month. Suppose that the 
value of production for the rancher is 1000 per month, and the value of produc-
tion for the farmer is 500 per month (factoring in the loss of 300).

A fence that will keep the cattle out of the cornfield would cost 100 per 
month to build and maintain. For simplicity, assume that only the rancher can 
build and maintain the fence. Note that without a fence, the joint value for the 
rancher and the farmer is 1500 per month. However, the joint value would be 
higher with the fence in place. The fence has a cost of 100 but yields an increase 
of 300 in the farmer’s value of production, owing to the farmer avoiding the 
loss of corn each month. The joint value with the fence is 1700. Therefore, it is 
socially optimal for the fence to be built and maintained.

7See R. H. Coase, “The Problem of Social Cost,” Journal of Law and Economics 3 (1960): 1–44.

Watson_c18_230-243hr.indd   238 2/4/13   12:07 PM



239a note about legal default rules

A legal question pertaining to situations like this is the following: What 
sort of legal rule or regulation is indicated here to ensure an efficient outcome? 
One option is to have a rule that the farmer has the right to use his land without 
interference, so that any infringement by the rancher’s cattle would be severely 
punished. An alternative rule is to give the rancher the right to let her cattle roam 
across land boundaries, so that cattle grazing on the farm would not be punished 
by law. Coase’s answer is that it does not matter which legal rule is adopted. The 
key, he argued, is that some sort of property right is established.

Here is Coase’s argument using our bargaining theory. Suppose the law 
gives the rancher a broad property right with respect to the cattle, so that she 
would not be punished if the cattle ventured onto the farm. Because this would 
lead to an inefficient outcome (no fence), the parties have an incentive to form 
a contract specifying that the rancher build and maintain the fence. The contract 
would also specify a transfer of t from the farmer to the rancher, so that they are 
both better off than they would be with the legal default. The default outcome 
would lead to the payoff vector (1000, 500). The contract just described would 
lead to payoff vector (900 + t, 800 − t). Note that the rancher’s payoff is her 
production value, minus the cost of the fence, plus the transfer. The farmer’s 
payoff is his enhanced production benefit minus the transfer. Assuming for 
simplicity that the parties have equal bargaining power, the standard bargain-
ing solution yields the payoff vector (1100, 600), where each party gets his or 
her disagreement value plus half of the 200 surplus. The negotiated transfer is 
t = 200.

Continuing with Coase’s story, suppose instead that the law gives the farmer 
a strong property right, so that the rancher would be punished if her cattle 
ventured onto the farm. In this case, in the absence of any contract with the 
farmer, the rancher would optimally build and maintain a fence to ensure that 
her cattle do not enter the farm, protecting herself from harsh punishment. The 
parties still have the opportunity to form a contract, but the default outcome is 
already efficient and so there is nothing to bargain over. The payoff in this case 
is (900, 800).

To summarize Coase’s point, under well-defined property rights and effi-
cient contracting, the efficient outcome will always be reached. The exact prop-
erty right established by the law has an impact on the distribution, but not the 
magnitude, of the joint value. This idea became a cornerstone in the “Chicago 
school” of economic thinking. My own view, and probably the view of most 
modern theorists, is that this idea may be compelling in some settings but is 
over the top in general. Coase’s assumptions are unrealistically strong, and it 
is a stretch to extend his reasoning to settings with more than two parties. Still, 
however, Coase’s point sets a useful benchmark for a discussion about optimal 
legal structure and policy.
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I would argue that the message should be less about property rights and 
more about information, the freedom to contract, and the existence of a reliable 
and inexpensive external enforcement system. If the external enforcer has well-
defined and predictable default rules, then perhaps the parties will have a shared 
understanding of their disagreement point. With a reliable enforcement system, 
the parties can then negotiate to an efficient outcome. There is still a problem 
with this logic, however, because parties may not bargain efficiently (in theory 
or in practice). One issue is that in most real settings, the default outcome has 
self-enforced aspects, so the parties still have to coordinate to some degree. 
When there are multiple ways of coordinating in default or if parties would fail 
to coordinate at all, they will not necessarily negotiate to an efficient outcome. 
Further, bargaining theory reveals more complications for settings with more 
than two players. But I am getting ahead of myself here, especially considering 
that the next steps in this analysis go way beyond this book!

guided exerCise

Problem: John is a computer expert who is negotiating an employment contract 
with a prospective employer (the firm). The contract specifies two things: 
(1) John’s job description (programmer or manager) and (2) John’s salary t. If 
John works as a programmer for the firm, then John’s payoff is t − 10,000 (in 
dollars) and the firm’s payoff is 100,000 − t. If John works as a manager, then 
his payoff is t − 40,000 and the firm’s payoff is x − t, where x is a constant 
parameter. Assume x > 150,000. If John and the firm fail to reach an agree-
ment, then the firm gets zero and John obtains w. In other words, the default 
outcome of this negotiation problem leads to the payoff vector (w, 0), where 
John’s payoff is listed first. The value w is due to John’s outside opportunity, 
which is to work on his own as a computer consultant.

Solve this bargaining problem by using the standard bargaining solution 
under the assumption that John’s bargaining power is pJ and the firm’s bargain-
ing power is pF . Assume that w < 90,000.

Solution: Note that the surplus with John working as a programmer is

(t − 10,000) + (100,000 − t) − w = 90,000 − w.

The surplus with him working as a manager is

(t − 40,000) + (x − t) − w = x − 40,000 − w,

which exceeds 110,000 − w by the assumption on x. Thus, the maximal joint 
value is attained by having John work as a manager. The standard bargaining 
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solution makes John’s overall payoff equal to

w + pJ(x − 40,000 − w) = (1 − pJ  )w + pJ  (x − 40,000).

Setting this equal to t − 40,000 (the direct definition of John’s payoff when he 
works as a manager) and solving for t yields

t = (1 − pJ  )(w + 40,000) + pJ x.

exerCises

1. Calculate the standard bargaining solution for the following variations of the 
Jerry–Rosemary example in this chapter. In each case, graph the bargaining 
set, find the maximized joint value, determine the players’ individual values, 
and compute the transfer t that the players select.
(a)  dJ = 0, dR = 0, vJ  (x) = 10,000 − 6,000x, vR  (x) = 40,000 + 4,000x, 

x ∈ {0, 1}, pJ = 1>2, and pR = 1>2.
(b)  dJ = 0, dR = 0, vJ  (x) = 60,000 − x2, vR  (x) = 800x, x is any positive 

number, pJ = 1>2, and pR = 1>2.
(c)  dJ = 40,000, dR = 20,000, vJ  (x) = 60,000 − x2, vR  (x) = 800x, x is 

any positive number, pJ = 1>4, and pR = 3>4.

2. Consider the setting of this chapter’s Guided Exercise. Suppose John can 
invest some of his free time either enhancing his productivity with the firm 
(increasing x) or raising his productivity as an individual computer consul-
tant (increasing w). How would you recommend that John spend his free 
time? (Hint: The answer depends on pJ  .)

3. Use the standard bargaining solution to find the outcomes of the follow-
ing bargaining problems. Player 1’s payoff is u1 = v1 (x) + t and player 2’s 
payoff is u2 = v2 (x) − t. In each case, graph the maximized joint value and 
the default outcome; report the chosen x, t as well as the players’ individual 
payoffs.
(a)  x ∈ {5, 10, 15}, v1 (x) = x, v2 (x) = x, d1 = 0, d2 = 0, p1 = 1>2, and 

p2 = 1>2.
(b)  x ∈ {5, 10, 15}, v1 (x) = x, v2 (x) = x, d1 = 2, d2 = 4, p1 = 1>2, and 

p2 = 1>2.
(c)  x ∈ {5, 10, 15}, v1 (x) = x, v2 (x) = x, d1 = 2, d2 = 4, p1 = 1>4, and 

p2 = 3>4.
(d)  x ∈ {5, 10, 15}, v1 (x) = 20x, v2 (x) = −x2, d1 = 0, d2 = 0, p1 = 1>4, 

and p2 = 3>4.
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(e)  x ∈ (− ,  ), v1 (x) = 16x + x2, v2 (x) = 8x − 2x2, d1 = 0, d2 = 0, 
and p1 and p2 arbitrary.

4. Suppose that you must bargain with another party over how to realize a 
large joint value v*. Explain why you care about the other party’s disagree-
ment payoff.

5. Suppose that you must negotiate with another party and that you have an 
opportunity either to raise your disagreement payoff by 10 units or raise 
the maximal joint value v* by 10 units. Which should you choose? Is your 
choice efficient?

6. Discuss a real-world example of negotiation in terms of maximized joint 
value, bargaining weights, and a disagreement point.

7. Ashley is negotiating an employment contract with a prospective employer, 
the La Jolla YMCA. The contract specifies two things: (1) Ashley’s job de-
scription, which is surfing instructor or tennis instructor, and (2) Ashley’s 
salary t. Ashley is better at teaching people to surf than teaching people to 
play tennis, and she enjoys surfing more. If Ashley works as a surfing in-
structor for the YMCA, then Ashley’s payoff is t − 10,000 and the YMCA’s 
payoff is 60,000 − t. If Ashley works as a tennis instructor, then her payoff 
is t − 20,000 and the YMCA’s payoff is 65,000 − t.
 If Ashley and the YMCA fail to reach an agreement, then the YMCA 
gets a payoff of 10,000 and Ashley obtains 20,000. In other words, the 
disagreement outcome of this negotiation problem is given by dA = 20,000 
and dY = 10,000. The value 20,000 is due to Ashley’s outside opportunity, 
which is to work as a writer for the San Diego Reader newspaper. The value 
of 10,000 for the YMCA is due to it having to hire someone who is less 
skilled than Ashley.
 Solve this bargaining problem using the standard bargaining solution, 
under the assumption that Ashley and the YMCA have equal bargaining 
weights of 1>2. What job description and salary do they agree to? Explain.

8. A physician and a confectioner are located in adjacent storefront offices. As 
part of his process for making candy, the confectioner uses a large blender 
that is very noisy and prevents the physician from effectively consulting 
with patients. (The blender is so loud that the physician cannot hear through 
her stethoscope when the blender is being used.) So, in the current situa-
tion, the physician’s value of production is 0, and the confectioner’s value 
of production is 400. If the confectioner does not operate, he earns 0 but the 
physician earns 2000.
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243exercises

(a)  Suppose that the confectioner has the legal right to operate his blender 
but that the parties are free to contract and have good external enforce-
ment. Use the standard bargaining solution to predict the outcome under 
the assumption that the parties have equal bargaining weights.

(b)  Suppose that it is illegal for the confectioner to operate his blender 
without permission from the physician, but, again, the parties can freely 
contract and have good external enforcement. What would the outcome 
be in this case? Assume equal bargaining weights as before.

(c)  Suppose that the legal default is that the physician has the right to 
recover damages of z if the confectioner uses his blender. Determine 
what would happen if the parties do not contract, and note how this 
depends on z. Finally, describe the final payoffs, and whether the parties 
contract, as a function of z. Apply the standard bargaining solution with 
equal bargaining weights.
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The preceding chapter developed some of the basic concepts and language for 
study of bargaining problems. In this chapter, I explain how bargaining is stud-

ied by using noncooperative game theory. The program analyzes specific bargain-
ing procedures as represented by extensive-form games. I evaluate the games by 
using the concept of subgame perfect Nash equilibrium. The modeling exercises 
allow us to generate intuition about the attainment of efficient outcomes and about 
the determinants of bargaining power (in particular, the bargaining weights de-
scribed in Chapter 18). As you shall see, we can trace bargaining strength to a play-
er’s patience and his ability to make offers at strategically important points in time.

UltimatUm Games: Power to the ProPoser

The ultimatum bargaining game is perhaps the simplest of bargaining models. In 
the example presented in Chapter 14 (see Figure 14.5), a buyer and a seller nego-
tiate the price of a painting. The seller offers a price and then the buyer accepts or 
rejects it, ending the game. Because the painting is worth $100 to the buyer and 
nothing to the seller, trade will generate a surplus of $100. The price determines 
how this surplus is divided between the buyer and the seller; that is, it describes 
the terms of trade. From the Guided Exercise of Chapter 15, you have already 
seen that there is a subgame perfect equilibrium of this game in which trade takes 
place at a price of 100, meaning that the seller gets the entire surplus. In this 
section, I expand the analysis to show that this equilibrium is unique.

It will be helpful to study the ultimatum bargaining game in the abstract setting 
in which the surplus is normalized to 1. This normalization helps us to concentrate 
on the players’ shares of the monetary surplus; for example, if player 1 obtains 1>4, 
then it means that player 1 gets 25 percent of the surplus. As discussed in Chapter 
18, we assume transferable utility so that the price divides the surplus in a linear 
fashion; thus, if one player gets m, then the other gets 1 − m. It will also be helpful 
to name the players i and j, allowing us to put either player 1 or player 2 into the 
role of making the offer. This standard ultimatum game is pictured in Figure 19.1.1 

1Note that according to the extensive form pictured, player i cannot make an offer of m > 1 or m < 0. In fact, 
the results do not change if one leaves m unrestricted. Intuitively, it is not rational for player i to offer m > 1 
and it is not rational for player j to accept an offer of m < 0. For simplicity, I just impose m ∈ [0, 1].

19 ANALYSIS OF SIMPLE BARGAINING GAMES

Watson_c19_244-258hr.indd   244 2/4/13   12:07 PM



245Ultimatum Games: Power to the Proposer

Also pictured are the bargaining set and the disagreement point corresponding to 
this game. The disagreement point is (0, 0) because this payoff occurs when the 
responder rejects the proposer’s offer.

To find the subgame perfect equilibrium of the ultimatum game, begin by 
observing that the game has an infinite number of subgames. In particular, every 
decision node for player j initiates a subgame (that ends following his deci-
sion). This should be obvious because player j observes the offer of player i; all 
information sets consist of single nodes. Consider the subgame following any 
particular offer of m by player i, where m > 0. If player j accepts the offer, he 
obtains m. If he rejects the offer, then he gets 0. Therefore, player j ’s best action 
is to accept. Only when m = 0 can rejection be an optimal response for player 
j, and in this case acceptance also is optimal (because player j is indifferent 
between the two actions). The analysis thus indicates that player j has only two 
sequentially rational strategies: (s*

j  ) accept all offers, and (snj ) accept all offers of 
m > 0 and reject the offer of m = 0. These are the only strategies that specify a 
Nash equilibrium for each of the proper subgames.

Having identified player j ’s sequentially rational strategies, one can easily 
determine the subgame perfect equilibrium of the ultimatum game. The equi-
librium must include either strategy s*

j  or strategy snj on the part of player j. Let 
us evaluate which of these strategies might be part of a subgame perfect equi-
librium. First, note that the strategy profile in which player i picks m = 0 and 
player j plays s*

j  is a Nash equilibrium of the game. Player i obviously has no 
incentive to deviate from m = 0, given that he obtains the full surplus under the 
prescribed strategy profile. Second, observe that there is no Nash equilibrium of 
the game in which player j adopts snj . To see this, note that player i has no well-
defined best response to snj . If player i chooses m > 0, then he obtains 1 − m, 
given player j ’s strategy. Therefore, player i would like to select the smallest 
possible m. But m = 0 yields a payoff of 0 against snj .
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FIGURE 19.1

Ultimatum bargaining.
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246 19: analysis of simple Bargaining Games

These facts imply that there is a single subgame perfect equilibrium of the 
ultimatum game: player i selects m = 0, and player j selects s*

j  . The equilibrium 
payoff is 1 for player i and 0 for player j. The equilibrium outcome is efficient 
because the parties realize the gains from trade; their joint value is maximized.

The ultimatum game demonstrates how a great deal of bargaining power is 
wielded by a person in the position of making a take-it-or-leave-it offer; in terms 
of the standard bargaining solution, pi = 1 . If you can put yourself in this posi-
tion (say, by somehow committing to terminate negotiation after consideration 
of your offer), you would be wise to do so.2

two-Period, alternatinG-offer Games:  
Power to the Patient

The ultimatum game is instructive and applicable, but it is too simplistic a model 
of most real-world negotiation. Bargaining generally follows a more intricate 
process in reality. The theory can be expanded in many ways, perhaps the most 
obvious of which is to explicitly model multiple offers and counteroffers by 
the parties over time. In fact, in many real settings, the sides alternate making 
offers until one is accepted. For example, real estate agents routinely force home 
sales into the following procedure: the seller posts a price, the prospective buyer 
makes an offer that differs from the seller’s asking price, the seller makes a 
counteroffer, and so forth.

Offers and counteroffers take time. In home sales, one party may wait a 
week or more for an offer to be considered and a counteroffer returned. “Time 
is money,” an agent may say between utterances of the “location, location, loca-
tion” mantra. In fact, the agent is correct to the extent that people are impatient 
or forego productive opportunities during each day spent in negotiation. Most 
people are impatient to some degree. Most people prefer not to endure protracted 
negotiation procedures. Most people discount the future relative to the present.

How a person discounts the future may affect his or her bargaining position. 
It seems reasonable to expect that a very patient bargainer—or someone who 
has nothing else to do and nowhere else to go—should be able to win a greater 
share of the surplus than should an impatient one. To incorporate discounting 

2To some, it seems that offering 0 to player j is a bit extreme and maybe even risky. Perhaps player i should 
at least make it worthwhile for player j to accept by offering a small positive amount. Intuitively, this might 
be the case. However, whatever is required to get player j to accept is supposed to already be embedded in the 
payoffs. That is, zero represents the amount that player j requires to accept the offer. If this still seems a bit 
unintuitive, you may be comforted to know that in games with a smallest monetary unit, there are subgame 
perfect equilibria in which the proposer offers a small, positive amount to the responder. For example, if player 
i cannot offer fractions of pennies, then the offer and acceptance of one cent is a subgame perfect equilibrium 
outcome.
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247two-Period, alternating-offer Games: Power to the Patient 

into game-theoretic models, we use the notion of a discount factor. A discount 
factor di for player i is a number used to deflate a payoff received tomorrow so 
that it can be compared with a payoff received today.

To make sense of this idea, fix a length of time that we call the period 
length. For simplicity, suppose that a period corresponds to 1 week. If given 
the choice, most people would prefer receiving x dollars today (in the current 
period) rather than being assured of receiving x in one week (in the next period). 
People exhibit this preference because people are generally impatient, perhaps 
because they would like the opportunity to spend money earlier rather than later. 
In the least, a person could take the x dollars received today and deposit it in a 
bank account to be withdrawn next week with interest.

We could conduct a little experiment by asking a person what amount of 
money received in the current period would be worth about the same to her as 
receiving x in the next period. Call this amount y. Because of discounting, it 
will be the case that y < x. Then we can define di so that y = di x. Thus, di is the 
multiplicative factor by which any amount received in the following period is 
discounted to make it comparable to payoffs in the current period. The discount 
factor di is generally a number between 0 and 1, where larger values correspond 
to greater patience.

Consider a two-period, alternating-offer bargaining game. This game begins 
in the first period, at which time player 1 makes an offer m1. After observing 
the offer, player 2 decides whether to accept or reject it. If player 1’s offer is 
accepted, the game ends with player 1 receiving 1 − m1 and player 2 obtaining 
m1. If player 2 rejects the offer, then interaction continues in the second period 
with the roles reversed. Player 2 makes a counteroffer m2, which player 1 either 
accepts or rejects.3 Note that if the initial offer is rejected, time elapses before 
player 2 can make her counteroffer. To compare payoffs received in the first 
period with those received in the second period, we multiply the latter by the 
players’ discount factors. Specifically, if player 1 accepts player 2’s offer in the 
second period, then player 1 gets d1m2 and player 2 gets d2 (1 − m2). If player 1 
rejects player 2’s offer, then the game ends and both players obtain 0.

Observe that the two-period, alternating-offer game consists basically of 
repetition of the ultimatum-game structure. In the first period, the players inter-
act as in the ultimatum game, with player 1 playing the role of i and player 2 
the role of j. If the offer is rejected, then time passes into the second period, 
where players interact in an actual ultimatum game with the roles reversed. The 
game ends after two periods. If an agreement is reached in the second period, 
then the payoffs are discounted relative to the first period.

3The analysis of finite-period games such as this one were reported in I. Stahl, Bargaining Theory (Stockholm: 
Economics Research Institute at the Stockholm School of Economics, 1972).
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248 19: analysis of simple Bargaining Games

The bargaining set and disagreement point associated with this bargain-
ing game are pictured in Figure 19.2(a). The extensive-form game itself is not 
pictured; as an exercise, you might draw the extensive form yourself. In Figure 
19.2(a), the outer line represents payoff vectors possible if the players reach an 
agreement in the first period. The inner line, from d1 on the x-axis to d2 on the 
y-axis, represents payoff vectors that can be achieved if the players reach an 
agreement in the second period. The disagreement point (0, 0) is the payoff that 
would result if the players never reach an agreement.

Computing the subgame perfect equilibrium of this game is straightfor-
ward once one realizes that the subgames starting in the second period have 
already been solved by our ultimatum game analysis. If player 2 rejects m1, then 
she effectively induces play of the ultimatum game in the following period. To 
convince yourself of this fact, simply observe that starting in period 2, the game 
looks exactly like the ultimatum game, with player 2 playing the role of i. Then 
note that subgame perfection implies that player 1 accepts all counteroffers and 
player 2 chooses m2 = 0. The nondiscounted payoffs in these subgames are 1 
for player 2 and 0 for player 1.

We thus know the continuation values from the start of the second period: 1 
for player 2 and 0 for player 1. Note that I have written these continuation values 
from the second-period point of view. That is, they are not discounted to be put 
in terms of first-period payoffs. From the perspective of period 1, these continu-
ation values are d1

# 0 and d2
# 1.

FIGURE 19.2

Bargaining set and disagreement point for two-period game.
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249two-Period, alternating-offer Games: Power to the Patient 

With these values in mind, we can easily determine player 2’s optimal deci-
sion in response to player 1’s initial offer. If player 2 rejects player 1’s offer, then 
player 2 will obtain the full surplus in the next period, which is worth d2 to her 
in period 1. Therefore, player 2 must accept player 1’s offer of m1 if m1 > d2 . 
In contrast, rejection is the only rational move if m1 < d2 . Player 2 is indifferent 
between accepting and rejecting the offer m1 = d2 .

The preceding analysis implies that only one thing has yet to be determined 
regarding behavior following player 1’s initial offer: whether player 2 accepts 
or rejects the offer m1 = d2 . As with the ultimatum game, the only Nash equi-
librium has player 2 accepting the offer that makes her indifferent; furthermore, 
player 1 makes this offer. Thus, there is a unique subgame perfect equilibrium 
of the two-period game. Player 1 offers m1 = d2 , player 2 accepts if and only 
if m1 Ú d2 , player 2 always offers m2 = 0 at the start of the second period, 
and player 1 accepts every offer in the second period. The equilibrium yields a 
payoff of 1 − d2 to player 1 and d2 to player 2. Figure 19.2(b) gives a graphical 
account of the analysis.

A few comments are in order. First, observe that patience is positively related 
to bargaining power. In particular, if player 2 is impatient (represented by a small 
value of d2), then her equilibrium payoff is close to 0. In terms of the standard 
bargaining solution, p2 is close to 0, so player 1 obtains most of the surplus to 
be divided. In general, with the equilibrium in the two-period, alternating-offer 
game, we interpret player 1’s bargaining weight to be p1 = 1 − d2 and player 
2’s to be p2 = d2 .

The relation between patience and bargaining power is supported more 
generally. For example, one can study a T-period version of the game where the 
players alternate making offers until either an offer is accepted or T periods have 
elapsed. Note that if T is even, then player 2 has the last offer in such a game; 
if T is odd, then player 1 has the final offer. In the T-period game, if agreement 
is reached in some period t, then payoffs are discounted by the factors d t−1

1  and 
d t−1

2  in relation to payoffs received in period 1. That is, the discount factor is 
applied for every consecutive period that one moves away from the first period.

The T-period game can be analyzed in the same way that the two-period game 
is studied. One simply inserts the equilibrium payoffs from the (T − 1)-period 
contest, appropriately discounted, as the value of rejection in the first period of 
the T-period game. For example, rejection by player 2 in the first period of the 
three-period game results in the discounted payoffs of the two-period game, 
which are d 21 for player 1 and d2 (1 − d1 ) for player 2. I elaborate on this with the 
Guided Exercise of this chapter. Exercise 3 at the end of this chapter asks you to 
characterize the subgame perfect equilibria of the T-period game.

The equilibrium of the alternating-offer game entails agreement made in 
the first period, so the players realize a joint value of 1. If they had reached 
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an agreement only in the second period, then the joint value would have been 
d1 m2 + d2 (1 − m2), which is strictly less than 1. If they had completely failed 
to reach an agreement in either period, then the joint value would have been 
0. Thus, the outcome of the subgame perfect equilibrium is efficient. In fact, 
the equilibrium of the general T-period game also features agreement without 
delay. Thus, although the bargaining games studied thus far provide a theory of 
bargaining power, they do not yield a theory of bargaining delay or inefficiency.

This conclusion may be a bit unsatisfying, because delay and inefficiency are 
regular occurrences in real bargaining settings. For example, almost every year 
there is a highly publicized case in which a union and a firm fail to reach an agree-
ment in contract negotiations, leading to a strike that lasts a substantial number 
of days. Perhaps the main difference between the real world and the models just 
examined is that people do not always have complete information about each 
other in the real world, whereas both parties are assumed here to know exactly 
what game is being played (including knowing each other’s discount factors). 
Part IV of this text introduces games with incomplete information and demon-
strates how informational asymmetry can lead to inefficiency.

infinite-Period, alternatinG-offer Game

Next consider an alternating-offer game that runs for a potentially infinite 
number of periods. That is, there is no final period in which bargaining takes 
place. This game has a special property: the subgames starting from any period 
t are exactly the same as the subgames starting from period t + 2. In other 
words, every subgame starting in an odd period looks like every other such 
subgame—these are infinite-period, alternating-offer games in which player 1 
makes the first offer. Likewise, the subgames starting from even periods are 
identical. Although the infinite game seems much more complex than the ones 
studied so far in this chapter, these facts about subgames serve to simplify the 
search for a subgame perfect equilibrium.4

Recall that a subgame perfect equilibrium specifies an equilibrium on every 
subgame. Let us look for an equilibrium of the infinite-period game that is 
“stationary” in the sense that a player makes the same offer whenever she is on 
the move. Also suppose that these offers are accepted. 

To find such an equilibrium, if one exists, let m2 be the offer that player 1 
would make in odd-numbered periods (when he has the offer), and let m1 be the 

4The first analysis of this game was reported in A. Rubinstein, “Perfect Equilibrium in a Bargaining Model,” 
Econometrica 50 (1982): 97–110. My calculations of the equilibrium follow the method of A. Shaked and 
J. Sutton, “Involuntary Unemployment as a Perfect Equilibrium in a Bargaining Model,” Econometrica 52 
(1984): 1351–1364. For an overview of noncooperative models of bargaining, see A. Muthoo, Bargaining 
Theory with Applications (New York: Cambridge University Press, 1999).
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251multilateral Bargaining

offer that player 2 would make in even-numbered periods. Assuming that these 
offers would be accepted in equilibrium, the continuation payoff vector from 
any odd-numbered period is (1 − m2 , m2 ), and the continuation payoff vector 
from any even-numbered period is (m1 , 1 − m1 ). Note that I am writing these 
continuation values from the perspective of the current period, not discounted to 
the beginning of the game.

Intuitively, it should be the case that player i ’s equilibrium offer puts player 
j in the position of being indifferent between accepting the offer and rejecting it 
in favor of going on to the next period. Accepting the offer would give player j 
the payoff mj , discounted to the current period. Rejecting the offer would give 
player j a continuation payoff of 1 − mi from the start of the next period, which 
is worth dj (1 − mi ) in present-period payoff terms. 

Indifference means dj (1 − mi ) = mj . Because this equation holds for both 
players, we have the following system of equations: d1 (1 − m2 ) = m1 and 
d2 (1 − m1 ) = m2 . Solving these equations yields

m1 =
d1 (1 − d2 )

1 − d1d2
 and m2 =

d2(1 − d1)

1 − d2d1
.

One can prove that the outcome sketched in the last paragraph is the unique 
subgame perfect equilibrium outcome in the infinite-period game. The equilib-
rium features agreement in the first period and yields a payoff of

1 − d2

1 − d1d2

to player 1 and
d2(1 − d1)

1 − d1d2

to player 2. You should verify that player i ’s equilibrium payoff increases 
as di rises or dj falls or both. Furthermore, using L’Hospital’s derivative rule, 
one can verify that for d1 = d2 = d, these payoffs both converge to 1>2 as d 
approaches 1. In other words, if the players are equally very patient, then they 
split the surplus evenly. This outcome is characterized by equal bargaining 
weights (p1 = p2 = 1>2) in the language of the standard bargaining solution.

mUltilateral BarGaininG

Sometimes negotiation involves more than two parties. With many players at the 
bargaining table, there is an endless variety of bargaining protocols and rules 
for agreement. For example, the members of a legislature must bargain over 
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the specifications and passage of new laws. The legislature’s procedural rules 
describe (1) how individual members can be recognized to make proposals, 
(2) whether other members are allowed to offer amendments, and (3) a voting 
rule that determines how members can respond to proposals and that gives the 
criteria for passage into law.

Let us analyze a simple model of legislative bargaining, where the legisla-
ture has three members (players 1–3) and there is an infinite number of periods. 
Imagine that the three players represent three districts in a small metropolitan 
region. There is an opportunity to fund a new project (an emergency-response 
system, for instance) that will benefit all of the regions equally. To keep things 
simple, suppose that the benefit of the project to each region is 1, for a total 
benefit of 3. The cost of the project is 2, which can be divided in any way 
between the regions. Note that the project creates value, and thus efficiency 
dictates that it be funded. Each player wants to maximize the gain to her own 
region and therefore wants to lower the portion of the project’s cost borne by her 
constituents. This is essentially a setting of three-person bargaining, whereby 
the players negotiate over how to split the project’s surplus of 1.

Suppose that legislative interaction takes place as follows. In a given period, 
one player has the right to make a proposal x = (x1 , x2 , x3 ), where xi denotes 
the amount offered to player i. For example, if x1 = 1>4, then it means that 
player 1’s district is asked to pay 3>4 to help fund the project, so its gain is 
1 − (3>4). Player 1 makes the proposal in period 1, player 2 makes the proposal 
in period 2, player 3 makes the proposal in period 3, and the order cycles accord-
ingly in future periods. After a proposal is made in a given period, the other 
two players simultaneously vote for or against it. Assume that the voting rule is 
unanimity. If both players vote in favor, then the proposal passes, and the game 
ends. If one or both players vote against the proposal, then the game continues 
with another proposal in the next period. Amendments are not allowed, so we 
have a so-called closed rule legislature. Assume that players discount the future 
using the shared discount factor d.

Let us look for a stationary subgame perfect equilibrium in the way that 
we analyzed the infinite-period, alternating-offer game in the previous section. 
Suppose that conditional on reaching any particular period, the proposer will 
offer xn to the player who would be next to make a proposal and will offer x l to 
the other player who would make the proposal two periods hence. Let xp be the 
amount that the proposer offers for herself (that is, her own district). Because 
the players have the same discount factor, it makes sense to conjecture that these 
equilibrium amounts will not depend on the identity of the proposer. Suppose 
also that the equilibrium proposal is accepted by the other players. We next 
examine how these values must be related in equilibrium.
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First note that under our working hypothesis, equilibrium offers are accepted, 
and we have

xp + xn + x l = 1

because the players are bargaining over a total value of 1. Next, notice that the 
proposer must offer at least dxp to the player who would make the proposal in 
the next period; otherwise, this player would vote against the proposal and get 
xp in the following period when she can make the proposal and expect that it 
be passed. Thus, we have xn Ú dxp. Likewise, the proposer must offer at least 
d 2xp to the player who would make the proposal two periods hence, because this 
player has the option of rejecting proposals until it is her turn to make the offer. 
Thus, we have x1 Ú d 2xp.

The proposing player would like to obtain the most possible for her district, 
which means lowering xn and x l until these two inequalities bind (they become 
equalities—that is, xn Ú dxp becomes xn = dxp). We conclude that xn = dxp 
and x l = d 2xp. Using this substitution in the first equation of the previous para-
graph, we get

xp + xn + x l = xp + dxp + d 2xp = 1,

which simplifies to

xp =
1

1 + d + d 2
, xn =

d

1 + d + d 2
, and x l =

d 2

1 + d + d 2
.

As a numerical example, take d = 1>2, in which case xp = 4>7, xn = 2>7, and 
x l = 1>7. Then, in the subgame perfect equilibrium, player 1’s offer in the first 
period is x = (4>7, 2>7, 1>7), which is accepted by the other players. In the out-
of-equilibrium contingency in which period 2 is reached, player 2’s equilibrium 
offer would be x = (1>7, 4>7, 2>7).

This simple model of legislative bargaining shows that the intuition from 
the two-player, infinite-period model carries over to the general setting of multi-
lateral bargaining. The player who gets to make the first proposal fares better 
than do the others, but equity arises as the discount factor converges to 1. You 
can quickly verify that as d becomes close to 1, xp, xn, and x l all converge to 
1>3. Important issues still on the table are (1) whether there are other equilibria 
in addition to the stationary one just characterized, and (2) how the equilibrium 
outcome might change under different procedural rules. These issues have been 
probed in the scientific literature.5

5If you are interested in the analysis of legislative processes, a good place to start is with D. P. Baron and 
J. A. Ferejohn, “Bargaining in Legislatures,” The American Political Science Review 83 (1989): 1181–1206.
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GUided eXerCise

Problem: Consider the three-period, alternating-offer bargaining game. 
Suppose that the discount factor for both players is d, where 0 < d < 1. In this 
game, player 1 makes the first offer, in period 1. If player 2 rejects this offer, 
then the game continues in period 2, where player 2 makes the offer and player 1 
decides whether to accept or reject it. If player 1 rejects this offer, then the game 
continues in period 3, where player 1 makes the final offer and player 2 accepts 
or rejects. Compute the subgame perfect equilibrium of this game.

Solution: Consider the subgames from the beginning of period 3, where 
player 1 makes an offer m3 and player 2 accepts or rejects it. Because this is an 
ultimatum-offer subgame, we know its equilibrium: player 1 chooses m3 = 0 
and player 2 accepts all offers. To see this, note that it would be irrational for 
player 2 to reject a positive offer. As a consequence, it is not rational for player 
1 to select some mn > 0 because, given that player 2 is sure to accept it, player 1 
gains by selecting a lower offer (such as m = mn >2). Thus, if the game reaches 
period 3, then sequential rationality dictates that player 1 will obtain the entire 
surplus from that point.

Next, examine the end of period 2, where player 1 is considering whether 
to accept an offer of m2 from player 2. If player 1 accepts this offer, then she 
will obtain m2 in period 2. It will be useful not to write this payoff in period 1 
terms, so let us not multiply it by the discount factor. Importantly, player 1 must 
compare m2 to the payoff she would receive by rejecting player 2’s offer and 
waiting until period 3. By waiting, player 1 will obtain the discounted value 
of the outcome from period 3, which is d # 1 = d. Note that this is discounted 
because player 1 gets all of the surplus in the next period. Also note that discount-
ing occurs just once as the payoffs are put in terms of period 2 (which we are 
relating to period 3). We conclude that in period 2, player 1 will accept m2 if and 
only if m2 Ú d. There is the issue of player 1 being indifferent between accept-
ing and rejecting if m2 = d. But it will turn out that she will have to accept in 
this case, for otherwise, player 2 would have the incentive to offer “the smallest 
amount that is strictly greater than d,” which does not exist.

Moving to the beginning of period 2, note that player 2 expects to get noth-
ing if he offers less than d to player 1, for in this case player 1 would reject the 
offer. If player 2 offers at least d, then player 1 will accept. Thus, player 2’s 
optimal offer is m2 = d. In summary, if the game reaches period 2, then in the 
subgame perfect equilibrium player 1 gets d and player 2 gets 1 − d.

The foregoing basically repeated the calculations for the two-period game 
discussed earlier in this chapter. Analysis of behavior in period 1 works the 
same way. If player 2 rejects player 1’s offer of m1, then player 2 will get 
1 − d from the next period. Discounting this amount to compare it to a payoff 
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received in period 1, we see that player 2 will accept player 1’s offer if and only 
if m1 Ú d(1 − d ). Player 1’s optimal offer is thus m1 = d(1 − d ).

In summary, the unique subgame perfect equilibrium of the three-period, 
alternating-offer bargaining game features agreement in the first period. Player 
1 obtains 1 − d(1 − d ) and player 2 obtains d(1 − d ). The outcome is efficient. 
Player 1’s payoff is large when the players are very patient (because she can 
always wait until the third period, where she enjoys having the final offer), as 
well as when the players are very impatient (because then she can take advan-
tage of player 2’s incentive to accept almost anything).

eXerCises

1. Suppose the president of the local teachers’ union bargains with the super-
intendent of schools over teachers’ salaries. Assume the salary is a number 
between 0 and 1, 1 being the teachers’ preferred amount and 0 being the 
superintendent’s preferred amount.
(a)  Model this bargaining problem by using a simple ultimatum game. The 

superintendent picks a number x, between 0 and 1, which we interpret as 
his offer. After observing this offer, the president of the union says “yes” 
or “no.” If she says “yes,” then an agreement is reached; in this case, 
the superintendent (and the administration that she represents) receives 
1 − x and the president (and the union) receives x. If the president says 
“no,” then both parties receive 0. Using the concept of backward induc-
tion, what would you predict in this game?

(b)  Let us enrich the model. Suppose that before the negotiation takes place, 
the president of the union meets with the teachers and promises to hold 
out for an agreement of at least a salary of z. Suppose also that both the 
superintendent and the president of the union understand that the presi-
dent will be fired as union leader if she accepts an offer x < z. They also 
understand that the president of the union values both the salary and her 
job as the leader of the union and that she will suffer a great personal 
cost if she is dismissed as president. To be precise, suppose that the 
president suffers a cost of y utility units if she is fired (this is subtracted 
from whatever salary amount is reached through negotiation, 0 if the 
president rejects the salary offer). That is, if the president accepts an 
offer of x, then she receives x − y in the event that x < z, and x in the 
event that x Ú z. If the president rejects the offer, then she obtains a 
payoff of 0. In the bargaining game, what offers of the superintendent 
will the president accept? (For what values of x will the president say 
“yes”? Your answer should be a function of y and z.)
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(c)  Given your answer to part (b), what is the outcome of the game? (What 
is the superintendent’s offer and what is the president’s response?) 
Comment on how the union’s final salary depends on y.

(d)  Given your answer to part (b), what kind of promise should the presi-
dent make?

2. Suppose that you are attempting to buy a house, and you are bargaining with 
the current owner over the sale price. The house is of value $200,000 to you 
and $100,000 to the current owner; so, if the price is between $100,000 and 
$200,000, then you would both be better off with the sale. Assume that bar-
gaining takes place with alternating offers and that each stage of bargaining 
(an offer and a response) takes a full day to complete. If agreement is not 
reached after ten days of bargaining, then the opportunity for the sale disap-
pears (you will have no house and the current owner has to keep the house 
forever). Suppose that you and the current owner discount the future accord-
ing to the discount factor d per day. The real estate agent has allowed you to 
decide whether you will make the first offer.
(a)  Suppose that d is small; in particular d < 1>2. Should you make the first 

offer or let the current owner make the first offer? Why?
(b)  Suppose that d is close to 1; in particular d > 29 1>2 (which means 

that d 9 > 1>2). Should you make the first offer or let the current owner 
make the first offer? Why?

3. Consider the alternating-offer bargaining game with T stages, in which the 
players discount payoffs received in successive stages according to the dis-
count factor d. That is, the two players take turns making offers. In each 
stage, one of the players makes an offer, followed by acceptance or rejection 
of the offer by the other player. Acceptance ends the game, and the surplus 
is divided as agreed. Offers and counteroffers continue as long as the play-
ers reject each other’s offers. For example, if the players agree in the tth 
stage that player 1 shall have m share of the surplus, then player 1 gets a 
payoff of d t−1 m. If the offer in stage T is rejected, then the game ends with 
both players receiving 0. For simplicity, assume the surplus to be divided is 
one unit of utility.
 Analyze this game by computing the subgame perfect Nash equilib-
rium. Start by restating the equilibrium derived in the text for T = 1 and 
T = 2. Then analyze the three-, four-, and five-period games in order. Write 
the payoff vectors corresponding to the equilibria of these games to reveal a 
pattern. Can you tell to what the payoff vector of the T-stage game converges 
as T becomes large?
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4. [Nash’s demand game6] Compute and describe the Nash equilibria of the 
following static bargaining game. Simultaneously and independently, play-
ers 1 and 2 make demands m1 and m2 . These numbers are required to be 
between 0 and 1. If m1 + m2 … 1 (compatible demands, given that the sur-
plus to be divided equals 1), then player 1 obtains the payoff m1 and player 
2 obtains m2 . In contrast, if m1 + m2 > 1 (incompatible demands), then 
both players get 0. In addition to describing the set of equilibria, offer an 
interpretation in terms of bargaining weights as in the standard bargaining 
solution.

5. See if you can draw a graph like the one in Figure 19.2 to represent the 
subgame perfect equilibrium calculation for the infinite-period alternating-
offer bargaining game.

6. Consider the following discounted, three-period bargaining game. The dis-
count factor is d, where 0 < d < 1. In this game, player 1 makes the first of-
fer. If player 2 rejects this offer, then player 1 makes another offer. If player 
2 rejects the second offer, then player 2 makes the final offer. In other words, 
player 1 makes the offers in periods 1 and 2, whereas player 2 makes the of-
fer only in period 3. Compute the subgame perfect equilibrium of this game.

7. Consider a three-player bargaining game, where the players are negotiating 
over a surplus of one unit of utility. The game begins with player 1 propos-
ing a three-way split of the surplus. Then player 2 must decide whether to 
accept the proposal or to substitute for player 1’s proposal his own alterna-
tive proposal. Finally, player 3 must decide whether to accept or reject the 
current proposal (whether it is player 1’s or player 2’s). If he accepts, then 
the players obtain the specified shares of the surplus. If player 3 rejects, then 
the players each get 0. Draw the extensive form of this perfect-information 
game and determine the subgame perfect equilibria.

8. In experimental tests of the ultimatum bargaining game, subjects who pro-
pose the split rarely offer a tiny share of the surplus to the other party. Fur-
thermore, sometimes subjects reject positive offers. These findings seem 
to contradict our standard analysis of the ultimatum game. Many scholars 
conclude that the payoffs specified in the basic model do not represent the 
actual preferences of the people who participate in the experiments. In real-
ity, people care about more than their own monetary rewards. For example, 
people also act on feelings of spite and the ideal of fairness. Suppose that in 

6J. F. Nash, “Two Person Cooperative Games,” Econometrica 21 (1953): 128–140.
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the ultimatum game, the responder’s payoff is given by y + a(y − z), where 
y is the responder’s monetary reward, z is the offerer’s monetary take, and a 
is a positive constant. That is, the responder cares about how much money 
he gets and he cares about relative monetary amounts (the difference be-
tween the money he gets and the money the other player gets). Assume that 
the offerer’s payoff is as in the basic model.
(a)  Represent this game in the extensive form, writing the payoffs in terms 

of m, the monetary offer of the proposer, and the parameter a.
(b)  Find and report the subgame perfect equilibrium. Note how equilibrium 

behavior depends on a.
(c)  What is the equilibrium monetary split as a becomes large? Explain 

why this is the case.

9. Consider a bargaining game among three political parties—the Conserva-
tive Party, the Liberal Democratic Party, and the Labor Party (each party 
is a player). There are T periods of bargaining, numbered t = 1, c, T. 
In each period, one party is the “proposer,” one is the “responder,” and the 
third is the “bystander.” The proposer makes an offer to the responder, who 
may then accept or reject. If the responder accepts, then the game ends and 
the offer is implemented. Otherwise, the game continues to the following 
period unless the period is T, in which case the game ends. If the game ends 
without an offer being accepted, all parties get zero.
 Suppose that the Liberal Democratic Party is always the responder. In 
odd-numbered periods the Conservative Party is the proposer, and in even-
numbered periods the Labor Party is the proposer. The total amount of value 
to be divided among the parties is normalized to 1. A proposal specifies a 
vector (x, y), where x is the amount that the proposer will receive, and y is 
an amount that the responder will receive. (The bystander is left out.) The 
players discount the future according to the common discount factor d.
(a)  Suppose that T = 1. Prove that in the subgame perfect equilibrium, the 

Conservative Party offers x = 1 and y = 0, and the Liberal Democratic 
Party accepts any offer with y Ú 0.

(b)  Suppose that T is odd. Determine the unique subgame perfect equilib-
rium and describe what offer, if any, is accepted and in which period.

(c)  Suppose that T =  . Describe a subgame perfect equilibrium in which 
an offer is accepted in the first period. What is the first-period offer?
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I  titled the preceding chapter “Analysis of Simple Bargaining Games” because 
  the models examined there are very crude representations of the complex pro-

cesses through which negotiation often takes place in the real world. In reality, 
there is usually more to bargaining than alternating offers and counteroffers. For 
example, negotiation may be segmented into times in which different aspects 
of the bargaining problem are discussed separately. The negotiation process 
may include a brainstorming session. A person may make all sorts of physical 
gestures intended to strengthen his bargaining position. Parties may make silly 
threats, such as “I will scream if you don’t give in to my demands!” A person 
may scream or talk softly or insult the party at the other side of the table. None 
of these options are included in the models of Chapter 19; more realistic models 
would include them.

Remember, however, that the point of game-theoretic modeling is not to 
completely describe all of the nuances of strategic interaction. Rather, an artful 
and useful application of game theory isolates just a few strategic elements by 
using a model that is simple enough to analyze. There is no point in trying to 
capture all of the aspects of negotiation in one model. In fact, for many purposes, 
the games in Chapter 19 are themselves too complicated. For example, suppose 
we want to model a situation in which two business partners first bargain over 
a profit-sharing rule and then engage in productive interaction. On its own, the 
bargaining component may be modeled by using an alternating-offer game. 
Likewise, the productive interaction may be modeled by a game in which, say, 
the parties exert effort on the job. If we combine these two games, we would 
get a larger, more complicated game that may be difficult to analyze. Further-
more, perhaps a characterization of the players’ bargaining powers is all we 
really want from the bargaining game. That is, we just want to capture the idea 
that the outcome of the negotiation process is consistent with certain bargaining 
weights. Then it makes sense just to employ the standard bargaining solution in 
place of the alternating-offer game.

Let me make this point again and more generally. As I noted already, contrac-
tual relationships normally include both (1) phases of interaction in which the 
parties negotiate over something and (2) phases in which the parties work 

20GAMES WITH JOINT DECISIONS;  
NEGOTIATION EQUILIBRIUM
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 independently. As theorists, we often want to focus on aspects of the second 
type of interaction while summarizing the outcome of the first type in terms 
of the players’ bargaining weights and disagreement points. It is thus helpful 
to address different components of strategic interaction at different levels of 
modeling detail. That is, we can study some components of a strategic setting by 
using a full noncooperative approach and other components by using an abbre-
viated approach. In this chapter, I explain how to use the standard bargaining 
solution as an abbreviated model of negotiation.

JOINT DECISIONS

A simple way of inserting a “summary” negotiation component into a nonco-
operative game is to include joint-decision nodes in the game tree.1 A joint-
decision node is an abbreviated description of negotiation between players 
over some tangible objects, such as profit-sharing rules, monetary transfers, or 
whether to form a partnership. Thus, a joint-decision node represents a place in 
the game where players negotiate and establish a contract. We specify a joint 
decision when we do not want to create a full noncooperative model of the nego-
tiation process and when we have a simple theory of how negotiation is resolved 
(by using, for example, the standard bargaining solution).

To represent joint decisions in a tree, we can employ the same devices 
currently used to specify individual decisions. We simply allow some decision 
nodes to be designated as joint-decision nodes. The joint-decision nodes are 
graphically represented by double circles to differentiate them from individual 
decision nodes. Furthermore, we label a joint-decision node with the set of play-
ers who are called on to make the joint decision. Branches represent the alterna-
tives available to the players, as is the case with individual decision nodes. In 
addition, wherever there is a joint-decision node, we must designate one of the 
branches as the default decision, which is assumed to go into effect in the event 
that the players do not reach an agreement.2

A game with joint decisions is illustrated in Figure 20.1, which is a simple 
model of contracting between a supplier firm and a buyer firm. First, the firms 

1The game-theoretic framework with joint decisions is covered more deeply in J. Watson, “Contract and Game 
Theory: Basic Concepts for Settings with Finite Horizons,” University of California, San Diego, Working 
Paper, 2005.
2Theories of joint decision making, such as the standard bargaining solution, may generally conclude that 
the agents avoid negotiation impasse. Nonetheless, it is important to specify a default decision because it 
influences the relative bargaining strengths of the parties and thus the outcome of negotiation. We implic-
itly assume that each party to a joint decision can unilaterally induce the default decision (by withholding 
 agreement).
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jointly determine whether to contract and, if so, what damages c to specify if the 
supplier (player 2) is caught providing a low-quality intermediate good. If they 
choose not to contract (which is the default decision), then the game ends and 
each receives nothing. If they contract, and firm 2 then provides a high-quality 
good, payoffs are 10 for the buyer and 5 for the supplier. By providing a low-
quality good, firm 2 saves money. However, the low-quality good is useless to 
the buyer. (These ideas are captured by the numbers −6 and 10.) But with prob-
ability 1>2, the supplier is caught and damages are awarded by a court. (This is 
a payment of c from the supplier to the buyer.)

For another example, take the bargaining problem of Jerry and Rosemary 
that was discussed in Chapter 18. This problem is depicted in Figure 20.2 as a 
game with joint decisions. Note that in this example, the tree has just one deci-
sion node—the joint-decision node representing the negotiation between the 
players. The default decision is no employment.

It is possible for a joint decision to be made at an information set contain-
ing more than one node. One can simply connect with dashed lines (enclose in 
the same information set) several nodes specifying joint decisions. This implies 
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A negotiation game.
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that all of the players participating in a joint decision have the same information 
when the decision is to be made.3 While on this subject of information, let us 
revisit the tree rules stated in Chapter 14. For games with joint decisions, Tree 
Rules 1, 2, 3, and 5 are prescribed as before. Tree Rule 4 is replaced by:

 Tree Rule 6 For each information set, all included nodes must be 
decision nodes for the same subset of players—that is, belonging to 
either a single player or, in a joint decision, the same group of players.

Before I move on to the analysis of games with joint decisions, let me make 
a few more comments on the interpretation of joint-decision nodes. At a joint- 
decision node, the branches correspond to tangible items over which the parties 
spot contract. By “spot contract,” I mean that these items are automatically 
enforced as a part of the agreement. In regard to things such as profit-sharing 
rules, wage rates, or salaries, the spot contract amounts to a document that both 
parties sign. Of course, the document (specifying the profit-sharing scheme, 
wage, or salary) certainly may affect future behavior because it may directly 
affect the players’ payoffs or future options. Usually the future effect is related 
to external enforcement; for example, the document may be submitted to a court. 
This is the case for the game in Figure 20.1, in which the damage award c is 
imposed by the court.

Overall, there are two reasons why joint decisions make a good model-
ing tool. First, by using an abbreviated model of negotiation, the theorist can 
emphasize other aspects of a strategic situation while still capturing the intuitive 
notion of bargaining power in the resolution of bargaining problems. This has 
the further benefit of helping us differentiate between the process of negotia-
tion and what the players are negotiating over. Second, joint decisions mark the 
places in a game where contracting takes place.4

NEGOTIATION EQUILIBRIUM

To analyze general games with joint decisions, we combine backward induction 
(more specifically, subgame perfection) with the standard bargaining solution; 

3The simple framework described here does not consider contracting under asymmetric information.
4In fact, in addition to representing spot contracting on tangible items, joint-decision nodes may designate where 
players engage in “meta-level” contracting, where they actively coordinate their future behavior by selecting 
among self-enforceable alternatives. At this point, I shall not address meta-level contracting in the context of 
games with joint decisions. The subject is important but beyond the scope of this book. For more information, 
see J. Watson, “Contract and Game Theory: Basic Concepts for Settings with Finite Horizons,” University 
of California, San Diego, Working Paper, 2005; and D. Miller and J. Watson, “A Theory of Disagreement in 
Repeated Games with Bargaining,” University of California, San Diego, Working Paper, 2012.
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the former pins down behavior at individual decision nodes, whereas the latter 
identifies behavior at joint-decision nodes.

Given an extensive-form game with joint decisions, a specification of behav-
ior at every information set is called a regime. This is simply a generalization of 
the “strategy” concept to include joint decisions. I use the following equilibrium 
definition:

 A regime is called a negotiation equilibrium if its description of behavior 
at individual decision nodes is consistent with sequential rationality and its 
specification of joint decisions is consistent with the standard bargaining 
solution, for given bargaining weights.

This definition is not precise enough to be clear-cut in every game with joint 
decisions. In particular, we can run into two problems when trying to construct 
a negotiation equilibrium. First, we have to decide what is meant by “sequential 
rationality.” For example, we could use backward induction or subgame perfec-
tion. Second, how to apply the standard bargaining solution in some contexts 
may not be obvious, in particular where there is not transferable utility. I avoid 
these problems by focusing on games in which backward induction or subgame 
perfection can be easily employed (this is a wide class, by the way) and by 
assuming that players can transfer money whenever they negotiate. You can 
leave to interested hot-shot theorists the task of navigating the labyrinthine 
esoterica of more general application.

EXAMPLE: CONTRACTING FOR HIGH-POWERED INCENTIVES

To illustrate the negotiation equilibrium concept, consider a contract example. 
Carina and Wendy, two bright and motivated people, wish to initiate a busi-
ness partnership. They have decided to open and run a bookstore specializing in 
sports, games, literature, and dance. Wendy is an investment wizard, so she will 
handle the financial side of the company. She also plans to promote the store 
by carrying a banner during her weekly running races and triathlons. Carina, 
disgruntled after years of underappreciated professional work in the educational 
system, is looking forward to handling the day-to-day operations of the store.

Witty and erudite, Carina will have no problem directing customers to 
challenging new works of literature. However, as a liberal benefactor of all 
 humanity, Carina finds it difficult to ask people actually to pay for books. In 
particular, when a customer asks for a price reduction on a book, holding to the 
regular price makes Carina suffer some disutility. However, Wendy notes that 
the disutility is more than offset by the gain in store profit from maintaining  
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a  “fixed-price” policy. Wendy therefore suggests that Carina consider a compen-
sation package rewarding her for administering the fixed-price policy.

The interaction between Wendy and Carina is modeled by the game in 
Figure 20.3. First, the partners jointly decide on a compensation package 
consisting of Carina’s salary t and a bonus b, the latter of which is paid only if 
Carina administers the fixed-price policy. Wendy obtains the remainder of the 
firm’s revenue. Note that we are implicitly assuming that whether or not Carina 
administers the pricing policy can be verified to the court; thus, transfers on the 
basis of Carina’s pricing decisions are externally enforced. The default decision 
is that Carina and Wendy do not open the store, leading to a payoff of zero for 
both of them. If the players reach an agreement, then Carina chooses between 
high effort and low effort on the job. High effort means implementing the fixed-
price policy at a personal cost of $10,000, whereas low effort means giving in 
to her instinct to be more generous with customers. High effort implies reve-
nues of $120,000 for the firm; low effort implies revenues of $50,000.

To solve this game, we start by analyzing Carina’s effort decision. Note that 
there is an infinite number of decision nodes for Carina, one corresponding to 
each of the infinite number of salary–bonus combinations. Given t and b, Carina 
has the incentive to exert high effort if and only if

b + t − 10,000 Ú t.

Thus, Carina selects high effort if and only if b Ú 10,000. In words, Carina will 
not exert high effort unless her bonus for doing so sufficiently covers her disutil-
ity (a high salary does not work). This is a simple but important idea in the area 
of contract and incentives: so-called high-powered incentives—which compen-
sate people conditional on their direct contribution to output—work well if a 
person’s contribution is verifiable.

Next, we move to the joint-decision node, which we solve by using the 
standard bargaining solution. Note that if Carina and Wendy select b Ú 10,000,
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in which case Carina will subsequently choose high effort, then their joint 
value is

(b + t − 10,000) + (120,000 − t − b) = 110,000.

If they select a bonus that is less than 10,000, then their joint value is 50,000. 
Because they jointly prefer the higher value, they will choose a bonus of at least 
10,000. Further, the salary and bonus serve to divide the surplus of 110,000 
according to the players’ bargaining weights pC and pW so that Carina obtains 
110,000pC and Wendy gets 110,000pW. For example, suppose Carina and 
Wendy have equal bargaining powers. Then they might choose b = 10,000 and 
t = 55,000. In general, with b = 10,000, the salary is t = 110,000pC. Any 
higher bonus is also fine, but it would be combined with an offsetting lower salary.

GUIDED EXERCISE

Problem: Suppose Frank, an aspiring chef, has a brilliant plan to open a 
 musical-themed, neo-Italian restaurant in the hip Clairemont district of San 
Diego. For the restaurant to be successful, Frank must employ two people: Gwen, 
a free-spirited singer, and Cathy, a savvy market analyst and legal consultant. 
With the help of Gwen and Cathy, Frank’s new business will generate a gross 
profit of $300,000. But unless both Gwen and Cathy assist Frank, his business 
will fail, yielding zero profit. The three parties negotiate over monetary transfers 
and over whether Gwen and Cathy will participate in Frank’s project.

(a) Consider a situation in which the three players negotiate all at once. Let 
x denote a transfer from Frank to Gwen, and let y denote a transfer from 
Frank to Cathy. Thus, if the parties agree to start the business and to make 
transfers x  and y ,  then Frank obtains 30,000 − x − y,  Gwen gets x ,  and 
Cathy receives y .  Under the assumption that the players have equal bargain-
ing weights and the disagreement point is (0, 0, 0), what is the outcome of 
negotiation? Use the standard bargaining solution here.

(b) Next suppose that Frank negotiates with Gwen and Cathy sequentially. 
First, Frank and Gwen make a joint decision determining whether Gwen 
commits to participate in the business. They also agree to an immediate 
transfer t from Frank to Gwen, as well as a payment x contingent on the 
event that Cathy also agrees to participate in the business. Then Frank and 
Cathy negotiate, with complete knowledge of the agreement between Frank 
and Gwen. Frank and Cathy jointly determine a transfer y and whether 
Cathy will join the project. Disagreement in the negotiation between Frank 
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and Gwen yields 0 to each player. Disagreement between Frank and Cathy 
yields an outcome in which Frank loses t (it was a sunk payment), Gwen 
gains t, and Cathy gets 0. This game can be represented as shown here.

x,  t y

Default Default

F, G F, C

0, 0, 0

Under the assumption that the players have equal bargaining weights, 
compute the negotiation equilibrium of this game.

(c) What are the players’ payoffs in the outcome of part (b)? Explain how the 
contract between Frank and Gwen affects the negotiation between Frank 
and Cathy. Is the outcome efficient?

Solution:

(a) The surplus of negotiation is clearly 300,000. The default outcome yields a 
payoff of 0 for everyone. Because the players have equal bargaining power 
and negotiate all at once, the standard bargaining solution implies that each 
player gets a third of the surplus, so each player gets a payoff of 100,000. 
To achieve this, it must be that x = y = 100,000.

(b) Consider first the negotiation between Frank and Cathy, under the assump-
tion that Frank and Gwen reached an agreement (specified x  and t )  earlier. 
Examining the payoffs of Frank and Cathy, observe that the surplus of their 
negotiation is

(300,000 − x − t − y) + y − [− t + 0] = 300,000 − x.

Frank’s disagreement payoff is − t, whereas Cathy’s disagreement payoff 
is 0. Because Frank and Cathy have equal bargaining weights, the stan-
dard bargaining solution implies that their negotiation will be resolved in 
a way that makes Frank’s payoff 150,000 − (x>2) − t and Cathy’s payoff 
150,000 − (x>2). Anticipating this, at the beginning of the game, Frank 
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and Gwen realize that Cathy will extract 150,000 − (x>2). Subtracting this 
amount from 300,000, we find that the negotiation surplus for Frank and 
Gwen at the start of the game is 150,000 + (x>2). Note that Frank and Gwen 
have to pick x …  300,000 to induce Cathy to sign on as well. Thus, Frank and 
Gwen optimally select x = 300,000, which yields a surplus of 300,000 for 
them. They split the surplus evenly, which implies t = −150,000. Note that 
Frank and Cathy then agree to a contract specifying y = 0.

(c) In the negotiation equilibrium in part (b), Frank and Gwen each receive 
150,000 and Cathy obtains 0. By contracting before Cathy is on the scene, 
Frank and Gwen are able to manipulate the way that Frank contracts with 
Cathy. Basically, Frank and Gwen agree that if Frank and Cathy later 
reach an agreement, then Frank will have to transfer the value of the 
agreement to Gwen; this lowers to 0 the value of any agreement between 
Frank and Cathy. Gwen’s lump-sum payment of 150,000 to Frank divides 
the surplus.

EXERCISES

1. A manager (M) and a worker (W) interact as follows: First, the players 
make a joint decision, in which they select a production technology x, a 
bonus payment b, and a salary t. The variable x can be any number that 
the players jointly choose. The bonus is an amount paid only if the worker 
exerts high effort on the job, whereas the salary is paid regardless of the 
worker’s effort. The default decision is “no employment,” which yields a 
payoff of 0 to both players.

If the players make an agreement on x, b, and t, then the worker chooses 
between low effort (L) and high effort (H). If the worker selects L, then 
the manager gets −4 − t and the worker gets t. In contrast, if the worker 
selects H, then the manager gets 8x − b − t  and the worker gets b + t − x2.
The interpretation of these payoffs is that 8x is the firm’s revenue and x2 is 
the worker’s cost of high effort, given production technology x.
(a)  Represent this game as an extensive form with joint decisions (draw the 

game tree). Your tree should show and properly label the joint-decision 
node, as well as the worker’s individual decision node. Clearly repre-
sent the default outcome and payoff for the joint-decision node.

(b)  Given x, b, and t, under what conditions does the worker have the incen-
tive to choose H?

(c)  Determine the negotiation equilibrium of this game, under the assump-
tion that the players have equal bargaining weights. Start by calculating 
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the maximized joint value of the relationship (call it v*), the surplus, 
and the players’ equilibrium payoffs. What are the equilibrium values 
of x, b, and t?

(d)  In this setting, is it appropriate to say that the worker’s effort is 
verifiable or unverifiable? Why?

2. Consider another version of the game between Carina and Wendy, where 
Carina selects any effort level e on the job. Assume e Ú 0. The revenue of 
the firm is equal to $800e. Carina’s disutility of effort is e2 (measured in 
dollars). Carina and Wendy interact as before; first, they jointly determine 
Carina’s compensation package, and then (if they agree) Carina selects her 
level of effort.
(a)  Suppose Carina’s effort is not verifiable, so Carina and Wendy can write 

a contract specifying only a salary t for Carina. Assume Carina and 
Wendy have equal bargaining weights. Draw the extensive-form game 
and compute the negotiation equilibrium. Does Carina expend effort?

(b)  Next, suppose that Carina and Wendy are constrained to linear 
 “revenue-sharing” contracts. Such a compensation package states that 
Carina gets a fraction x of the revenue of the firm [leaving the frac-
tion (1 − x) to Wendy]. Calculate Carina’s optimal effort level as a 
function of x. Then, under the assumption that Wendy has all of the 
bargaining power, calculate the value of x that maximizes Wendy’s 
payoff. (Do not graph the bargaining set; this setting does not fit very 
well into our bargaining theory. Technically, this is an application of 
the generalized Nash bargaining solution [see Appendix D].)

(c)  Now suppose that the contract is of the form w (p) = xp + t, where w 
is the amount paid to Carina and p is the revenue of the firm. That is, the 
contract specifies that Carina receive some base salary t and, in addi-
tion, a fraction x of the firm’s revenue. Assume the players have equal 
bargaining weights. Calculate the negotiation equilibrium of this game. 
(Start by finding Carina’s optimal effort decision, given t and x. Then, 
holding t fixed, determine the number x that maximizes the players’ 
joint value. Finally, determine the players’ negotiation values and find 
the salary t that achieves this split of the surplus.)

3. A manager (M) and a worker (W) interact as follows: First, the players 
make a joint decision, in which they select a bonus parameter p and a salary 
t. The salary can be any number (positive or negative). The bonus parameter 
p must be between 0 and 1; it is the proportion of the firm’s revenue that 
the worker gets. The default decision is “no employment,” which yields a 
payoff of 0 to both players.
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If the players make an agreement on p and t, then, simultaneously and 
independently, the worker chooses an effort level x and the manager chooses 
an effort level y. Assume that x Ú 0 and y Ú 0. The revenue of the firm is 
then r = 20x + 10y. The worker’s effort cost is x2, whereas the manager’s 
effort cost is y 2. Each player gets his share of the revenue and his transfer, 
minus his cost of effort. The players have equal bargaining weights (1>2 and 
1>2). The game is depicted in the following illustration:

t,  p x y

Default

Worker’s payoff
is listed first.

W MW, M

0, 0

Compute the negotiation equilibrium of this game by answering the follow-
ing questions:
(a)  Given p and t, calculate the players’ best-response functions and the 

Nash equilibrium of the effort-selection subgame.
(b)  Finish the calculation of the negotiation equilibrium by calculating the 

maximized joint value of the relationship (call it v*), the surplus, and 
the players’ equilibrium payoffs. What are the equilibrium values of p, 
t, x, and y?

4. Consider a contractual setting with two players, where the underlying stra-
tegic interaction is given by the following “partnership game”:

H

H

1
2

L

L

10, 6 2, 10

8, 4 3, 5

This matrix describes the technology of the relationship. Suppose that 
before noncooperative interaction, the players sign an externally enforced 
contract specifying a transfer t from player 2 to player 1 in the event that 
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either (H, L) or (L, H) is played. The interpretation here is that the court can 
observe the total output of the relationship (which is either 8, 12, or 16) and 
is willing to enforce a transfer if output is 12. However, the court enforces 
the transfer only if one or both players request enforcement. Each player 
who requests enforcement must pay a legal fee of c. The court only allows 
transfers less than or equal to 10 (from one player to the other) because this 
is the greatest payoff a single player can earn in the partnership.

Consider a “grand game” in which the partnership game is one compo-
nent. Play in the grand game runs as follows. First, the players interact 
by playing the illustrated partnership game. Then, if either (H, H) or  
(L, L) is the outcome, the grand game ends. However, if (H, L) or (L, H) 
is the outcome, then the players interact further by playing the following  
 enforcement game:

The players’ payoffs in the enforcement game are added to their payoffs 
from the partnership game.
(a)  Suppose you are a policy maker who determines the fee c and the 

contract parameter t. Under what conditions on c and t will (H, H) be 
played in a subgame perfect equilibrium of this game? That is, for what 
values of c is there a number t that induces cooperation? Remember 
that t is constrained to be between −10 and 10.

(b)  Explain your reasoning for your answer to part (a). In particular, what 
happens when c = 0?

(c)  Suppose that between the partnership game and the enforcement game 
the players make a joint decision about whether to continue with the 
enforcement game or “settle out of court”; they can also make a mone-
tary transfer at this time. When the players settle out of court, they avoid 
the court fee. The default decision is to continue with the enforcement 
game. Do you think (H, H) can be supported in the negotiation equilibrium 
of this game? Explain your reasoning without explicitly solving this game.

5. Construct a game with joint decisions by augmenting the Cournot duopoly 
game in the following way: Suppose the two firms have a profit-sharing  

t – c, – t – c   

t, – t – c    

t – c, – t 

0,  0

1
2

t - c, - t - c 

t, - t - c

t - c, - t

0, 0

Enforce

Enforce

Not

Not
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pact that is enforced by the government (legal collusion). First, the firms 
 simultaneously select quantities, q1 and q2 , at a marginal cost of 10. The 
price is determined from the inverse demand curve, p = 100 − q1 − q2 , and 
the total revenue p(q1 + q2) is deposited into a joint bank account. Then the 
firms must negotiate over how to share the revenue. Model the negotiation 
as a joint decision over firm l’s share of the revenue, m, so that agreement 
yields a payoff of m − 10q1 to firm 1 and p(q1 + q2) − m − 10q2 to firm 2.
If they disagree then neither firm obtains any revenue, so firm 1 gets −10q1 
and firm 2 gets −10q2 .

6. This question leads you through the computation of the negotiation equilib-
rium of the game described in Exercise 5.
(a)  Start by analyzing the joint decisions made at the end of the game. For 

given production levels q1 and q2 , calculate the players’ payoffs by 
using the standard bargaining solution. Write the payoffs in terms of 
arbitrary bargaining weights p1 and p2 .

(b)  What are the firms’ payoffs as functions of q1 and q2 for p1 = 1>2 and 
p2 = 1>2?

(c)  While continuing to assume p1 = p2 = 1>2, solve the Cournot compo-
nent of the model by using Nash equilibrium. Explain why there are 
multiple equilibria. How does the outcome compare with that of the 
basic Cournot model? Is the outcome efficient?

(d)  Next suppose that p1  p2 . Find the players’ Nash equilibrium output 
levels. Remember that q1 and q2 are required to be greater than or equal 
to 0. [Hint: The equilibrium is a corner solution, where at least one 
of the inequalities binds (q1 = 0 and/or q2 = 0), so calculus cannot be 
used.]

(e)  Discuss how the firms’ quantity choices depend on their bargaining 
weights and explain the difference between the results of parts (c) and (d).

7. A manager (M) and employee (E) interact as follows. The manager can 
choose whether to offer a written contract or simply shake hands with the 
employee. If the manager offers a written contract, the parties bargain over 
a wage and a bonus. Then the employee decides whether to work or shirk. 
Under the written contract, the employee is paid the contractual wage p for 
sure, and he is also paid the contractual bonus q if he worked. If the parties 
do not have a written contract, then after the work/shirk decision, they nego-
tiate over the amount that the manager will pay the employee.

The extensive form of this game is shown in the illustration that follows. 
The contractual variables p, q, and r may be any real numbers.
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(a)  Find a negotiation equilibrium in the subgame that starts at node 1.
(b)  Find a negotiation equilibrium in the subgame that starts at node 2.
(c)  Consider any negotiation equilibrium of the entire game. What are the 

equilibrium payoffs?

8. This question asks you to compare two games, one of which has a joint 
decision.
(a)  Find the pure-strategy negotiation equilibria of the extensive-form game 

shown in the illustration that follows. Note that y is restricted to be in 
the interval [0, 4] and t ∈ (− ,  ). Is there an equilibrium in which 
y = 4?

Employee’s payoff is listed first.

r

M

0, -3

E, M

1

E, M

0,  0

E

2

E

Contract

Handshake

Shirk

Default

Defa
ult

Work

Work

Shirk

p, q

Default

y t
1, 21

0

4
2

1

A

A

AB

B

B

21

Watson_c20_259-273hr.indd   272 2/5/13   10:05 AM



273Exercises

(b)  Next consider the slightly different extensive-form game in the illustra-
tion that follows. Demonstrate that there exists a pure-strategy subgame-
perfect equilibrium in which y = 4.

y

1

0

4

A

A

A

B

1

2

B

B

(c)  Provide a concise economic interpretation of the contrast between these 
two games.
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Many economic examples are interesting precisely because of the tensions 
inherent in strategic situations.1 In particular, a tension between individ-

ual and joint interests exists when a player’s private costs and benefits are not 
equal to joint costs and benefits. This tension can have serious effects if there are 
limits on external enforcement, such as if the players’ actions cannot be verified 
to an enforcement authority.2

Dynamic contract settings often exhibit a particular tension between indi-
vidual and joint interests that is due to the timing of investments and negotiation. 
The basic idea is that the success of a particular project relies on an investment 
by person A as well as on the productive input of person B. The project requires 
person A to make the investment first. Only later does person B come onto the 
scene. The key problem is person A’s incentives, for she can gain the returns of 
her investment only by contracting with person B later. If person B will utilize 
bargaining power to extract a share of the returns, so that person A does not 
obtain the full value of her investment, then person A may not have the incentive 
to invest optimally in the first place. This is called the “hold-up” problem, because 
person B extracts part of the returns under the threat of holding up production.

More generally, the hold-up problem can arise even if parties contract before 
investments are made, in particular if the investments are unverifiable. This is 
because the parties may want to write a contract that punishes them jointly if 
one or both of them fail to invest; however, if the undesired contingency actually 
arises, then the players would have the incentive to renegotiate their contract to 
avoid the joint punishment. In this sense, the punishment fails to be credible 
and, therefore, players may lack incentives to invest efficiently.

In this chapter, I review some of the basic insights on contracting with 
unverifiable investments and hold up. Of particular interest are contractual 

1Recall the tensions that I have presented: (1) the clash between individual and group incentives, (2) strategic 
uncertainty, (3) inefficient coordination, and variants of these tensions on the level of contract.
2 Classical economic theory tends to view this tension as arising because of informational asymmetries 
between contracting parties or because of “missing markets.” The latter refers to interaction between people 
concerning a good (such as air quality) that is not traded on a market. The term externality is often used in 
relation to such a setting. The theory of strategy may allow a deeper understanding by removing the competi-
tive market from the center of consideration.

21 UNVERIFIABLE INVESTMENT, HOLD UP, 
OPTIONS, AND OWNERSHIP
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methods of alleviating the hold-up problem and encouraging efficient invest-
ment (specifically, the judicious use of option contracts and asset ownership).3

HOLD-UP EXAMPLE

For an illustration of the hold-up problem, consider a setting in which two 
people—Joel Dean (JD) and Brynn—interact in the development of a new 
product. JD is a scientist who can, with effort, design a new device for treating 
a particular medical condition. He is the only person with a deep knowledge 
of both the medical condition and physics sufficient to develop the innovative 
design. But JD has neither the engineering expertise nor the resources that are 
needed to construct the device. Brynn is the CEO of an engineering company; 
she is capable of implementing the design and creating a marketable product. 
Thus, success relies on JD’s and Brynn’s combined contributions.

Suppose JD and Brynn interact over three dates as follows. At Date 1, JD 
decides how much to invest in the design of the medical device. His investment— 
in fact, the complete design specifications—is observed by Brynn. Then, at  
Date 2, JD and Brynn meet to negotiate a contract that sets conditions (a price) 
under which Brynn can produce and market the device at Date 3. Commercial 
production of the device will generate revenue for Brynn, and this revenue will be a 
function of JD’s initial investment level. The key issue is whether JD has the incen-
tive to invest efficiently, given that he has to later negotiate with Brynn to obtain 
the fruits of his investment.

Here, a bit more formally, is a description of the sequence of events: At  
Date 1, JD selects between “high investment” (abbreviated H), “low invest-
ment” (L), and “no investment.” If he chooses not to invest, then the game ends, 
and both parties get a payoff of 0. In contrast, if JD chooses L or H, then JD 
pays a personal investment cost, and the game continues at Date 2. JD’s cost of 
low investment is 1, whereas his cost of high investment is 10. Assume that JD’s 
investment choice is observed by Brynn but is not verifiable to the court, so that 
the investment cannot directly influence a legal action.

At Date 2, JD and Brynn negotiate over contracted monetary transfer p, 
which is a transfer from Brynn to JD to be compelled by the external enforcer 
(the court) if and only if Brynn elects to produce at Date 3. The default price 

3Early analysis of the hold-up problem appears in O. Williamson, Markets and Hierarchies: Analysis and 
Antitrust Implications (New York: Free Press, 1975); P. Grout, “Investment and Wages in the Absence of 
Binding Contracts: A Nash Bargaining Approach,” Econometrica, 52 (1984): 449–460; and S. Grossman 
and O. D. Hart, “The Costs and Benefits of Ownership: A Theory of Vertical and Lateral Integration,” The 
Journal of Political Economy, 94 (1986): 691–719. The examples that I present here are in the formulation 
of “Contract, Mechanism Design, and Technological Detail,” by J. Watson, Econometrica, 75 (2007): 55–81.

Watson_c21_274-290hr.indd   275 2/4/13   12:28 PM



276 21: Unverifiable Investment, Hold Up, Options, and Ownership

is p, which represents the legal default rule in case JD and Brynn do not 
establish an agreement. Assume that the court always compels a transfer of 
0 if Brynn selects N.4 Also assume that the players have equal bargaining 
weights, so pJD = pB = 1>2. At Date 3, Brynn chooses whether to “produce” 
(P) or not (N). If Brynn chooses to produce, then p is the amount transfered 
from Brynn to JD; if Brynn chooses not to produce, then the transfer is 0. 
Thus, Brynn’s choice of whether to produce is verifiable, and the contract 
simply prescribes the transfer as a function of this selection. The time line of 
the game is pictured in Figure 21.1; note that this is not the extensive-form 
diagram, which you can draw as an exercise.

In the end, JD’s payoff is whatever transfer he gets from Brynn minus 
his investment cost. Brynn’s payoff is her revenue from production (if she 
chooses P) minus the amount she transfers to JD. Suppose that Brynn’s reve-
nue from production is 4 in the event that JD chose investment L, whereas 
her revenue is 18 in the event that JD chose investment H. If Brynn selects N, 
then her revenue is 0, regardless of JD’s investment choice.

Note that it is more costly for JD to select high investment H rather than 
low investment L, but high investment leads to a better product and enhanced 
revenues for Brynn on the market for the medical device. In fact, efficiency 
requires JD to select H and Brynn to choose P because these actions yield a 
joint value of 18 − 10 = 8. By comparison, if JD were to select L and Brynn 
were to choose P, then the joint value would be 4 − 1 = 3.

The key question is whether JD has the incentive to select investment H; 
that is, does JD take the efficient investment action in the negotiation equi-
librium of the game? To answer this question, we use backward induction 
and the standard bargaining solution to calculate the negotiation equilibrium 
of the game. The first thing to note is that Brynn has the incentive to select P 
if and only if her revenue from production exceeds p. Thus, if p > 18, then 
Brynn will choose N, regardless of whether JD invested at level L (when the 

4In general, a contract may specify a transfer other than 0 on the condition that Brynn selects N, but there 
is no benefit of such a transfer in the example here.

FIGURE 21.1 

Time line for the hold-up 

example.

Date 1
JD chooses his investment level 
(H or L) or ends the game.

Brynn chooses between P and N, and 
transfer p is compelled if P is chosen.

JD and Brynn negotiate to select
(a joint action with default p).

Date 2

Date 3

 p
- 
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revenue would be 4) or at level H (when the revenue would be 18). If p … 4, 
then Brynn has the incentive to produce, regardless of JD’s investment  choice. 
Finally, if p ∈ [4, 18], then it is rational for Brynn to select P in the event that JD 
chose H and for Brynn to select N in the event that JD chose L.

Let us suppose that in the absence of a contract between JD and Brynn, the 
law gives JD the sole right to produce any medical device that is based on his 
design. Thus, if Brynn selects P without JD’s authorization, then the court will 
punish Brynn in the form of a monetary transfer from Brynn to JD. To represent 
this legal default rule, assume that p = 20. Then the only way production can 
occur in equilibrium is if Brynn contracts with JD.

To analyze the negotiation between JD and Brynn at Date 2, let us consider 
separately the case in which JD chose L at Date 1 and the case in which JD chose 
H. If JD had selected L, then the players would be negotiating over a surplus of 
4. To see this, notice that with the default outcome of negotiation, where p is 
in force, Brynn would choose not to produce and the game would end with the 
payoffs −1 for JD (because he paid the cost of low investment) and 0 for Brynn. 
Thus, the joint value of the default outcome is −1. In contrast, by agreeing to set 
p between 0 and 4, the players know that Brynn will choose to produce and that 
they will obtain the joint value 4 − 1 = 3. The surplus is the difference between 
the joint value of contracting and the joint value of the default outcome:

3 − (−1) = 4.

Equal bargaining weights imply that the surplus is evenly split between JD and 
Brynn, which is achieved by setting the price p = 2. Thus, if JD invests at level 
L, he will eventually get the payoff −1 + 2 = 1, which is his disagreement 
value plus his share of the surplus. Brynn will get the payoff 4 − 2 = 2. 

Next take the case in which JD chose H at Date 1. In the default outcome 
of negotiation (where p is in force), Brynn would choose not to produce and 
the game would end with the payoffs −10 for JD (because he paid the cost of 
high investment) and 0 for Brynn. The joint value of the default outcome is 
therefore −10. In contrast, by agreeing to set p between 0 and 18, the players 
know that Brynn will choose to produce and that they will obtain the joint value 
18 − 10 = 8. Thus, in this case, the players are negotiating over a surplus of

8 − (10) = 18.

Equal bargaining weights imply that the surplus is evenly divided between JD 
and Brynn, which is achieved by setting the price p = 9. Thus, if JD invests at 
level H, he will eventually get the payoff −10 + 9 = −1 and Brynn will get 
the payoff 18 − 9 = 9.

Moving back to Date 1, we can now understand JD’s investment incen-
tives. Notably, his only rational action is to invest at the low level L because 
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this is the only action that leads to a positive payoff for him. Thus, the example 
illustrates the general phenomenon known as the hold-up problem. In particu-
lar, Brynn exercises her bargaining power to extract a significant share of the 
benefit of JD’s investment, under the threat of “holding up” production. Antici-
pating not being able to extract the full benefit of his investment, JD has the 
incentive to invest at less than the efficient level. In other words, to make his 
investment decision, JD weighs his own cost and benefit. The joint cost is fully 
borne by him, whereas he retrieves only a fraction of the joint benefit, so his 
incentives are distorted in relation to what is efficient.

UP-FRONT CONTRACTING AND OPTION CONTRACTS

Key aspects of the hold-up story are that (1) investments are unverifiable, so 
the court cannot condition transfers directly on these actions, and (2) there is 
some barrier to the parties writing a comprehensive contract prior to choosing 
investments. In the example that I just presented, item (2) is represented by the 
assumption that JD and Brynn meet only after JD makes his investment deci-
sion. This assumption may be a stretch, for in many real settings the contract-
ing parties can negotiate and form a contract before they are required to make 
significant investments and take other productive actions.

Let us consider, therefore, a version of the model in which JD and Brynn 
meet and form a contract at Date 0, with interaction continuing in Dates 1–3 
just as described in the previous section. Think of the contract at Date 0 as the 
“initial contract,” and think of any contracting at Date 2 as “renegotiation.” 
At Date 0, JD and Brynn jointly select the value of p (the amount Brynn 
will have to pay JD if she produces at Date 3), and they also may specify 
an up-front transfer. Then p becomes the default value for renegotiation at 
Date 2. If the players keep p in place at Date 2, then we say that renegotia-
tion of the contract did not occur. Otherwise, the parties will have renegoti-
ated their initial contract to alter the production-contingent transfer. Assume 
that the default decision for negotiation at Date 0 is p = 20, the legal default 
rule assumed in the previous section. The time line of the game is pictured in 
Figure 21.2.

Hold up is an issue even though contracting occurs at Date 0. Here’s why. 
Because JD’s investment decision is unverifiable, there is no way for the contract 
to give JD a high-powered incentive to invest (as was achieved for Carina in the 
example at the end of Chapter 20; see pp. 263–265. Instead, the contract can 
only be used to motivate Brynn in her choice between P and N at Date 3 (an 
action that is verifiable). One hopes that Brynn’s action can be made contingent 
on JD’s investment in such a way as to motivate JD to invest. Unfortunately, 
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renegotiation at Date 2 may interfere with the whole plan because it may undo 
something to which the players wanted to commit at Date 0.

The entire enterprise may seem confusing at this point because the initial 
contract has an indirect effect on JD’s incentives. But an intuitive and realistic 
theme will emerge from the analysis: An optimal contract will give Brynn the 
option of producing the device that JD designs, but only at a specific price that 
Brynn must pay to JD. If the price is set high enough—but not too high—then 
Brynn will exercise the option precisely in the circumstance in which JD invested 
at the high level. Thus, JD knows that he will obtain the high price if and only 
if he chooses H, which motivates him to select H rather than L in the first place.

To analyze the game, we apply the standard bargaining solution to exam-
ine the joint decision at Date 0; analysis of the rest of the game proceeds as 
reported in the previous section. First note that if, at Date 0, the players specify  
p to be a number exceeding 18, then the game would proceed just as derived 
in the basic hold-up example. Such a high price would basically force Brynn to 
refrain from producing (regardless of JD’s investment choice), and so the players 
would achieve a surplus only by renegotiating their initial contract. The players 
anticipate that, at Date 2 renegotiation, Brynn will extract half of the value of 
production, which will induce JD to select L at Date 1.

Second, note that a joint selection of p < 4 leads to grim investment incen-
tives as well. With such a low price, Brynn has the incentive to pick P, regardless of 
JD’s investment (L or H), so there is no gain from renegotiation at Date 2. Antici-
pating a transfer of p, regardless of his investment choice, JD has no incentive to 
select H at Date 1. More precisely, in the case of p < 1, JD rationally chooses no 
investment and ends the game at Date 1; in the case of p ∈ [1, 4), JD rationally 
chooses to invest at level L. Either way, the outcome is inefficient.

Contracts that specify p > 18 or p < 4 in this example are called forc-
ing contracts because they effectively force Brynn to take the same productive 
action at Date 3, both in the event that JD invested high and in the event that 
JD invested low. In contract, an option contract creates different incentives for 

FIGURE 21.2 

Time line for the setting with 

renegotiation.

Date 0
JD and Brynn form a contract specifying

JD chooses his investment level

Brynn chooses between P and N, and 
transfer p is compelled if P is chosen.

JD and Brynn renegotiate to select p 
(a joint action with default p).

(H or L) or ends the game.

p (a joint action with default value 20).

Date 1

Date 2

Date 3

-

-
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Brynn, depending on JD’s investment. In the example, if we have p ∈ [4, 18], 
then Brynn has the incentive to choose P in the event that JD invested H, whereas 
Brynn prefers to choose N in the event that JD invested L.

Consider the particular option contract that specifies p = 14, and let us 
see what will occur in Dates 1−3 under this contract. First note what would 
happen at Date 3 if this contract were not renegotiated at Date 2 (that is, 
with p = p = 14). In the event that JD had selected H at Date 1, Brynn will 
choose P, which gives her a payoff of 18 − 14 = 4 and gives JD a payoff of 
14 − 10 = 4. Anticipating this efficient outcome, the players have nothing 
to achieve by renegotiating at Date 2, so indeed renegotiation does not occur. 
Next consider the case in which JD had selected L at Date 1. In this case, 
Brynn will choose N at Date 3 because her benefit of production (the amount 
4) does not exceed the price she must pay to produce (which is 14). Anticipat-
ing this inefficient outcome, the players would renegotiate at Date 2 to pick 
a price p that is below 4 so that production occurs. As in the basic model, the 
surplus of negotiation at Date 2 is 4, so equal bargaining weights imply that 
negotiation is resolved with p = 2.

To summarize what we have thus far, if the players initially select p = 14, 
then they expect the following in relation to JD’s investment decision at Date 1: 
If JD selects H, then the players will not renegotiate at Date 2, Brynn will choose 
P at Date 3, JD will get the payoff 14 − 10 = 4, and Brynn will get the payoff 
18 − 14 = 4. If JD selects L, then the players will renegotiate to the price p = 2, 
Brynn will choose P, JD will obtain the payoff 2 − 1 = 1, and Brynn will get the 
payoff 4 − 2 = 2. Clearly, JD has the incentive to invest H.

Thus, the option contract that specifies p = 14 induces the players to invest 
and produce efficiently. Furthermore, this contract achieves an even split of the 
value of the relationship (4 for each player).

On the calculation of the negotiation equilibrium, one question remains: 
What contract will the players actually select at Date 0? Although the option 
contract specifying p = 14 induces an efficient outcome of the game, it is not 
quite consistent with the standard bargaining solution applied at Date 0 because 
the disagreement point is the payoff vector that would result under the default 
p = 20—that is, 1 for JD and 2 for Brynn. Subtracting the joint value of default 
from the joint value of contracting yields a surplus of 8 − 3 = 5. An even divi-
sion of this surplus, added to the players’ disagreement values, would give JD 
a payoff of 1 + 2.5 and Brynn a payoff of 2 + 2.5 from Date 0. You can easily 
verify that the contract specifying p = 13.5 does the trick.

As the example shows, an option contract is quite helpful in situations with 
unverifiable investments. By giving the “buyer” (Brynn in the example here) 
the incentive to purchase only a good or service of sufficiently high quality, 
it gives the “seller” (JD here) the incentive to make investments that ensure 
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high quality. With just a little digging, you will notice option contracts utilized 
in many real settings, such as professional sports, procurement, entertainment 
(films and music, in particular), and innovative industries. You will also notice 
that renegotiation occurs periodically in the real world. Renegotiation can inter-
fere with the initial objectives of contracting, but it can sometimes be dealt with 
effectively if the initial contract is shrewdly designed.5 With the optimal option 
contract in the example here, renegotiation would occur if JD were to select L, 
but JD is still given the incentive to choose H.

ASSET OWNERSHIP

As you have just seen, a well-designed option contract can sometimes induce 
efficient investments and production. But option contracts may also be compli-
cated and require many details. Some economists believe that there are barriers 
to the writing of detailed contracts, either because composing them is costly (due 
to lawyer’s fees, for instance) or because it is difficult to describe or imagine all 
of the contingencies that may arise later. A subset of these economists argues 
that contracting parties can often deal effectively with unverifiable investments 
and hold up by initially forming simple contracts that judiciously allocate asset 
ownership. They claim that asset ownership can have an important impact on 
investment incentives and that one can understand ownership patterns in real 
industries on the basis of optimal responses to hold-up problems.

To see how asset ownership may play a role in investment incentives, consider 
a simple extension of the JD–Brynn story in which production requires the use of a 
particular asset, such as a computer-controlled manufacturing device. Suppose that 
JD’s investment amounts to enhancing and configuring this asset. Naturally, the 
asset is owned by one of the contracting parties. Ownership means that the owner 
has the exclusive right to use the asset and to obtain the revenue that it generates.

Once we think about the definition of ownership, it is natural to ask whether 
the identity of the owner influences investment incentives. That is, would JD 
have the same incentive to invest as the asset owner as he would have if Brynn 
owned the asset? Suppose that following JD’s investment the best use of the 
asset is by Brynn because her firm has the most relevant expertise among engi-
neering and manufacturing companies. But suppose as well that the asset has an 
alternative use that also benefits from JD’s investment. Think of the alternative 
use as production by a different engineering company.

5 For more on the form of option contracts and the hold-up problem, see K. Buzard and J. Watson, “Contract, 
Renegotiation, and Holdup: Results on the Technology of Trade and Investment,” Theoretical Economics, 7 
(2012): 283–322.
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In particular, if JD owns the asset and severs his relationship with Brynn, then 
he can contract with an alternative producer. (If Brynn owns the asset, then JD has 
no such recourse.) Suppose there are plenty of alternative producers available and 
that JD can extract the entire surplus of dealing with one of them because they 
will compete for his business. But an alternative producer generates lower revenue 
than would Brynn. Assume that revenue with an alternative producer would be 
0 if JD invested at level L, whereas the revenue would be y if JD selected H. The 
value y satisfies 0 < y < 18. If y is close to 0, then we say that JD’s investment 
is specific to Brynn, in that it enhances the value of JD’s relationship with Brynn 
much more than it would enhance a relationship with an alternative producer. In 
contrast, if y is larger, then we say that JD’s investment is general.

Assume that JD and Brynn can contract at Date 0, but that they can then 
contract only on ownership of the asset. That is, they can agree on who owns 
the asset, but they cannot specify transfers as a function of Brynn’s choice 
about whether to produce. The rest of the game proceeds as in the basic model, 
except that if JD and Brynn fail to reach a deal at Date 2 and JD happens to own 
the asset, then he can contract with an alternative producer. In the event that JD 
invested H, he will then obtain y − 10 (that is, y with the alternative supplier 
and −10 representing the cost of investment). If JD invested L and owns the 
asset, his disagreement value from Date 2 is −1 as in the basic model.

The key question is whether giving JD ownership of the asset at Date 0 
will encourage him to invest H. The mechanism by which this might occur is 
that JD’s investment affects his disagreement value for negotiation at Date 2. 
Specifically, if JD selected L at Date 1, then there is no prospect for trading with 
an alternative producer; his disagreement value is the same as specified in the 
basic model analyzed at the beginning of this chapter, so JD eventually gets 1. 
But if JD selected H at Date 1, then his disagreement value is y − 10, and the 
surplus of negotiating with Brynn—the difference between their joint value of 
forcing production and their joint value of disagreement—is

18 − 10 − (y − 10) = 18 − y.

Applying the standard bargaining solution with equal bargaining weights, we 
conclude that JD and Brynn will settle on the price p = 9 +  (y>2), which gives 
JD his disagreement value plus half of the surplus.

Consider JD’s incentives at Date 1 when he owns the asset. If he selects L, 
then he will get 1. In contrast, if he selects H, then he will obtain

p − 10 = 9 +
y

2
 − 10 =

y

2
 − 1.

He has the incentive to select H if this amount exceeds 1, which simplifies to 
y Ú 4. Therefore, if JD’s investment is sufficiently general, giving him control 
of the asset will also give him the incentive to make the high investment.
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The analysis of asset ownership suggests several lessons for everyday deci-
sion making. First, recognize when an investment today affects the value of a 
future relationship. Be wary of an investment that generates value subject to 
hold up. Second, understand the difference between specific and general invest-
ments. Try to structure your relations so that you make general investments 
and your partners or opponents make specific investments. Distinctions between 
general and specific investments often emerge in employment relations, where 
human capital (workers’ skills and expertise) is at stake. Third, try to engage in 
negotiation at times in which you have good outside opportunities.

GUIDED EXERCISE

Problem: Suppose that a worker interacts with a firm as follows: The worker 
first decides how much to invest in developing his skills. Let x denote the work-
er’s investment, and suppose that the investment entails a personal cost to the 
worker of x 

2 ; assume x Ú 0. If the worker works in the firm, then his investment 
generates return ax for the firm. If the worker decides to work on his own (sepa-
rate from the firm), then his investment generates a return of bx that he keeps. 
The numbers a and b are positive constants satisfying a > b (which means that 
the investment is more productive in the firm). After the worker chooses his 
investment, the firm observes it. Then the firm offers the worker a wage w, and 
the worker accepts or rejects it (ultimatum bargaining). If the worker accepts 
the wage, then he works in the firm. If he rejects the wage, then he works on his 
own. Here is the game’s extensive form:

F WW

x w

0

A

R

The worker’s payoff is listed first.

∞

(a)  Find and report the subgame perfect equilibrium of this game. What in-
vestment level is selected?

(b)  Consider a variant of the game in which the worker gets to make the wage 
offer. What investment level will prevail in equilibrium?

(c)  Consider the variant of the game pictured here, where the selection of the wage 
is modeled as a joint decision of the firm and worker. Solve this game under 
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the assumption that the joint decision is resolved according to the standard 
bargaining solution. Let pW be the worker’s bargaining weight and let pF be 
the firm’s bargaining weight. What investment level will prevail in equilibrium?

W

(accept)
x w

0

Default

W, F

∞

(d)  Explain the difference between the outcomes of parts (a), (b), and (c). What 
determines the level of investment in equilibrium? How do changes in b 
affect the joint value (total payoff) that is realized? Which of parts (a), (b), 
and (c) yield the maximum value of the relationship? Why?

Solution:

(a)  First, examine the worker’s choice of whether to accept the firm’s wage 
offer. Clearly, the worker strictly prefers to select A (accept) if w > bx, 
strictly prefers to select R (reject) if w < bx, and is indifferent if w = bx. 
Thus, in equilibrium, the firm offers w = bx, and the worker accepts. (There 
is no equilibrium in which the worker would reject this wage offer because 
then there would be no optimal action for the firm in response.) At the initial 
node, the worker therefore anticipates obtaining a payoff of bx − x2, which 
he maximizes by investing at level x̂ = b>2.

(b) In the setting in which the worker makes the ultimatum offer, the firm will 
accept if ax Ú w, so the worker offers w = ax in equilibrium. At the initial 
node, the worker therefore anticipates obtaining a payoff of ax − x2, which 
he maximizes by investing at level x* = a>2.

(c)  Note that the surplus of negotiation is (a − b)x,  and the worker’s disagree-
ment value is bx − x 

2. The standard bargaining solution implies that the 
worker obtains

bx − x 

2 + pW 

(a − b)x = (pW 

a + pF 

b)x − x 

2,

 which translates into a wage of w = pW  ax + pF bx. At the initial node, the 
worker maximizes his payoff by investing at level x= (pW  a + pF b)>2.

(a) 
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(d) Increasing the worker’s bargaining power, which is represented by moving 
from part (a) to part (b) or increasing pW in part (c), implies a larger invest-
ment by the worker. This is because the worker faces a hold-up problem 
in that the firm may extract some of the value of the worker’s investment. 
An increase in b raises the equilibrium investment because it increases the 
worker’s marginal disagreement value as a function of x and thus lessens 
the hold-up problem. The hold-up problem disappears as either the worker’s 
bargaining weight converges to 1 or b converges to a. The maximum value 
of the relationship occurs at the efficient investment level x*, which is the 
case in part (b).

EXERCISES

1. A bicycle manufacturer (the “buyer,” abbreviated B) wishes to procure a 
new robotic system for the production of mountain-bike frames. The firm 
contracts with a supplier (S), who will design and construct the robot. The 
contractual relationship is modeled by the following game:

B, S
S

H
R

A�

A

R� 

B

B

L

0, 0

Default

The parties first negotiate a contract specifying an externally enforced price 
that the buyer must pay. The price is contingent on whether the buyer later 
accepts delivery of the robot (A) or rejects delivery (R), which is the only 
event that is verifiable to the court. Specifically, if the buyer accepts deliv-
ery, then he must pay p1; if he rejects delivery, then he pays p0 . After the 
contract is made, the seller decides whether to invest at a high level (H) or 
at a low level (L). High investment indicates that the seller has worked dili-
gently to create a high-quality robot—one that meets the buyer’s specifica-
tions. High investment costs the seller 10. The buyer observes the seller’s 
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investment and then decides whether to accept delivery. If the seller selected 
H and the buyer accepts delivery, then the robot is worth 20 units of revenue 
to the buyer. If the seller selected L and the buyer accepts delivery, then 
the robot is only worth 5 to the buyer. If the buyer rejects delivery, then the 
robot gives him no value.

(a) What is the efficient outcome of this game?

(b)  Suppose the parties wish to write a “specific-performance” contract, 
which mandates that the buyer accept delivery at price p1. How can p0 
be set so that the buyer has the incentive to accept delivery regardless of 
the seller’s investment? Would the seller choose H in this case?

(c)  Under what conditions of p0 and p1 would the buyer have the incen-
tive to accept delivery if and only if the seller selects H? Show that the 
efficient outcome can be obtained through the use of such an “option 
contract.”

(d)  Fully describe the negotiation equilibrium of the game, under the 
assumption that the parties have equal bargaining weights.

2. Estelle has an antique desk that she does not need, whereas Joel and his wife 
have a new house with no furniture. Estelle and Joel would like to arrange a 
trade, whereby Joel would get the desk at a price. In addition, the desk could 
use restoration work, which would enhance its value to Joel. Specifically, 
the desk is worth 0 to Estelle (its current owner), regardless of whether it is 
restored. An unrestored desk is worth $100 to Joel, whereas a restored desk 
is worth $900. Neither Joel nor Estelle has the skills to perform the restora-
tion. Jerry, a professional actor and woodworker, can perform the restora-
tion at a personal cost of $500. Jerry does not need a desk, so his value of 
owning the restored or unrestored desk is 0.
(a)  Suppose Estelle, Jerry, and Joel can meet to negotiate a spot contract 

specifying transfer of the desk, restoration, and transfer of money. Model 
this as a three-player, joint-decision problem, and draw the appropriate 
extensive form. Calculate the outcome by using the standard bargaining 
solution, under the assumption that the players have equal bargaining 
weights (pE = pJerry = pJoel = 1>3). Does the desk get traded? Is the 
desk restored? Is this the efficient outcome?

(b)  Suppose spot contracting as in part (a) is not possible. Instead, the 
players interact in the following way. On Monday, Estelle and Jerry 
jointly decide whether to have Jerry restore the desk (and at what price 
to Estelle). If they choose to restore the desk, Jerry performs the work 
immediately. Then on Wednesday, regardless of what happened on 
Monday, Estelle and Joel jointly decide whether to trade the desk for 
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money. Model this game by drawing the extensive form. (Hint: The 
extensive form only has joint-decision nodes.) Assume the parties have 
equal bargaining weights at all joint-decision nodes. Determine the 
negotiation equilibrium. Compare the outcome with that of part (a).

(c)  Now suppose the players interact in a different order. On Monday, 
Estelle and Joel jointly decide whether to trade the desk for money. 
Trade takes place immediately. On Wednesday, if Joel owns the desk, 
then he and Jerry jointly decide whether to have Jerry restore the desk 
(and at what price to Joel). If they choose to restore the desk, Jerry 
performs the work immediately. Model this game by drawing the  
extensive form. (Hint: Again, the extensive form only has joint-decision 
nodes.) Assume the parties have equal bargaining weights at all joint-
decision nodes. Determine the negotiation equilibrium. Compare the 
outcome with that of parts (a) and (b).

(d)  Explain the nature of the hold-up problem in this example.

3. Recall that “human capital” refers to skills and expertise that workers de-
velop. General human capital is that which makes a worker highly produc-
tive in potential jobs with many different employers. Specific human capital 
is that which makes a worker highly productive with only a single employer. 
What kind of investment in human capital should you make to increase your 
bargaining power with an employer, general or specific? Why? Do valuable 
outside options enhance or diminish your bargaining power?

4. This exercise asks you to combine the investment and hold-up issue from 
this chapter with the “demand” bargaining game explained in Exercise 4 
of Chapter 19. Consider an investment and trade game whereby player 1 
first must choose an investment level x Ú 0 at a cost of x 

2. After player l’s 
investment choice, which player 2 observes, the two players negotiate over 
how to divide the surplus x. Negotiation is modeled by a demand game, in 
which the players simultaneously and independently make demands m1 and 
m2 . These numbers are required to be between 0 and x. If m1 + m2 … x 
(compatible demands, given that the surplus to be divided equals x), then 
player 1 obtains the payoff m1 − x2 and player 2 obtains m2 . In contrast, if 
m1 + m2 > x (incompatible demands), then player 1 gets −x2 and player 2 
gets 0. Note that player 1 must pay his investment cost even if the surplus is 
wasted owing to disagreement.
(a) Compute the efficient level of investment x*.
(b)  Show that there is an equilibrium in which player 1 chooses the efficient 

level of investment. Completely describe the equilibrium strategies.
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(c)  Discuss the nature of the hold-up problem in this example. Offer an 
interpretation of the equilibrium of part (b) in terms of the parties’ 
bargaining weights.

5. Suppose that an entrepreneur is deciding whether or not to build a new high-
speed railroad on the West Coast. Building the railroad will require an initial 
sunk cost F. If operated, the new railroad will generate revenue R. Operating 
the railroad will cost M in fuel and nw in wages, where n is the number of 
full-time jobs needed to operate the new railroad and w is the career wage 
per worker. If a rail worker does not work on the new railroad, then he can 
get a wage of w at some other job. Assume that R > M + F + nw, so it 
would be profitable to build and operate the new railroad even if rail work-
ers had to be paid somewhat more than the going rate w. The entrepreneur, 
however, must decide whether to invest the initial sunk cost F before know-
ing the wages she must pay.
(a)  Suppose that if the railroad is built, after F is invested, the local rail 

workers’ union can make a “take it or leave it” wage demand w to the 
entrepreneur. That is, the entrepreneur can only choose to accept and 
pay the wage demand w or to shut down. If the railroad shuts down, 
each worker receives w. Will the railroad be built? Why?

(b)  Next suppose that the wage is jointly selected by the union and the entre-
preneur, where the union has bargaining weight pU and the entrepreneur 
has bargaining weight pE = 1 − pU   . Use the concept of negotiation 
equilibrium to state the conditions under which the railroad will be built.

(c)  Explain the nature of the hold-up problem in this example. Discuss why 
the hold-up problem disappears when the entrepreneur has all of the 
bargaining power. Finally, describe ways in which people try to avoid 
the hold-up problem in practice.

6. Describe a real-world setting in which option contracts are used.

7. Suppose that you work for a large corporation and that your job entails 
many hours of working with a computer. If you treat the computer with 
care, it will not break down. But if you abuse the computer (a convenience 
for you), then the computer will frequently need costly service. Describe 
conditions under which it is best that you, rather than your employer, own 
the computer. Discuss verifiability and incentives in your answer.

8. Here is a description of interaction between two players who are consider-
ing a possible business partnership. First the players simultaneously choose 
whether to make an investment. Investment entails a personal cost of 3; not 
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investing costs nothing. The investment choices become common knowl-
edge. Then the players jointly decide whether to form a partnership firm and, 
if so, how to divide the profit from the firm. If both players invested, then the 
firm’s profit is 16. If exactly one player invested or if neither invested, then 
the firm’s profit is 12. If the players decide not to form the firm, then each 
player i gets a default payoff of x − 3 if player i invested and zero if player 
i did not invest. The default payoff of x − 3 includes the cost of investment 
plus some value x that represents what player i can obtain by using his invest-
ment in other endeavors. Assume that the players divide surplus according to 
the standard bargaining solution with equal bargaining weights.
(a)  What outcome maximizes the joint value? That is, what are the efficient 

investment choices?
(b)  Describe conditions on x such that there is a negotiation equilibrium in 

which both players invest. Show that this is an equilibrium.
(c)  In light of your answers to parts (a) and (b), briefly provide some 

intuition for your answers in relation to the “hold-up” problem.

9. Suppose that prior to negotiation with a firm, a worker chooses whether to 
invest (I) or to not invest (N). Investing entails a personal cost of 10 to the 
worker. Not investing entails a cost of zero. The manager of the firm ob-
serves the worker’s investment choice and then negotiates with the worker 
on whether to hire him and, if so, at what salary. Assume that the outcome 
of their negotiation is given by the standard bargaining solution with equal 
bargaining weights.

The benefit to the firm of hiring the worker depends on whether the 
 worker has made the investment. Investment yields a benefit of 30 to the 
firm. Noninvestment yields a benefit of 16 to the firm. The firm’s payoff is 
the benefit it receives less the salary it pays the worker. The worker’s payoff 
is the salary received less the investment cost. If the worker is not hired, 
then the firm’s payoff is zero and the worker’s payoff is zero less the cost 
of investment.
(a)  In a negotiation equilibrium, what is the worker’s investment decision 

and what is the outcome of the negotiation? Explain.
(b) Is the outcome you found in part (a) efficient? Explain why or why not.

10. Consider the game shown here, which models a partnership between players 
1 and 2. The players work as a team, with player 1 exerting effort x and player 
2 exerting effort y on the job. Assume g ∈ [0, 1], w ∈ (−, ), x ∈ [0,  ), 
y ∈ [0, ), and t ∈ (−,).

At the initial joint decision node, player 1 has all the bargaining power 
(p1 = 1 and p2 = 0). At this node they can agree to allocate some power to 
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player 2, such as by making him a part owner of the company. Specifically, 
they choose g ∈ [0, 1], which will become player 2’s bargaining weight in 
the final negotiation. They can also agree on an immediate transfer w from 
player 2 to player 1. If they fail to agree, then the game ends and they each 
earn zero.

After their initial negotiation, the players simultaneously choose their 
effort levels. The cost of effort is x2 for player 1 and y 2 for player 2. After 
both observe x and y, the players jointly decide whether and how to split 
the returns of their effort choices. If they fail to agree, then their partnership 
dissolves and they receive no revenues, but by this time they have already 
incurred their effort costs and have made the transfer w. If they agree on a 
transfer t, then player 1 collects revenues of x + 2y and pays t to player 2. 
In this final negotiation, player l’s bargaining weight is g and player 2’s bar-
gaining weight is 1 − g. Assume that joint decisions conform to the stan-
dard bargaining solution.
(a)  Consider a joint decision node in the players’ final negotiation. What is 

the surplus at this node, given g, w, x, and y? In a negotiation equilib-
rium, what payoffs do the players obtain under agreement at this node, 
given g, w, x, and y? What value of t is chosen?

(b)  Next consider a subgame starting immediately after the initial negotia-
tion. In a negotiation equilibrium, what values of x and y are chosen, 
given g and w?

(c)  Finally, consider the entire game. In negotiation equilibrium, what 
values of g, w, x, y, and t arise?

(d) Interpret your results in economic terms.

1,2

Bargaining shares: Bargaining shares:

2

DefaultDefault

1, 21
x y t

w

w

w

w

g, w
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People often interact in ongoing relationships. For example, most 
employment relationships last a long time. Countries competing over tar-

iff levels know that they will be affected by one another’s policies far into the 
future. Firms in an industry recognize that they are not playing a static game 
but one in which they compete every day over time. In all of these dynamic 
situations, the way in which a party behaves at any given time is influenced 
by what this party and others did in the past. In other words, players condi-
tion their decisions on the history of their relationship. An employee may 
choose to work diligently only if his employer gave him a good bonus in the 
preceding month. One country may set a low import tariff only if its trading 
partners had maintained low tariffs in the past. A firm may elect to match its 
competitor’s price by setting its price each day equal to the competitor’s price 
of the preceding day.

When deciding how to behave in an ongoing relationship, one must 
consider how one’s behavior will influence the actions of others in the future. 
Suppose I am one of your employees and that our history is one of coopera-
tion. Since you hired me, I have been a loyal and hard-working employee, and 
you have given me a generous bonus each month (above my salary). Today I 
am considering whether to work hard or, alternatively, to neglect my duties 
in favor of playing video games on the office computer. For me, shirking has 
an immediate reward—I get to avoid expending effort on the job. But you 
will soon learn of my indolence, either through your monitoring activities or 
through an observed decrease in my productivity. Your future behavior (in 
particular, whether to give me bonuses each month) may very well be influ-
enced by what I do today.

For instance, after observing that I have shirked, you might choose to 
discontinue my monthly bonus. You might say to yourself, “By misbehaving, 
Watson has lost my trust; I doubt that he will work diligently ever again and 
therefore I will pay him no more bonuses.” Anticipating such a response, I may 
decide that spending the workday playing chess over the Internet against some-
one in New Zealand is not such a good idea. Neglecting my duties may yield 
an immediate gain (relaxation today), but it leads to a greater loss in the future 
(no more bonuses each month). As this story suggests, people sometimes have 

22REPEATED GAMES AND REPUTATION
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292 22: Repeated Games and Reputation

an incentive to forego small immediate gains because of the threat of future 
retaliation by others.

The term “reputation” is often used to describe how a person’s past 
actions affect future beliefs and behavior. If I have always worked diligently 
on the job, people would say that I have “established a reputation for being 
a hard worker.” If I shirk today, then tomorrow people would say that I have 
“destroyed my good reputation.” Often, those who nurture good reputations 
are trusted and rewarded; people with bad reputations are punished. As the 
employment story indicates, the concern for reputation may motivate parties 
to cooperate with one another, even if such behavior requires foregoing short-
term gains. One of the great achievements of game theory is that it provides a 
framework for understanding how such a reputation mechanism can support 
cooperation.

The best way to study the interaction between immediate gains and long-
term incentives is to examine a repeated game. A repeated game is played over 
discrete periods of time (period 1, period 2, and so on). We let t denote any 
given period and let T denote the total number of periods in the repeated game. 
T can be a finite number or it can be infinity, which means the players inter-
act perpetually over time. In each period, the players play a static stage game, 
whereby they simultaneously and independently select actions. These actions 
lead to a stage-game payoff for the players. The stage game can be denoted by 
{A, u}, where

A = A1 × A2 × . . . × An

is the set of action profiles and ui (a) is player i ’s stage-game payoff when profile 
a is played. The same stage game is played in each period. Furthermore, we 
assume that in each period t, the players have observed the history of play—that 
is, the sequence of action profiles—from the first period through period t − 1. 
The payoff of the entire game is defined as the sum of the stage-game payoffs 
in periods 1 through T. We sometimes assume that players discount the future, 
in which case we include a discount factor in the payoff specification (recall the 
analysis of discounting in Chapter 19).

A TWO-PERIOD REPEATED GAME

Suppose players 1 and 2 interact over two periods, called periods 1 and 2 
(so T = 2). In each period, they play the stage game depicted in Figure 22.1. 
Assume that the payoff for the entire game is the sum of the stage-game payoffs 
in the two periods. For instance, if (A, X) is played in the first period and (B, Y) 
is played in the second period, then player 1’s payoff is 4 + 2 = 6 and player 
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293A Two-Period Repeated Game

2’s payoff is 3 + 1 = 4. Figure 22.2(a) graphs the set of possible repeated game 
payoffs. Every point on the graph corresponds to the sum of two stage-game 
payoff vectors. For example, the payoff vector (3, 5) can be attained if (A, Z) 
is played in the first period and (B, Y) is played in the second period; the same 
payoff results if (B, Y) is played in the first period, followed by (A, Z).

This two-period repeated game has a large extensive-form representation, 
so I have not drawn it here. The extensive form starts with simultaneous selec-
tion of actions in the first period: player 1 chooses between A and B, and player 
2 selects X, Y, or Z. Then, having observed each other’s first-period actions, the 
players again select from {A, B} and {X, Y, Z}. Because each player knows what 
happened in the first period, his choice in the second period can be conditioned 
on this information. For example, player 1 may decide to pick A in the second 
period if and only if (A, X) or (B, Y) was played in the first period; otherwise, he 
picks B. As usual, the players’ information is represented by information sets. 
Because there are six possible outcomes of first-period interaction, each player 

FIGURE 22.1 

Stage game, repeated once 

(T = 2).
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Feasible repeated-game payoffs.
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294 22: Repeated Games and Reputation

has six information sets in the second period. In other words, each player has six 
decisions to make in period 2: what to do if the outcome of period 1 was (A, X), 
what to do if the outcome of period 1 was (A, Y), and so forth.

This game has a large set of strategies, making the analysis of rationality a 
bit daunting. However, the analysis is quite illuminating, so read on. Let us look 
for pure-strategy, subgame perfect Nash equilibria. We can simplify the search 
by recognizing one important thing: every equilibrium must specify that in the 
second period, the players select an action profile that is a Nash equilibrium of 
the stage game.

To see why this is so, recall that subgame perfection requires equilibrium 
in every subgame. In the repeated game at hand, a different subgame is initiated 
following every different action profile in period 1. For example, consider what 
happens in the event that the players choose (A, Z) in the first period. Then, 
knowing that (A, Z) was the outcome of first-period interaction, the players 
proceed to a subgame in which they simultaneously select actions again. Their 
total payoff will be (1, 4) plus whatever the payoff vector is in the second play 
of the stage game. Thus, following the play of (A, Z) in the first period, the 
subgame is described by the matrix in Figure 22.3. I constructed this matrix by 
adding the payoff vector (1, 4) to each of the cells in the stage game (compare 
Figures 22.1 and 22.3). Thus, Figure 22.3 describes the possible continuation 
payoffs following play of (A, Z) in the first period. You should verify that the 
subgame has two Nash equilibria, (B, Y) and (A, Z). Therefore, a subgame 
perfect equilibrium must specify that either (B, Y) or (A, Z) be played in the 
second period if (A, Z) is played in the first period.

We can say more. Because the subgame matrix is formed by adding the same 
payoff vector to each cell of the stage-game matrix, the players’ preferences 
over action profiles in the subgame are exactly the same as their preferences 
in an isolated play of the stage game. In other words, writing the continuation 
payoffs net of the stage-game payoff of period 1, the subgame is equivalent to the 
stage game, and thus they have exactly the same Nash equilibria.1 In fact, every 

1You should verify that (A, Z) and (B, Y) are the Nash equilibria of the stage game.
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The subgame  
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295A Two-Period Repeated Game

subgame starting in period 2 has the same set of Nash equilibria because these 
games have matrices like that in Figure 22.3—where the stage-game payoff in 
the first period is added to every cell of the stage game. Another way of thinking 
about this is that once the first period is over, the payoffs from the first period are 
sunk. Whatever the players obtain in the second period, it is in addition to what 
they have already received in the first. Thus a subgame perfect equilibrium must 
specify that the players select a Nash equilibrium in the stage game in period 2, 
whatever happens in period 1. To save ink, I use the phrase “stage Nash profile” 
to refer to a Nash equilibrium in the stage game.

Knowing that a stage Nash profile will be played in the second period, we 
can turn our attention to two other matters: (1) action choices in the first period, 
and (2) how behavior in the first period determines which of the two stage Nash 
equilibria will be played in the second period.

First consider subgame perfect equilibria that specify that a stage Nash 
profile be played in the first period (as well as in the second). Here is one such 
strategy profile: The players are instructed to choose action profile (A, Z) in the 
first period and then, regardless of the outcome of the first period, they are to 
choose (A, Z) in the second period. Because each player has six information 
sets in the second period (six potential decisions to make), the phrase “regard-
less of the outcome of the first period” is crucial; it means that, even if one or 
both of the players deviate from (A, Z) in the first period, they are supposed 
to play (A, Z) in the second. You can easily verify that this strategy profile is 
a subgame perfect equilibrium—neither player can gain by deviating in either 
or both periods, given the other player’s strategy. In this equilibrium, player 1 
obtains 1 + 1 = 2 and player 2 gets 4 + 4 = 8. This payoff vector is one of 
those boxed in Figure 22.2(b).

Any combination of stage Nash profiles can be supported as a subgame 
perfect equilibrium outcome. For example, “choose (A, Z) in the first period and 
then, regardless of the first-period outcome, choose (B, Y) in the second period” 
is a subgame perfect equilibrium; it yields the payoff vector (3, 5). The payoffs 
of equilibria that specify stage Nash profiles in both periods are all boxed in 
Figure 22.2(b). I recommend reviewing the various combinations of stage Nash 
profiles and verifying that the associated equilibrium payoffs are boxed in Figure 
22.2(b). As the example intimates, the following general result holds:

Result: Consider any repeated game. Any sequence of stage Nash 
profiles can be supported as the outcome of a subgame perfect Nash 
equilibrium.

It probably does not surprise you that stage Nash profiles can be supported 
as equilibrium play. A more interesting question is whether there are equilibria 
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stipulating actions that are not stage Nash profiles. In fact, the answer is “yes,” as 
the two-period example at hand illustrates. Consider the following strategy profile:

Select (A, X) in the first period and then, as long as player 2 did not devi-
ate from X, select (A, Z) in the second period; if player 2 deviated by 
playing Y or Z in the first period, then play (B, Y) in the second period.

This strategy profile prescribes that the players’ second-period actions depend 
on what player 2 did in period 1. By playing X in the first period, player 2 estab-
lishes a reputation for cooperating; in this case, he is rewarded in the second 
period as the players coordinate on the stage Nash profile that is more favorable 
to him. In contrast, if player 2 deviates by, say, choosing Z in the first period, 
then he is branded a “cheater.” In this case, his punishment is that the players 
coordinate on (B, Y) in the second period.

To verify that this strategy profile is a subgame perfect equilibrium, we 
must check each player’s incentives. Suppose player 1 behaves as prescribed 
and consider the incentives of player 2. If player 2 goes along with the strategy 
prescription, he obtains 3 in the first period and 4 in the second period. If player 
2 deviates in the first period, he can increase his first-period payoff to 4 (by 
picking Z). But this choice induces player 1 to select B in the second period, 
where player 2 then best responds with Y. Thus, although a first-period devia-
tion yields an immediate gain of 1, it costs 3 in the second period (4 − 1). This 
shows that player 2 prefers to behave as prescribed. For his part, player 1 has the 
incentive to go along with the prescription for play; deviating in either period 
reduces player l’s payoff. The payoff vector for this subgame perfect equilib-
rium is enclosed by a pentagon in Figure 22.2(b).

Although the equilibrium construction is a bit complicated, it really is 
 intuitive. Player 2’s concern about his reputation and what it implies for his 
second-period payoff gives him the incentive to forego a short-term gain. If he 
misbehaves in the first period, his reputation is destroyed and he then suffers in 
the second period.

Any two-period repeated game can be analyzed as has been done here.2 Only 
stage Nash profiles can be played in the second period. However, sometimes 
reputational equilibria exist whereby the players select non-stage-Nash profiles 
in the first period. These selections are supported by making the second-period 
actions contingent on the outcome in the first period (in particular, whether the 
players cheat or not). The exercises at the end of this chapter will help you better 
explore the reputation phenomenon.

2A general analysis of finitely repeated games is reported in J. P. Benoit and V. Krishna, “Finitely Repeated 
Games,” Econometrica, 53 (1985): 905–922.
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297An Infinitely Repeated Game

AN INFINITELY REPEATED GAME

Infinitely repeated games are defined by T =  ; that is, the stage game is 
played each period for an infinite number of periods. Although such a game 
may not seem realistic at first (people do not live forever), infinitely repeated 
games are useful for modeling some real-world situations. Furthermore, despite 
the complexity of these games, analysis of their subgame perfect equilibria can 
actually be quite simple. Consider an infinitely repeated game with discounting, 
whereby the payoffs in the stage game are discounted over time.3 Let us use d 
(a  number between 0 and 1) to denote the discount factor for both players. When 
comparing a payoff received today with a payoff received tomorrow (the next 
period), we discount tomorrow’s payoff by multiplying it by the discount factor. 
In this way, we say that the stream of payoffs—from today and tomorrow—are 
“discounted to today.” Payoffs obtained two periods from now are discounted 
by d 

2, payoffs obtained three periods from now are discounted by d 

3, and so on.
For repeated games, we will have to calculate the sum of a stream of 

discounted payoffs. For example, a player may obtain 1 unit each period for an 
infinite number of periods. In this case, the sum of his discounted payoff stream is

v K 1 + 1d + 1d 

2 + 1d 

3 + . . . = 1 + d + d 

2 + d 3 + . . . .

We can simplify this expression by noting that

d + d 

2 + d 3 + . . . = d [1 + d + d 

2 + d 3 + . . . ] = dv.

Therefore, we have

v K 1 + d v,

which means that v = 1>(1 − d ). In summary,

1 + d + d 

2 + d 3 + . . .
 =  

1

1 − d
 .

This expression will come in handy. Note that by multiplying both sides by any 
constant number a, we have

a + ad + ad 

2 + ad 

3 + . . .
 =  

a

1 − d
 .

The strategies in infinitely repeated games can be exceedingly complex. 
Recall that in general, a player’s strategy is a full description of what action to 
take at every information set of the player. In a repeated game, there is a  different 

3Recall the discussion of discounting in Chapter 19, where the discount factor is used in multistage  bargaining 
games.
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information set for every period t and every different history of play from the 
beginning of the game through period t − 1. Thus, a strategy prescribes an 
action for a player to take conditional on everything that took place in the past.

Fortunately, it is often sufficient to consider just a few types of simple 
strategies in repeated games. The simplest are those that prescribe stage Nash 
profiles in each period; as noted in the preceding section, we know these consti-
tute subgame perfect equilibria.

To capture the idea of reputation, we can examine another type of simple strat-
egy called a trigger strategy. Trigger strategies specifically refer to two action 
profiles for the stage game: one profile is called the “cooperative profile,” and the 
other is called the “punishment profile.” The punishment profile is assumed to be 
a stage Nash profile. In a trigger-strategy equilibrium, the players are supposed to 
play the cooperative profile in each period. However, if one or both of them devi-
ate from the cooperative profile, then they play the punishment profile forever 
after. In other words, deviating from the cooperative profile destroys a player’s 
reputation and triggers the punishment profile for the rest of the game.

To see how this works, consider the infinitely repeated prisoners’ dilemma. 
The stage game is given in Figure 22.4. There is only one stage Nash equilibrium, 
(D, D), so we use it as the punishment profile. Let (C, C) be the cooperative profile. 
Our goal is to understand whether the players have the incentive to play (C, C) 
each period under the threat that they will revert to (D, D) forever if one or both 
of them cheat. To be precise, the trigger strategy specifies that the players select 
(C, C) each period as long as this profile was always played in the past; otherwise, 
they are to play (D, D). This is sometimes called the grim-trigger strategy.

Let us evaluate whether the grim-trigger strategy profile is a subgame perfect 
equilibrium. Consider the incentives of player i (i = 1, 2) from the perspective 
of period 1. Suppose the other player—called player j—behaves according to 
the grim trigger. Player i basically has two options. First, she can herself follow 
the prescription of the grim trigger, which means cooperating as player j does. 
In this case, player i obtains a payoff of 2 each period, for a discounted total of

2 + 2d + 2d 

2 + 2d 

3 + . . . =
2

1 − d
 .

FIGURE 22.4 

A prisoners’ dilemma.
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299An Infinitely Repeated Game

Second, player i could defect in the first period, which yields an immediate 
payoff of 3 because player j cooperates in the first period. But player i ’s defec-
tion induces player j to defect in each period thereafter, so then the best that i 
can do is to keep defecting and get 1 each period. Thus, by defecting in period 
1, player i obtains the payoff

3 + d + d 

2 + d 3 + . . . = 3 + d [1 + d + d 

2 + d 3 + . . . ] = 3 +
d

1 − d
 .

If

2

1 − d
Ú 3 +

d

1 − d
 ,

then player i earns a higher payoff by perpetually cooperating against the grim 
trigger than by defecting in the first period. Simplifying this inequality yields  
d Ú 1>2.

So far, we see that the players have no incentive to cheat in the first period 
as long as d Ú 1>2. In fact, the same analysis establishes that the players have no 
incentive to deviate from the grim trigger in any period. For example, suppose 
the players have cooperated through period t − 1. Then, because the game is 
infinitely repeated, the “continuation game” from period t looks just like the 
game from period 1, so the analysis starting from period t is exactly the same as 
the analysis at period 1. Discounting the payoffs to period t, we see that coop-
erating from period t yields each player 2>(1 − d ). Defecting against the grim 
trigger leads to the payoff 3 + d>(1 − d ). Thus neither player has an incentive 
to defect in period t if the discount factor exceeds 1>2.

Analysis of subgame perfection requires us also to look at histories in which 
one or both players selected D at some point earlier. After such a history, the 
grim-trigger strategy prescribes play of D. It is clear that as (D, D) is a stage 
Nash profile, a player has no incentive to deviate from the grim trigger in such 
a contingency.

In summary, the simple calculation performed in reference to period 1 is 
enough to establish whether cooperation can be supported in a subgame perfect 
equilibrium via a reputation mechanism. For the stage game in Figure 22.4, the 
grim-trigger strategy profile is a subgame perfect Nash equilibrium if and only 
if d Ú 0.

It is useful to restate the foregoing analysis in terms of current-period payoffs 
and continuation values. We can express player i ’s payoff from any period t as 
u  

t
i + dv  

t+1
i , where ut

i is player i ’s payoff in period t and v  

t+1
i  is player i ’s contin-

uation value from the start of period t + 1. Note that the latter is multiplied by 
d to make it comparable to amounts in period t.
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To evaluate whether the grim-trigger strategy profile is a subgame 
perfect equilibrium, we can appeal to the one-deviation property (discussed 
previously in Chapter 15), which holds for discounted infinitely repeated games. 
Therefore, we simply check single deviations in two kinds of contingencies: 
(i) after histories in which (C, C) was always played, and (ii) after histories in 
which one or both players selected D at some point.

In the latter type of contingency, the grim-trigger strategy profile selects 
(D, D), which yields a current-period payoff of u 

t
i = 1 for each player. 

Further, the continuation value from period t + 1 is v  

t+1
i = 1>(1 − d). If a 

player were to deviate from the grim trigger, his current-period payoff would 
decrease and his continuation payoff would remain the same, so there is no 
sense in deviating.

In the former type of contingency, after a history in which (C, C) was always 
played, the grim-trigger strategy profile yields a current-period payoff of u 

t
i = 2 

and a continuation value of v  

t+1
i = 2>(1 − d) from the start of the next period. 

If player i were to deviate by selecting D in the current period, his current-period 
payoff would increase to 3 but his continuation value would decrease to 1>(1 − d). 
In other words, the current-period deviation gain is 2 − 1 = 1, whereas the loss 
in continuation value is

2

1 − d
−

1

1 − d
=

1

1 − d
 .

Multiplying the loss by d to put it in current-period terms, we get the condition 
under which the players do not want to deviate from grim trigger,

1 … d
1

1 − d
 ,

which simplifies to d Ú 1>2.
The grim-trigger analysis applies to any repeated prisoners’ dilemma; in 

fact, it applies to any game in which the players would punish a deviator by 
reverting to perpetual play of a stage Nash profile. Moreover, the analysis merely 
requires identifying three stage-game payoffs for each player: the “cooperative 
payoff” uc

i  the “deviator’s payoff” ud
i , and the “punishment payoff” up

i . These 
are defined as follows. The value uc

i  is player i ’s stage-game payoff in the event 
that the players select the action profile that they hope to support, such as (C, C) 
in the prisoners’ dilemma. The value ud

i  is player i ’s stage-game payoff in the 
event that he plays a stage-game best-response to the other player’s cooperative 
action, such as selecting D when the other player selects C in the prisoners’ 
dilemma. Finally, the value up

i  is player i ’s stage-game payoff from play of the 
stage Nash profile, which in the prisoners’ dilemma is (D, D).
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Note that a player who is first to deviate from the grim-trigger profile will 
get a deviation gain of u 

d
i − u 

c
i  in the current period, but will look forward to a 

loss of (u 

c
i − u 

p
i )>(1 − d) in continuation value starting from the next period. 

The player prefers not to deviate if

u 

d
i − u 

c
i …

d

1 − d
 [u 

c
i − u 

p
i].

Solving for d, this becomes

d Ú
u 

d
i − u 

c
i

u 

d
i − u 

p
i

 ,

which is the necessary and sufficient condition for cooperation to be sustained 
by the grim-trigger strategy profile as a subgame perfect Nash equilibrium.

For another example, consider the prisoners’ dilemma shown in Figure 
22.5. For this game we have u 

c
i = 4, u 

d
i = 6, and u 

p
i = 0, so cooperation can be 

sustained if and only if

d Ú
6 − 4

6 − 0
=

1

3
 .

You can run through calculations like this to double check the examples in the 
next chapter.

The infinitely repeated game demonstrates that patience—valuing the 
future—is essential to an effective reputation. When contemplating whether to 
defect in one period, the players consider the future loss that would result from 
tarnishing their reputations. Patient players—those with high discount factors—
care a lot about payoffs in future periods and therefore they do not want to ruin 
their reputations for some short-term gain. Thus, there is a sense in which main-
taining a reputation is more about the future than the past.4

4One of the early general analyses of discounted, repeated games may be found in D. Abreu, “On the Theory 
of Infinitely Repeated Games with Discounting,” Econometrica, 56 (1988): 383–396.

FIGURE 22.5 

Another prisoners’ dilemma.
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THE EQUILIBRIUM PAYOFF SET  WITH LOW DISCOUNTING

The grim-trigger equilibrium discussed in the preceding section is just one of 
potentially many subgame perfect equilibria in the repeated prisoners’ dilemma. 
We know from the result on page 295 that the following strategy profile also 
is an equilibrium regardless of the discount factor: play the stage Nash action 
profile (D, D) in every period, regardless of the history of play. This equilibrium 
is not very “cooperative,” and it yields a low payoff relative to the grim-trigger 
profile. In this section, I demonstrate that depending on the discount factor, 
there are many other equilibria exhibiting intermediate amounts of cooperation. 
The analysis will get a bit technical, but the conclusion at the end is significant.

To develop a picture of the entire set of equilibria in the repeated prisoners’ 
dilemma, consider again the stage game in Figure 22.5. For this stage game, 
Figure 22.6 depicts the set of feasible stage-game payoffs. This figure also graphs 
the possible repeated-game payoffs in terms of “average per period,” by multiply-
ing the discounted sum payoff by (1 − d). For example, the point (4, 4) is noted 
in the picture with a solid circle, which refers to the players obtaining (4, 4) each 
period in the game [by playing (C, C) each period].5 The point (6, −2) arises if 
(D, C) is played each period.

The diamond formed by connecting points (4, 4), (−2, 6), (0, 0), and 
(6, −2) is important; any payoff vector inside or on the edges of the diamond 
can be obtained as an average payoff if the players choose the right sequence of 

5Technically speaking, each player's payoff is 4>(1 − d) in this case. In Figure 22.6, I have multiplied this 
payoff by (1 − d) to put it in terms of per period.

FIGURE 22.6 

Possible repeated game  
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303The Equilibrium Payoff Set  with Low Discounting

actions over time. For instance, consider the point (5, 1) designated by an open 
circle in Figure 22.6. Suppose the players alternate between (C, C) and (D, C) 
over time, starting with (C, C) in the first period. For player 1, this sequence of 
actions yields a discounted payoff of

4 + 6d + 4d 

2 + 6d 

3 + . . . .

Factoring terms, this expression simplifies to

4 [1 + d2 + d4 + . . .] + 6d [1 + d2 + d4 + . . .] =
4

1 − d2 +
6d

1 − d2 .

Here I have used the same method as that put to use earlier to calculate the sums.6 
Recognizing that 1 − d2 = (1 + d)(1 − d), we can write player 1’s payoff as

4 + 6d

(1 − d)(1 + d)
 .

Multiplying by (1 − d) puts this in terms of average per period:

4 + 6d

1 + d
 .

Likewise, player 2’s per-period average is

4 − 2d

1 + d
 .

Note that if d is close to 1, then this average payoff vector is arbitrarily close 
to (5, 1). Just plug in d = 1 to see this. You can try other examples to convince 
yourself that the diamond in Figure 22.6 represents the set of average per-period 
payoffs that can arise in the repeated game. For instance, determine how an 
average payoff of (2, 2) can be obtained.

With the set of feasible repeated-game payoffs in mind, we can determine 
whether or not any particular payoff vector can be supported as the result of a 
subgame perfect equilibrium. For an example, focus on the per-period average 
vector (5, 1) and consider the following “modified grim-trigger strategy”: The 
players are instructed to alternate between (C, C) and (D, C) over time, starting 
with (C, C) in the first period. If either or both players has deviated from this 
prescription in the past, the players are supposed to revert to the stage Nash 
profile (D, D) forever. To determine whether this strategy profile is an equi-
librium, we must compare each player’s short-term gain from deviating to the 
punishment.

6Letting v = 1 + d2 + d4 + . . . , we have v = 1 + d2v. Solving, we get v = 1>(1 − d2).
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Let us begin with the incentives of player 2. First note that if the players 
conform to the modified grim trigger, then, starting from any odd-numbered 
period [in which players select (C, C)], player 2’s payoff is

4 − 2d + 4d 2 − 2d3 + . . . =
4 − 2d

1 − d2  .

Starting from any even-numbered period, player 2’s payoff is

−2 + 4d − 2d 2 + 4d 3 + . . . =
−2 + 4d

1 − d2  .

We need to check whether player 2 has an incentive to cheat in either an 
odd-numbered or an even-numbered period. Note that in each odd-numbered 
period, the players are supposed to select (C, C). If player 2 cheats (by defect-
ing), then he obtains a short-term gain of 6 − 4 = 2; however, his continua-
tion value starting in the next period—an even-numbered period—will be 0 
(because the players defect thereafter) rather than (−2 + 4d)>(1 − d2). If we 
discount this future loss to the period in which player 2 cheats, the payoff is 
d (−2 + 4d)>(1 − d2). Thus, player 2 prefers to cooperate in odd-numbered 
periods if and only if the long-term loss of cheating outweighs the short-term 
gain:

 
d (−2 + 4d )

(1 − d2)
Ú 2. (1)

Repeating the calculation for even-numbered periods yields the following 
inequality:

 
d(4 − 2d)

(1 − d2)
Ú 2. (2)

The short-term gain of 2 here is due to player 2 obtaining 0 rather than −2.
In summary, assuming player 1 plays according to the modified grim trig-

ger, player 2 wishes to conform if and only if both inequalities 1 and 2 are 
satisfied. You can verify with a bit of algebraic manipulation that the first 
simplifies to d Ú (1 + 113)>6 and the second simplifies to d Ú 1>2. Be cause 
(1 + 113)>6 > 1>2, the first inequality is more stringent than is the second. 
Thus, player 2 cooperates as long as d Ú (1 + 113)>6. You can perform the 
same kind of analysis to find that player 1 will conform to the modified grim 
trigger as long as d Ú (−3 + 121)>6. Because

 
1 + 113

6
 >
−3 + 121

6
 ,
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305The Equilibrium Payoff Set  with Low Discounting

we conclude that the modified grim-trigger profile is a subgame perfect equilib-
rium if and only if d Ú (1 + 113)>6. Furthermore, as already noted, the payoff 
of this equilibrium is close to (5, 1) if d is close to 1.

I realize that you might find this analysis complicated. But putting the 
details of the arguments aside, recognize the general conclusion. I showed that a 
point on one of the edges of the diamond in Figure 22.6 can be supported as an 
equilibrium average per-period payoff as long as the players are patient enough. 
In fact, any point on the edge or interior of the diamond can be so supported, 
as long as two conditions hold: (1) each player obtains more than 0, and (2) the 
discount factor is close enough to 1. Figure 22.7 depicts the set of equilibrium 
payoffs. Here is the result stated for general repeated games:

Result: Consider any infinitely repeated game. Suppose there is a stage 
Nash profile that yields payoff vector w (wi for player i, i = 1, 2, . . . , n). 
Let v be any feasible average per-period payoff such that vi > wi for 
each player i. The vector v can be supported arbitrarily closely by a 
subgame perfect Nash equilibrium if d is close enough to 1.

In other words, with the use of trigger strategies, almost any repeated-game 
payoff can be achieved in equilibrium with patient players.7

7Game theorists call this the folk theorem because it was thought to have been a part of the profession’s 
conventional wisdom before versions of the result were formally proved. A general treatment appears in  
D. Fudenberg and E. Maskin, “The Folk Theorem in Repeated Games with Discounting or with Incomplete 
Information,” Econometrica, 54 (1986): 533–554. For his pioneering analysis of repeated games and the folk 
theorem (among other theoretical contributions), Robert Aumann was awarded the Nobel Prize in 2005.

FIGURE 22.7 
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payoffs for large d.
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GUIDED EXERCISE

Problem: Persons 1 and 2 are forming a firm. The value of their relationship 
depends on the effort that each expends. Suppose that person i ’s utility from the 
relationship is x 2

j + xj − xi xj , where xi is person i ’s effort and xj is the effort of 
the other person (i = 1, 2). Assume x1, x2 Ú 0.

(a)  Compute the partners’ best-response functions and find the Nash equilib-
rium of this game. Is the Nash equilibrium efficient?

(b)  Now suppose that the partners interact over time, which we model with the 
infinitely repeated version of the game. Let d denote the discount factor of 
the players. Under what conditions can the partners sustain some positive 
effort level k = x1 = x2 over time?

(c)  Comment on how the maximum sustainable effort depends on the partners’ 
patience.

Solution:

(a)  To find the best-response functions, fix player j ’s effort xj and consider how 
player i ’s effort level xi affects his payoff x 

2
j + xj − xi xj . If xj = 0, then 

player i ’s payoff is 0, regardless of his choice, so in this case all of player 
i ’s feasible actions are best responses. Observe that in the case of xj > 0, 
player i ’s payoff is strictly decreasing in xi and so player i ’s best response 
is to select the lowest effort xi = 0. The only Nash equilibrium of this game 
is the profile (0, 0); that is, each player selects the lowest effort level. The 
equilibrium is not efficient. To see this, note that if both players select effort 
level k > 0, then they each get the payoff k2 + k − k2 = k, which exceeds 
the payoff of 0 that they get with profile (0, 0). In other words, profile (0, 0) 
is less efficient than profile (k, k).

(b)  Each player can guarantee himself a payoff of 0 by selecting xi = 0 in every 
period. Thus, repeated play of the stage Nash profile, which yields a payoff 
of 0, is the worst punishment that can be levied against a player. With this 
in mind, consider the grim-trigger strategy profile in which each player 
selects effort level k in each period, as long as both players had done so 
in the past. Otherwise, the players revert to the stage Nash profile. When 
this strategy profile is played, then each player gets k in each period. The 
discounted sum over an infinite number of periods is k>(1 − d). Note that 
the best way for a player to deviate is to select 0 effort rather than k, which 
yields a payoff of k2 + k in the period of the deviation (as the other player 
selects k).  Following the deviation, the players will revert to the stage Nash 
profile, which gives the deviator a payoff of 0 in all future periods. Thus, for 
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the grim trigger to be an equilibrium, we need k>(1 − d) Ú k2 + k, which 
simplifies to d>(1 − d) Ú k. Rearranging yields d Ú k>(1 + k).

(c)  The maximal sustainable effort is d>(1 − d), which is increasing in d. In 
other words, more patient players can sustain higher levels of effort.

EXERCISES

1. Consider a repeated game in which the stage game in the following figure is 
played in each of two periods and there is no discounting. 

L
1

2

U

C

D

M R

8, 8

9, 0

1, 3

0, 9 0, 0

3, 1

3, 3

0, 0

0, 0

Fully describe a subgame perfect equilibrium in which the players select  
(U, L) in the first period.

2. Find conditions on the discount factor under which cooperation can be sup-
ported in the infinitely repeated games with the following stage games.

C

C

1
D

D

2

3, 4 0, 7

1, 25, 0

(b)

C

C

1
D

D

2

3, 2 0, 1

2, 17, 0

(c)

C

C

1
D

D

2

2, 2 0, 4

1, 14, 0

(a)

Use the grim-trigger strategy profile.

3. Consider the following stage game.

X

A

1
Y

B

2

5, 6 0, 0

8, 2 2, 2
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(a) Find and report all of the (pure-strategy) Nash equilibria of this game.
(b)  Consider the two-period repeated game in which this stage game is 

played twice and the repeated-game payoffs are simply the sum of the 
payoffs in each of the two periods. Is there a subgame perfect equilib-
rium of this repeated game in which (A, X) is played in the first period? 
If so, fully describe the equilibrium. If not, explain why.

4. If its stage game has exactly one Nash equilibrium, how many subgame 
perfect equilibria does a two-period, repeated game have? Explain. Would 
your answer change if there were T periods, where T is any finite integer?

5. Consider the infinitely repeated game where the stage game is the matrix 
in Exercise 2(c). Under what conditions is there a subgame perfect equilib-
rium in which the players alternate between (C, C) and (C, D), starting with 
(C, C) in the first period? Under what conditions is there a subgame perfect 
equilibrium in which the players alternate between (C, C) and (D, D), start-
ing with (C, C) in the first period? (Use modified trigger strategies.)

6. Which is more important to achieving cooperation through a reputation, a 
long history together or a long horizon ahead?

7. Consider the following three-player game.

2, 2, 0 5, 5, 5

0, 7, 48, 6, 8

L

U

1
2

D

R

A B

3

4, 4,  1 4, 2, 8

4, 2, 50, 2, 9

L

U

1
2

D

R

The players make their choices simultaneously and independently. The pay-
offs are listed in order of the player numbers.
(a)  Find the (pure-strategy) Nash equilibria of this game.
(b)  Consider the two-period repeated game in which this stage game is played 

twice and the repeated game payoffs are simply the sum of the payoffs in 
the two periods. Compute and report all of the subgame perfect equilibria 
of this repeated game. List the set of subgame perfect equilibrium payoffs.
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8. Consider an infinite-period repeated game in which a “long-run player” faces 
a sequence of “short-run” opponents. Formally, player 1 plays the stage 
game with a different player 2 in each successive period. Denote by 2t the 
player who plays the role of player 2 in the stage game in period t. Assume 
that all players observe the history of play. Let d denote the discount factor 
of player 1. Note that such a game has an infinite number of players.
(a)  In any subgame perfect equilibrium, what must be true about the behav-

ior of player 2t with respect to the action selected by player 1 in period t?
(b)  Give an example of a stage-game and subgame perfect equilibrium 

where the players select an action profile in the stage game that is not a 
stage Nash equilibrium.

(c)  Show by example that a greater range of behavior can be supported 
when both players are long-run players than when only player 1 is a 
long-run player.

9. Consider the following “war of attrition” game. Interaction between play-
ers 1 and 2 takes place over discrete periods of time, starting in period 1. In 
each period, players choose between “stop” (S) and “continue” (C) and they 
receive payoffs given by the following stage-game matrix:

S

S1
2

C

C

x, x 0, 10

10, 0 -1, -1

The length of the game depends on the players’ behavior. Specifically, if 
one or both players select S in a period, then the game ends at the end of 
this period. Otherwise, the game continues into the next period. Suppose 
the players discount payoffs between periods according to discount factor 
d. Assume x < 10.
(a)  Show that this game has a subgame perfect equilibrium in which player 

1 chooses S and player 2 chooses C in the first period. Note that in such 
an equilibrium, the game ends at the end of period 1.

(b)  Assume x = 0. Compute the symmetric equilibrium of this game. 
(Hint: In each period, the players randomize between C and S. Let a 
denote the probability that each player selects S in a given period.)

(c)  Write an expression for the symmetric equilibrium value of a for the 
case in which x is not equal to 0.
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10. Consider a repeated game between a supplier (player 1) and a buyer (play-
er 2). These two parties interact over an infinite number of periods. In each 
period, player 1 chooses a quality level q ∈ [0, 5] at cost q. Simultaneously, 
player 2 decides whether to purchase the good at a fixed price of 6. If player 2  
purchases, then the stage-game payoffs are 6 − q for player 1 and 2q − 6 for 
player 2. Here, player 2 is getting a benefit of 2q. If player 2 does not purchase, 
then the stage-game payoffs are −q for player 1 and 0 for player 2. Suppose 
that both players have discount factor d.
(a)  Calculate the efficient quality level under the assumption that transfers 

are possible (so you should look at the sum of payoffs).
(b)  For sufficiently large d, does this game have a subgame perfect Nash 

equilibrium that yields the efficient outcome in each period? If so, 
describe the equilibrium strategies and determine how large d must be 
for this equilibrium to exist.

11. This is an extension of the previous exercise. Consider the following 
stage game between a manager (also called the “Principal”) and a work-
er (the “Agent”). Let the manager be player 1 and the worker be player 
2.  Simultaneously, the manager chooses a bonus payment p ∈ [0,  ) and 
the worker chooses an effort level a ∈ [0,  ). The stage-game payoffs are 
u1(p, a) = 4a − p and u2( p, a) = p − a2.
(a) Determine the efficient effort level for the worker.
(b) Find the Nash equilibrium of the stage game.
(c)  Suppose the stage game is to be played twice (a two-period repeated game) 

and there is no discounting. Find all of the subgame perfect equilibria.
(d)  Suppose the stage game is to be played infinitely many times in succes-

sion (an infinitely repeated game) and assume that the players share 
the discount factor d < 1. Find conditions on the discount factor under 
which there is a subgame perfect equilibrium featuring selection of the 
efficient effort level in each period (on the equilibrium path).

12. Consider the infinitely repeated prisoners’ dilemma and recall the definition 
of the grim-trigger strategy. Here is the definition of another simple strat-
egy called Tit-for-tat: Select C in the first period; in each period thereafter, 
choose the action that the opponent selected in the previous period.8 Is the 
tit-for-tat strategy profile a Nash equilibrium of the repeated game for dis-
count factors close to one? Is this strategy profile a subgame perfect Nash 
equilibrium of the repeated game for discount factors close to one? Explain.

8For more on tit-for-tat, you might look at R. Axelrod, The Evolution of Cooperation (New York: Basic Books, 
1984). 
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In this chapter, I sketch three applications of repeated-game theory. Two of 
them elaborate on analysis presented in Part II of this book. In particular, to 

study collusion between firms, I use a repeated version of the Cournot duopoly 
model; discussion of the enforcement of  international trade agreements utilizes 
a similar repeated game.

DYNAMIC OLIGOPOLY AND COLLUSION

Consider the Cournot duopoly model in Chapter 10, with two firms that each 
produce at zero cost (which I assume just to make the computations easy), and 
suppose the market price is given by p = 1 − q1 − q2 . Firm i, which produces 
qi , obtains a payoff of (1 − qi − qj 

) qi . Note that the Nash equilibrium of this 
game is q1 = q2 = 1>3, yielding a payoff of 1>9 for each firm. As noted in 
Chapter 10, this outcome is inefficient from the firms’ point of view; they would 
both be better off if they shared the monopoly level of output by each produc-
ing 1>4. Sharing the monopoly output yields each firm a payoff of 1>8, which is 
greater than the Nash equilibrium payoff of 1>9.1 In the static game, therefore, 
the firms would like to collude to set q1 = q2 = 1>4, but this strategy profile 
cannot be sustained because it is not an equilibrium.

In most industries, firms do not interact in just a single point in time. They 
interact every day, potentially forever. To model firms’ ongoing interaction, we 
can examine an infinitely repeated version of the Cournot duopoly, where the stage 
game is defined as the Cournot game described in the preceding paragraph. Anal-
ysis of the infinitely repeated game demonstrates that collusion can be sustained 
in equilibrium, using the reputation mechanism. In particular, let us evaluate the 
following grim-trigger strategy profile: Each firm is prescribed to select 1>4 in 
each period, as long as both firms did so in the past; if one or both players devi-
ates, the firms are supposed to play the stage Nash profile (1>3, 1>3) forever after.

1If numbers 1>8 and 1>9 seem insignificant, think of qi as millions of units, the price in dollars, and the payoff 
therefore in millions of dollars.

23COLLUSION, TRADE AGREEMENTS,  
AND GOODWILL
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Assume that firm j plays according to this strategy. Then, if firm i cooperates, 
it gets the discounted sum payoff

1

8
 (1 + d + d 

2 + . . . ) =
1

8(1 − d )
 .

Firm i can take advantage of firm j in the short run by producing more than 1>4. 
However, it will then obtain 1>9 in all future periods (anticipating that the players 
revert to the stage Nash profile following the deviation). To check firm i ’s incen-
tives, note that to maximize its immediate gain from cheating, firm i chooses qi 
to maximize (1 − 1>4 − qi 

) qi . You should verify that the maximum is attained 
by picking qi = 3>8 and that it yields a payoff of 9>64 in the period of the devia-
tion. Note that  9>64 > 1>8, meaning that player i has a short-term incentive to 
deviate. Thus, the most that firm i can get by deviating from the grim trigger is 
an immediate payoff of 9>64, plus 1>9 in all future periods. With appropriate 
discounting, this payoff stream sums to

9

64
 +  

d

9(1 − d  )
 .

Collusion can be sustained as a subgame perfect equilibrium if

1

8(1 − d  )
 Ú  

9

64
 +  

d

9(1 − d  )
 ,

which simplifies to d Ú 9>17. In words, if the firms do not discount the future 
too much, collusion is possible.

This result is a bit disconcerting because economists believe that competition 
yields many benefits to society, among them efficiency of the economy as a 
whole.2 When firms collude, consumers can lose out big time, which is why 
there are laws against collusion to restrain trade. Government policy is, in this 
case, best understood in terms of how it restricts contracting. A collusive equi-
librium, such as the grim trigger just studied, is a self-enforced contract. (Recall 
the discussion of contract in Chapter 13.) The Sherman Act, passed in the United 
States in 1890, prohibits such contracts between firms.3 Thus, it is a no-no for 
managers of competing firms to meet in smoke-filled rooms and make deals.

Unfortunately, outlawing explicit collusion contracts is not enough because 
firms often find ways of colluding without their managers actually having to 
communicate directly. For example, many firms make a big deal out of their 

2Do not confuse efficiency of the economy—which takes into consideration all firms, consumers, and 
markets—with efficiency from the point of view of the two firms in the model presented here.
3The Clayton and Federal Trade Commission Acts (1914) extended the law on monopolization practices.
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commitment to “match competitors’ prices,” and firms find ways to make this 
commitment legally binding. Although price-match commitments may seem 
competitive, in a dynamic setting they can have the opposite effect. By commit-
ting to match prices, firms may merely be committing to play the grim-trigger 
strategy. Thus, although the message to consumers is, “We’re competitive,” the 
message between firms may be, “We agree to get into a price war [the stage 
Nash profile] if any firm deviates from the collusive agreement.” Firms with 
dominant market positions can also facilitate collusion by acting as “market 
leaders” who set prices expecting other firms to follow suit. When collusion 
takes place without the firms actively communicating about it, it is called an 
implicit contract. The Sherman Act forbids such tacit collusion, evaluating 
whether firms engage in parallel conduct that is likely different from what one 
would expect in a competitive market.

ENFORCING INTERNATIONAL TRADE AGREEMENTS

Whereas self-enforced contracts between colluding firms is undesirable, the 
opposite is true of contracts between countries. International trade agreements 
can be very beneficial, but, because there is no strong external enforcement insti-
tution for interaction between countries, nations must rely on self-enforcement. 
The reputation mechanism is used to enforce trade agreements.

For example, a significant fraction of the world’s nations have agreed to 
set low tariffs on imports (a reduction from the high tariffs that existed decades 
ago). Low tariffs are generally efficient in that countries are better off when they 
all set low tariffs than if they all set high tariffs. However, as you have learned 
by analyzing the equilibrium of the static tariff game in Chapter 10, low tariffs 
cannot be sustained as a self-enforced contract when the countries rely on short-
term incentives. In other words, low tariffs do not constitute a Nash equilibrium 
in the static game. Instead, nations utilize the repeated nature of their interaction. 
They often agree to trigger-strategy equilibria, whereby low tariffs (cooperation) 
are sustained by the threat of reverting to the high-tariff stage Nash profile. That 
is, if one country cheats by unilaterally raising a tariff, then it and its trading 
 partners expect low value in the future as play turns to the stage Nash profile.

Self-enforced contracts between countries are quite explicit—they result 
from active, sometimes intense, negotiation. International institutions facilitate 
trade agreements by bringing the nations’ representatives together, by provid-
ing them with a language that fosters mutual understanding, by recording agree-
ments, and by disseminating information. The World Trade Organization (WTO) 
and its predecessor, the General Agreement on Tariffs and Trade (GATT), have 
been the focal point for achieving dramatic tariff reductions in the past century. 
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Central to the WTO is the concept of “reciprocity,” whereby a country is allowed 
to retaliate when one of its trading partners raises a tariff level. Reciprocity 
evokes the notion of trigger strategy.4

Owing to uncertainty and information problems, countries periodically get 
into disputes. For this reason, the WTO encourages a limited trigger- strategy 
equilibrium in which the punishment phase does not last forever; that is, 
governments do not exactly play the grim trigger, but they play something 
that delivers moderate punishment for a short time. Countries also renegotiate 
their contracts over time, to resolve disputes and balance their interests in the 
rapidly changing world. The “banana trade war” between the United States and 
the  European Union illustrates the manner in which disputes, punishment, and 
renegotiation take place. In 1998, the United States asked the WTO to force the 
EU to dismantle favored trading terms given by the EU to banana producers 
in former European colonies. The WTO sided with the United States. In 1999, 
the EU responded by relaxing its rules toward imports of U.S. companies such 
as Chiquita, but not enough to satisfy the United States. With WTO approval, 
the United States retaliated by raising the tariff rates from 6 to 100 percent on 
several European luxury goods, such as pecorino cheese, cashmere wool prod-
ucts, and handbags. 

GOODWILL AND TRADING A REPUTATION

The word “trade” usually makes people think of the exchange of physical goods 
and services. But some less-tangible assets also are routinely traded. Reputation 
is one of them. Those who have studied accounting know that “goodwill” is a 
legitimate and often important item on the asset side of a firm’s balance sheet. 
Goodwill refers to the confidence that consumers have in the firm’s integrity, 
the belief that the firm will provide high-quality goods and services—in other 
words, the firm’s reputation. It is often said that a firm’s reputation is its great-
est asset. Firms that have well-publicized failures (product recalls, for example) 
often lose customer confidence and, as a result, profits.

When a firm is bought or sold, its reputation is part of the deal. The current 
owners of a firm have an incentive to maintain the firm’s good reputation to the 
extent that it will attract a high price from prospective buyers. This incentive 

4The following recent articles use repeated-game theory to study international institutions: K. Bagwell and 
R. W. Staiger, “An Economic Theory of GATT,” American Economic Review, 89 (1999): 2l5–248; G. Maggi, 
“The Role of Multilateral Institutions in International Trade Cooperation,” American Economic Review, 89 
(1999): 190–214; and M. Klimenko, G. Ramey, and J. Watson, “Recurrent Trade Agreements and the Value of 
External Enforcement,” University of California, San Diego, Discussion Paper 2001–01, 2001.
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315 Goodwill and Trading a Reputation

may outweigh short-term desires to take advantage of customers or to do other 
things that ultimately will injure the firm’s good name.

A game-theory model illustrates how reputation is traded.5 The follow-
ing game-theoretic example is completely abstract—it is not a model of a firm  
per se—but it clearly demonstrates how reputation is traded. Consider the two-
period repeated game analyzed at the beginning of Chapter 22; the stage game 
is reproduced in Figure 23.1. Here I add a new twist. Suppose there are three 
players, called player 1, player 21, and player 22. In the first period, players 1 and 
21 play the stage game (with player 21 playing the role of player 2 in the stage 
game). Then player 21 retires, so he cannot play the stage game with player 1 
again in period 2. However, player 21 holds the right to play in period 2, even 
though he cannot exercise this right himself. Player 21 can sell this right to player 
22, in which case players 1 and 22 play the stage game in the second period.

To be precise, the game begins in the first period, where players 1 and 21 play 
the stage game. Between periods 1 and 2, players 21 and 22 make a joint decision, 
determining whether player 22 obtains the right to play in period 2 as well as a 
monetary transfer from player 22 to player 21. If player 22 obtains the right from 
player 21, then players 1 and 22 play the stage game in period 2; otherwise, the 
game ends before the second period. The default outcome at the joint-decision 
phase is no transfer and no trade of the play right, ending the game. As for 
payoffs, player 1 obtains the sum of his stage-game payoffs; player 21 obtains his 
stage-game payoff from period 1 plus whatever transfer he negotiates with player 
22 between periods; and player 22 obtains his payoff from the second-period 
stage game (if played) minus the transfer to which he agreed between periods. 
Note that this is a game with joint decisions.

To see how player 21’s ability to sell the right to player 22 affects behavior, 
let us first solve the version of the game in which there is no joint decision 

FIGURE 23.1 

Stage game from Chapter 22.

5The model I describe here is inspired by D. M. Kreps, “Corporate Culture and Economic Theory,” in Firms, 
Organizations and Contracts: A Reader in Industrial Organization, ed. P. J. Buckley and J. Michie (New 
York: Oxford University Press, 1996), pp. 221–275. Recent, more rigorous research on this topic is contained 
in S. Tadelis, “The Market for Reputations as an Incentive Mechanism,” Journal of Political Economy, 92 
(2002): 854–882.

X

A

1
2

B

Y Z

4, 3

2, 1

0, 0

0, 00, 0

1, 4

Watson_c23_311-324hr.indd   315 2/4/13   12:32 PM



316 23: Collusion, Trade Agreements, and Goodwill

between periods 1 and 2. In this version of the game, players 1 and 21 play the 
stage game in period 1 and then players 1 and 22 play the stage game in period 2. 
Observe that subgame perfection requires either (A, Z) or (B, Y) to be played in 
each period. To see this, suppose you wanted to sustain (A, X) in the first period. 
It would be irrational for player 21 to follow this prescription because X is domi-
nated in the stage game and player 21’s payoff does not depend on anything that 
happens after the first period.

Now return to the game in which player 21 can sell player 22 the right 
to play the stage game in period 2. In this setting, player 21 actually can be 
given the incentive to play X. Consider the following regime: Players 1 and 
21 are prescribed to select (A, X) in the first period. Then, in the event that the 
second-period stage game is played, the behavior of players 1 and 22 depends 
on the outcome of first-period interaction. If (A, X) was chosen in period 1, 
then 1 and 22 are supposed to choose (A, Z) in period 2; otherwise, they select 
(B, Y) in period 2. Note that the outcome of period 1 influences the amount 
that player 22 is willing to pay for the right to play. Play in period 2 is worth 
4 to player 22 if (A, X) was the outcome of period 1; otherwise, the right to 
play is worth 1.

Assume the joint decision between periods is resolved according to the 
standard bargaining solution, where players 21 and 22 divide the surplus in 
proportion to their relative bargaining powers. Let a be the bargaining weight 
for player 21, so (1 − a) is the weight for player 22. The disagreement point 
yields both of these players a payoff of 0, net of whatever player 21 received in 
the first period (which he gets regardless of interaction after the first period). 
If (A, X) was the outcome in period 1, then players 21 and 22 negotiate over a 
surplus of 4 (which is what player 22 would obtain by securing the right to play). 
Thus, conditional on (A, X) occurring in the first period, player 21 obtains a # 4 
and player 22 obtains (1 − a) # 4 from the negotiation phase. These values are 
achieved by having player 22 make a transfer of a # 4 to player 21 in exchange 
for the right to play in period 2. By similar reasoning, if (A, Z) was the outcome 
in the first period, then players 21 and 22 negotiate over a surplus of 1, yielding 
a # 1 to player 21 and (1 − a) # 1 to player 22.

As I have constructed it, the regime under consideration specifies Nash 
equilibrium behavior in the second period—that is, (A, Z) or (B, Y), depending 
on the outcome of period 1—and joint decisions consistent with the standard 
bargaining solution. To complete the analysis, we must check whether players 
1 and 21 have the unilateral incentive to deviate from playing (A, X) in the first 
period. If not, the regime is a negotiation equilibrium.

First, observe that player 1 has no incentive to deviate: He could induce (B, Y)  
to be played in the second period, but only at a first-period cost exceeding his 
second-period gain. As for player 21, if he goes along with (A, X), then his 
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317 Guided Exercise

immediate payoff is 3 and he gets 4a through negotiation with player 22, for 
a total of 3 + 4a. In contrast, if player 21 picks Z, then he would obtain 4 in 
the first period and a through negotiation, for a total of 4 + a. Thus, player 21 
has the incentive to cooperate in the first period if and only if 3 + 4a Ú  4 + a, 
which simplifies to a Ú  1>3. In conclusion, the regime is a negotiation equilib-
rium if and only if a Ú  1>3.

This analysis demonstrates that a reputation can be established by one party 
and then transferred to another party who finally exploits it. In the game, player 
21’s incentive to cooperate in period 1 derives entirely from his desire to build 
a reputation that he can sell to player 22. The model also illustrates the hold-up 
problem first discussed in Chapter 21. If the terms of trade favor player 22—
represented by a < 1>3—then player 21 cannot appropriate much of the value 
of his reputation investment; in this case, (A, X) cannot be supported in the  
first period.

GUIDED EXERCISE

Problem: Consider the following game:

(a) What are the Nash equilibria of this game?
(b)  If the players could meet and make a self-enforced agreement regarding 

how to play this game, which of the Nash equilibria would they jointly 
select?

(c)  Suppose the preceding matrix describes the stage game in a two-period 
repeated game. Show that there is a subgame perfect equilibrium in which 
(z, z) is played in the first period.

(d)  One can interpret the equilibrium from part (c) as a self-enforced, dynamic 
contract. Suppose that after they play the stage game in the first period but 
before they play the stage game in the second period, the players have an 
opportunity to renegotiate their self-enforced contract. Do you believe the 
equilibrium from part (c) can be sustained?
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318 23: Collusion, Trade Agreements, and Goodwill

Solution:

(a) You can easily verify that the Nash equilibria are (x, x) and (y, y).
(b)  Because strategy profile (y, y) is more efficient than profile (x, x), the  players 

would agree to play (y, y).
(c)  Consider the following strategy profile for the two-period repeated game: 

In the first period, the players are supposed to select (z, z). If neither player 
deviates, then the strategy profile prescribes that stage Nash profile (y, y) 
be played in the second period. In contrast, if one or both players deviate 
in the first period (for example, if one player chooses y for an immediate 
gain of 9 − 8 = 1), then the players coordinate on stage Nash profile (x, x) 
in the second period. To see that this strategy profile constitutes a subgame 
perfect equilibrium, note that it always prescribes a stage Nash profile in the 
second-period subgames. Furthermore, a player gains at most 1 by deviating 
in the first period, but in this case the player then loses 2 because of the shift 
to (x, x) in the second period.

(d)  Renegotiation can interfere with the equilibrium described in part (c). 
For example, if player 1 deviates by choosing y in the first period, he 
could then say the following to player 2: “Hey, I made a mistake. Let’s 
not continue with the equilibrium we agreed to earlier, for it now speci-
fies play of (x, x). It is strictly better for both of us to coordinate on  
(y, y).” Indeed, the players have a mutual interest in switching to (y, y). 
But anticipating that they would do this in the event of a first-period 
deviation, (z, z) is not sustainable in the first period. The theory of re-
negotiation is, by the way, an important topic at the frontier of current 
research in game theory.

EXERCISES

1. Consider the Bertrand oligopoly model, where n firms simultaneously and in-
dependently select their prices, p1 , p2 , . . . , pn , in a market. (These prices are 
greater than or equal to 0.) Consumers observe these prices and only purchase 
from the firm (or firms) with the lowest price p, according to the demand 
curve Q = 110 − p, where p = min{p1 , p2 , . . . , pn}. That is, the firm with 
the lowest price gets all of the sales. If the lowest price is offered by more than 
one firm, then these firms equally share the quantity demanded Q. Assume 
that firms must supply the quantities demanded of them and that production 
takes place at a constant cost of 10 per unit. (That is, the cost function for each 
firm is c (q) = 10q.) Determining the Nash equilibrium of this game was the 
subject of a previous exercise.
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(a)  Suppose that this game is infinitely repeated. (The firms play the 
game each period, for an infinite number of periods.) Define d as the 
discount factor for the firms. Imagine that the firms wish to sustain 
a collusive arrangement in which they all select the monopoly price 
pM = 60 each period. What strategies might support this behavior in 
equilibrium? (Do not solve for conditions under which equilibrium 
occurs. Just explain what the strategies are. Remember, this requires 
specifying how the firms punish each other. Use the Nash equilibrium 
price as punishment.)

(b)  Derive a condition on n and d that guarantees that collusion can be 
sustained.

(c)  What does your answer to part (b) imply about the optimal size of 
cartels?

2. Examine the infinitely repeated tariff-setting game, where the stage game 
is the two-country tariff game in Chapter 10 (see also Exercise 3 in that 
chapter).
(a)  Compute the Nash equilibrium of the stage game.
(b)  Find conditions on the discount factor such that zero tariffs (x1 = x2 = 0)

can be sustained each period by a subgame perfect equilibrium. Use the 
grim-trigger strategy profile.

(c)  Find conditions on the discount factor such that a tariff level of 
x1 = x2 = k can be sustained by a subgame perfect equilibrium, where 
k is some fixed number between 0 and 100.

3. Repeat the analysis of goodwill presented in this chapter for the following 
stage game:

4. Consider an infinite-period repeated prisoners’ dilemma game in which a 
long-run player 1 faces a sequence of short-run opponents. (You dealt with 
games like this in Exercise 8 of Chapter 22.) Formally, there is an infinite 
number of players—denoted 21, 22, 23, .  .  . —who play as player 2 in the 
stage game. In period t, player 1 plays the following prisoners’ dilemma 
with player 2t.
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320 23: Collusion, Trade Agreements, and Goodwill

Assume that all of the players observe the history of play. Let d denote the 
discount factor of player 1.
(a)  Show that the only subgame perfect equilibrium involves play of 

(D, D) each period.
(b)  Next suppose that the players 2t have the opportunity to buy and sell the 

right to play the game each period. Formally, suppose that in order for 
player 2t to play the stage game in period t, this player must purchase 
the right from player 2t−1. Model the negotiation between successive 
players 2t−1 and 2t as a joint decision. Further, assume the outcome of 
negotiation is consistent with the standard bargaining solution. Under 
what conditions on bargaining weights and the discount factor can  
(C, C) be supported over time?

5. Repeat the analysis of the Guided Exercise for the following stage game:

In your answer to part (d), discuss the role of bargaining weights and 
disagreement points in the renegotiation phase.

6. This exercise addresses the notion of goodwill between generations. Con-
sider an “overlapping generations” environment, whereby an infinite-period 
game is played by successive generations of persons. Specifically, imagine 
a family comprising an infinite sequence of players, each of whom lives for 
two periods. At the beginning of period t, player t is born; he is young in 
period t, he is old in period t + 1, and he dies at the end of period t + 1. 
Thus, in any given period t, both player t and player t − 1 are alive. Assume 
that the game starts in period 1 with an old player 0 and a young player 1.

C

1
2

C

D

D

2, 2

3, 0 1, 1

0, 3

x
1

2

y z

x

y

z

6,  6

0, 0

0, 0

0, 0

0, 9 8, 80,  0

0, 0

9, 0

Watson_c23_311-324hr.indd   320 2/4/13   12:32 PM



321 Exercises

When each player is young, he starts the period with one unit of wealth. 
An old player begins the period with no wealth. Wealth cannot be saved 
across periods, but each player t can, while young, give a share of his wealth 
to the next older player t − 1. Thus, consumption of the old players de-
pends on gifts from the young players. Player t consumes whatever he does 
not give to player t − 1. Let xt denote the share of wealth that player t gives 
to player t − 1. Player t ’s payoff is given by (1 − xt) + 2xt+1, meaning that 
players prefer to consume when they are old.
(a)  Show that there is a subgame perfect equilibrium in which each 

player consumes all of his wealth when he is young; that is, xt = 0 
for each t.

(b)  Show that there is a subgame perfect equilibrium in which the young 
give all of their wealth to the old. In this equilibrium, how is a player 
punished if he deviates?

(c)  Compare the payoffs of the equilibria in parts (a) and (b).

7. Consider an infinitely repeated game with the following stage game:

1
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Suppose that this repeated game is the underlying game in a contractual 
setting with external enforcement. Specifically, an external enforcer will 
compel transfer a from player 2 to player 1 in every period in which 
(N, I) is played, transfer b from player 2 to player 1 in every period in 
which (I, N) is played, and transfer g from player 2 to player 1 in every 
period in which (N, N) is played. The numbers a, b, and g are chosen by 
the players in their contract before the repeated interaction begins. These 
numbers are fixed for the entire repeated game. Assume that the players 
discount the future using discount factor d.
(a)  Suppose there is full verifiability, so that a, b, and g can be different 

numbers. Under what conditions on d is there a contract such that the 
players choose (I, I) in each period in equilibrium?

(b)  Suppose there is limited verifiability, so that a = b = g is required. 
Under what conditions on d is there a contract such that the players 
choose (I, I) in each period in equilibrium? Consider the grim-trigger 
strategy profile.

Watson_c23_311-324hr.indd   321 2/4/13   12:32 PM



322 23: Collusion, Trade Agreements, and Goodwill

(c)  Continue to assume the conditions in part (b), with a value of d that 
supports play of (I, I) in each period of the repeated game. Suppose that 
when the players select a, b, and g before the repeated game is played, 
they can also make an up-front monetary transfer m from player 2 to 
player 1. Assume that if the players do not reach an agreement on a, b, 
g, and m, then they will not play the repeated game and each player 
will get 0. If player 1’s bargaining weight is p1 = 2>3, what does the 
standard bargaining solution predict will be the value of m?

8. Consider the prisoners’ dilemma stage game pictured here:

C

C
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player

player
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D

D

3, 3

2, 25, 0

0,  5
Row player’s payoff is listed first.

The following questions ask you to consider various discrete-time environ-
ments in which people meet and play the stage game. For each environment, 
you are to determine the extent to which cooperation can be sustained in a 
subgame perfect equilibrium.
(a)  Suppose that two players interact in an infinitely repeated game, with 

the stage game shown, and that the players share the discount factor 
d ∈ (0, 1). Under what conditions on d is there a subgame perfect equi-
librium that supports both players selecting C each period?

(b)  Suppose that there is a society of k individuals. In each period, two 
people from the society are randomly selected to play the stage game. 
Individuals are equally likely to be selected. Furthermore, the random 
draw that determines who is selected in a given period is independent of 
the outcomes in previous periods. Thus, an individual has a probability 
2>k of being selected to play the stage game in any given period. One 
of the people selected plays the role of Row player in the stage game, 
whereas the other person plays the role of Column player. (The stage 
game is symmetric, so the roles do not matter.) Those who are selected 
obtain the payoffs of the stage game, whereas the individuals who were 
not selected get 0 for this period. Everyone discounts the future using 
discount factor d.

Assume that the individuals can identify each other. That is, indi-
viduals know the names and faces of everyone else in the society. 
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Assume also that before the stage game is played in a given period, 
everyone observes who is selected to play. Further, everyone observes 
the outcome of each period’s stage game.

Is there a sense in which it is more difficult to sustain cooperation 
in this random-matching setting than was the case in part (a)? Explain 
why or why not. Calculate the cutoff value of d under which coopera-
tion can be sustained.

(c)  Consider the same setting as in part (b) except assume that the indi-
viduals only observe their own history of play. As before, individuals 
can identify each other. However, an individual only knows when he is 
selected to play the stage game; if he is not selected to play in a given 
period, he observes neither who was selected to play nor the outcome of 
the stage game. When an individual is selected to play the stage game, 
he learns whom he is matched with; then the stage game is played, and 
the two matched individuals observe the outcome.

Explain why cooperation is more difficult to sustain in this setting 
than in the setting of part (b). If you can, calculate the cutoff value of d 
under which cooperation can be sustained.

9. Consider the following strategic setting. Every fall, two neighboring ele-
mentary schools raise money for field trips and playground equipment by 
selling giant candy bars. Suppose that individuals in the surrounding com-
munities love candy bars and care about helping the children from both 
schools but have a slight preference for purchase of candy from the clos-
est school. (In other words, candy bars from the two schools are imperfect 
substitutes.) Demand for school i ’s candy, in hundreds of bars, is given by 
qi = 24 − 2pi + pj , where pi is the price charged by school i, and pj is the 
price charged by the other school j. Assume that the candy bars are donated 
to the school and there are no costs of selling the candy. The schools simul-
taneously set prices and sell the number of candy bars demanded, so school 
1’s payoff is the revenue p1 q1 and school 2’s payoff is the revenue p2 q2 .
(a)  Compute the schools’ best-response functions and the Nash equilib-

rium prices. How much money (in hundreds) does each school raise?
(b)  In an effort to raise more money, the schools decide to meet and work 

together to set a common price for the candy bars sold at both schools. 
What price should the schools charge to maximize their joint fund- 
raising revenues? How much money (in hundreds) would each school 
raise if they charge this price?

(c)  Suppose that there is no way to externally enforce the price-fixing agree-
ment, so the schools must rely on repeated interaction and reputations to 
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sustain cooperation. If the schools anticipate holding the same fundraiser 
each fall for 5 years (and no longer), will they be able to maintain the 
price obtained in part (b)? Explain how or why not.

(d)  Now suppose that the schools anticipate holding the same fundraiser 
every year forever. Define d as the schools’ discount factor for periods 
of a year. Derive a condition on d that guarantees the schools will be 
able to sustain a cooperative agreement to sell candy bars at the price 
obtained in part (b).

10. Persons 1 and 2 are forming a firm. The value of their relationship depends 
on the effort that they each expend. Suppose that person i ’s utility from the 
relationship is x2

j + xj − xi xj , where xi Ú  0 is person i ’s effort and xj is the 
effort of the other person (i = 1, 2).
(a)  Compute the partners’ best-response functions and find the Nash equi-

librium of this game. Is the Nash equilibrium efficient?
(b)  Now suppose that the partners interact over time, which we model with 

the infinitely repeated version of the game. Let d denote the discount 
factor of the players. Under what conditions can the partners sustain 
some positive effort level x = x1 = x2 over time? (Postulate strategies 
and then derive a condition under which the strategies form an equilib-
rium in the repeated game.)

(c)  Comment on how the maximum sustainable effort depends on the partners’ 
patience.
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P a r t  i V informationP a r t  i V

Many strategic settings are interesting because players have 
different information at various junctures in a game. Most 
of the games presented in preceding chapters have some sort 
of information imperfection; that is, their extensive forms 
contain nontrivial information sets (those consisting of more 
than one node). The most interesting information problems 
feature private information, which exists when a player knows 
something that other players do not observe. This is also called 
asymmetric information.

The analysis presented in preceding chapters covers stra-
tegic settings in which there is asymmetric information only 
regarding players’ actions. More broadly, there are important 
settings in which players have private information about other 
things as well. For example, suppose a buyer and a seller 
negotiate the price of a house. It may be that, in the negotiation 
process, actions are taken sequentially and in the open. Still, 
the buyer might know something that the seller does not know. 
The buyer may know his true valuation of the house—the 
 highest price that he is willing to accept. The seller may have 
some belief about the buyer’s reservation value (represented by 
a probability distribution), but the seller may not know for sure 
what it is.

The best way of modeling private information about intan-
gible items, such as a person’s value of a good, is to incorpo-
rate random events in the specification of a game—events that 
are out of the players’ control. Game theorists call such random 
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events moves of nature. In this sense, nature is a player in the 
game, whom we may call player 0. But nature is a nonstrategic 
player; nature’s actions are defined by a fixed probability distri-
bution and not by incentives. In the home-buying example, you 
can think of the buyer’s reservation value as selected by nature 
at the start of the negotiation game. The buyer immediately 
observes this value; the seller only knows the distribution over 
nature’s choices.

The expression incomplete information refers to games 
having moves of nature that generate asymmetric information 
between the players. Theorists use the term type to indicate 
the different moves of nature that a single player privately 
observes. Often, a player’s private information has to do with 
his or her own personal attributes and tastes, to which the term 
type is particularly well suited. For example, we can speak of 
the different types of home buyer distinguished by different 
valuations of the house.

Incomplete information is present in a variety of trad-
ing environments: bargaining, competitive markets, contract 
environments, auctions, and so forth. In this part of the book, I 
introduce tools for analyzing games with moves of nature, and 
I survey some of the major applications of the theory. I start 
with games in which nature moves last, so there is no incom-
plete information between the players; this is the simplest class 
of games to study. I then turn to static games with incomplete 
information, followed by dynamic games with incomplete 
information.

326 Part iV: information
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RANDOM EVENTS  
AND INCOMPLETE INFORMATION 24 

As already noted, it is useful to think of random events as acts of nature. In the 
extensive form, we model nature as “player 0,” whose decisions are made 

according to a fixed probability distribution. Because nature is not a strategic 
player, no payoff numbers are associated with nature. Graphically, nature’s de-
cision nodes—also called chance nodes—are depicted by open circles, to distin-
guish them from the decision nodes of the strategic players.1 Nature’s “player 0”
title is used very narrowly. Generally, when we speak of the “players in the 
game,” we mean the strategic players. Thus, some researchers prefer to use the 
term “chance node” instead of “nature’s decision node.”

Figure 24.1 depicts a game of incomplete information. In this game, nature 
first determines the type of player 1, which is either Friend (with probability p)
or Enemy (with probability 1 − p). Player 1 then observes nature’s move, so 
he knows his own identity. In this model, friends tend to keep desirable objects 
in their pockets, such as jewelry and new electronic gadgets. These objects are 
suitably gift wrapped. Enemies keep undesirable objects in their pockets, such 
as rocks and frogs. These things also are wrapped.

FIGURE 24.1 

The gift game.

1 The foundation for the analysis of incomplete information games is John Harsanyi’s “Games with Incomplete 
Information Played by Bayesian Players,” Management Science, 14 (1967–1968): 159–182, 320–334, 486–502.
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328 24: random Events and incomplete information

Player 1 then decides whether to offer a gift to player 2. If he chooses not to 
offer a gift (action N), then the game ends and both players receive zero. Offer-
ing a gift (action G) entails handing player 2 one of the handsomely wrapped 
objects from his pocket. In this case, player 2 must decide whether to accept 
(A) or reject (R) player 1’s gift. Importantly, player 2 does not observe player 
1’s type (Friend or Enemy) directly. She knows only whether a gift has been 
offered, in which case she must make a decision.

The payoffs are meant to capture the following preferences: Player 1’s 
favorite outcome occurs when he offers a gift and it is accepted. In other words, 
a friend enjoys seeing player 2 unwrap a piece of jewelry, whereas an enemy 
revels in the cruelty of insulting player 2 with a gift of a frog. Both types of 
player 1 prefer having not extended a gift to enduring the humiliation of a gift 
rejected. Player 2 prefers accepting a desirable gift to refusing a gift and prefers 
refusing a gift to discovering a frog inside the box. Apparently, player 2 does not 
mind associating with people whose pockets bulge.

Note that the game in Figure 24.1 is one of incomplete information in 
that player 1 has private information about nature’s action. It is interesting 
that player 1’s type determines player 2’s value of accepting a gift. That is, 
player 1’s personal attributes affect player 2’s payoff. This is meant to illustrate 
that although a player’s private information often concerns his own payoffs, it 
sometimes  has to do with the payoffs of another player.

Another thing you should recognize is that in games of incomplete informa-
tion, rational play will require a player who knows his own type to think about 
what he would have done had he been another type. For example, if you are 
a friend and you are considering whether to give a gift, you ought to imagine 
how you would behave if you were an enemy. The reason that putting yourself 
in another type’s shoes is so important is that although you know that you are 
a friend, player 2 does not know this. Your optimal decision depends on how 
player 2 will react to a gift, which, in turn, in part depends on whether player 2 
thinks the enemy is duplicitous (gives gifts).

It can be helpful to study the normal-form version of a game with nature. 
Such a normal-form representation is called the Bayesian normal form. Trans-
lating the extensive form into the normal form requires just a bit more work in 
this case than it does in settings without moves of nature. But the procedure is 
the same. The key idea is that because nature’s moves are predetermined by a 
probability distribution, we can focus on the strategies of the strategic play-
ers and compute payoffs by averaging over the random events in the game. To 
illustrate, consider the gift game, where player 1 has four strategies and player 
2 has two strategies. Figure 24.2 depicts the normal form. To obtain the payoffs 
in the normal form, one traces paths through the tree corresponding to strategy 
profiles. But contrary to the case without nature, where each strategy profile 
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329random Events and incomplete information 

induces a single path, with nature there may be multiple paths. The payoffs of 
these paths are averaged according to nature’s probability distribution, which 
yields a payoff vector for each cell of the matrix.

For example, to find the payoff of the strategy profile (GF GE, A), note that 
with probability p, player 1’s top node is reached. In this case, player 1 gives 
a gift that is accepted by player 2, leading to the payoff vector (1 , 1) . Like-
wise, with probability 1 − p , player 1’s lower decision node is reached, a gift 
is offered and accepted, and the payoff (1 , −1) is obtained. Thus, player 1’s 
expected payoff from strategy profile (GF

 GE, A) is

p # 1 + (1 − p) # 1 = 1.

Player 2’s expected payoff is

p # 1 + (1 − p) (−1) = 2p − 1.

These numbers appear in the first cell of the matrix. To solidify your understanding  
of the normal form, verify the payoffs in the other cells.

Another example of a game with nature is depicted in Figure 24.3. In this 
strategic setting, players 1 and 2 play according to the matrix shown. However, 
player 1’s payoff number x is private information. Player 2 knows only that 
x = 12 with probability 2>3 and x =  0 with probability 1>3. Note that the 

FIGURE 24.2 

The gift game in Bayesian 

normal form.

FIGURE 24.3 

A game of incomplete  

information.
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 0, 0  0, 0 

GFGE

GFNE

NFGE

NFNE

p, p -p, 0

12 with probability 2/3
  0 with probability 1/3ex =

1

A

C D

x, 9 3,  6

6,  0 6, 9B

2

Watson_c24_325-335hr.indd   329 2/4/13   12:39 PM



330 24: random Events and incomplete information

matrix pictured is not the true normal form of the game because player 1 
observes x before making his decision. The extensive- and normal-form repre-
sentations of the game are pictured in Figure 24.4. As the extensive form shows, 
player 1 observes nature’s action before selecting between A and B, yet player 2 
must make his choice without observing player 1’s type or action. Thus, player 
1 has two decisions to make: (1) whether to select A or B after observing x = 0,
and (2) whether to select A or B after observing x = 12.

Using the abbreviations employed in the preceding example, we can 
write player 1’s strategies as A12A0, A12 B0, B12A0, and B12 B0. The payoffs 
in the normal form of Figure 24.4 are the expected payoffs, given nature’s 
probability distribution. For example, consider the strategy profile (B12A0, 
D). When this profile is played, then, with probability 2>3, nature selects 
x = 12 and the payoff vector (6,  9) is obtained; with probability 1>3, nature 
selects x = 0 and the payoff vector (3, 6) is obtained. Therefore, player 1’s 
expected payoff is 6 # (2>3) + 3 # (1>3) = 5, and player 2’s expected payoff is 
9 # (2>3) + 6 # (1>3) =  8, as indicated in the normal-form matrix.

C
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D
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3, 6

3, 6
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Extensive-form and  

normal-form representations.
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331Guided Exercise

GUiDED EXErCiSE

Problem: Consider the following market game. There are two firms: the 
“incumbent” and the “entrant.” The incumbent firm has either high costs (H) 
or low costs (L); this is the incumbent’s type, which is selected by nature at the 
beginning of the game. With probability q, the incumbent’s type is H and, with 
probability 1 − q , the incumbent’s type is L. The incumbent observes its own 
type, but the entrant does not observe the incumbent’s type. After observing 
its type, the incumbent selects either a high price ( p ) or a low price (p). The 
entrant observes the incumbent’s price and then decides whether or not to enter 
the market (E or N). The incumbent’s payoff is 0 if the entrant chooses E (regard-
less of the incumbent’s type). If the entrant picks N and the incumbent’s price 
is p, then the high-type incumbent gets 2 and the low-type incumbent gets 4. If 
the entrant picks N and the incumbent’s price is p, then the high-type incumbent 
gets 0 and the low-type incumbent gets 2. The entrant obtains nothing if it does 
not enter. It obtains a payoff of 1 if it enters and faces the high-type incumbent. 
It obtains −1 if it enters and faces the low-type incumbent.

(a)  Represent this game in the extensive form.
(b)  Explain the relation between Nash equilibrium and subgame perfect equi-

librium in this game.
(c)  Represent this game in the Bayesian normal form.

Solution:

(a) Here is the extensive-form diagram:

H

L

H1

L1

0, 1

0, 0

2, 0 N

E

E
E

N

0, -1

-
E9

E9

N9 

N9

E

0, 1

2, 0

4, 0

0, -1

(q)

p

-p9

(1 - q)

p

p9  -

-
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332 24: random Events and incomplete information

(b)  Recall that a subgame perfect equilibrium involves specification of a Nash 
equilibrium on each subgame. Note that this game has no proper subgames, 
so the only subgame is the entire game. Thus, subgame perfection is the 
same as Nash equilibrium in this game.

(c) Here is the Bayesian normal-form matrix:

To see how the payoffs are determined, consider as an example the strategy 
profile ( pp , EN) and trace through the tree. If nature selects H, then player 
1 chooses p, player 2 chooses N, and the payoff vector is (2, 0). If nature 
selects L, then player 1 chooses p, player 2 chooses E, and the payoff vector is 
(0 , −1). Multiplying these, respectively, by nature’s probabilities q and 1 − q 
and summing yields the expected payoff vector (2q , q − 1), which is shown in 
the appropriate cell of the matrix.

EXErCiSES

1. Here is a description of the simplest poker game. There are two players and 
only two cards in the deck, an Ace (A) and a King (K). First, the deck is 
shuffled and one of the two cards is dealt to player 1. That is, nature chooses 
the card for player 1. It is the Ace with probability 1>2 and the King with 
probability 1>2. Player 2 does not receive a card.

Player 1 observes his card and then chooses whether to bid (B) or fold 
(F). If he folds, then the game ends with player 1 getting a payoff of −1 and 
player 2 getting a payoff of 1 (that is, player 1 loses his ante to player 2). If 
player 1 bids, then player 2 must decide whether to bid or fold. When player 
2 makes this decision, she knows that player 1 bid, but she has not observed 
player 1’s card. The game ends after player 2’s action. If player 2 folds, then 
the payoff vector is (1 , −1), meaning player 1 gets 1 and player 2 gets −1. 

EE9
I

E

0, 2q - 1

0, 2q - 1

0, 2q - 1 0, 2q - 1

2q, q - 1

0, q - 1

2 - 2q, q

2 - 2q, 0 2 - 2q, 0

4 - 4q, q 4 - 4q, 0

0, 2q - 1 0, 2q - 14 - 2q, 0 4 - 2q, 0pp9--

pp9--

pp9-
-

pp9-
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EN9 NE9 NN9

2, 0
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If player 2 bids, then the payoff depends on player 1’s card; if player 1 holds 
the Ace, then the payoff vector is (2 , −2); if player 1 holds the King, then 
the payoff vector is (−2, 2).

Represent this game in the extensive form and in the Bayesian normal 
form.

2. Suppose Andy and Brian play a guessing game. There are two slips of  
paper; one is black and the other is white. Each player has one of the slips of 
paper pinned to his back. Neither of the players observes which of the two 
slips is pinned to his own back. (Assume that nature puts the black slip on 
each player’s back with probability 1>2.) The players are arranged so that 
Andy can see the slip on Brian’s back, but Brian sees neither his own slip 
nor Andy’s slip.

After nature’s decision, the players interact as follows. First, Andy 
chooses between Y and N. If he selects Y, then the game ends; in this case, 
Brian gets a payoff of 0, and Andy obtains 10 if Andy’s slip is black and 
−10 if his slip is white. If Andy selects N, then it becomes Brian’s turn to 
move. Brian chooses between Y and N, ending the game. If Brian says Y 
and Brian’s slip is black, then he obtains 10 and Andy obtains 0. If Brian 
chooses Y and the white slip is on his back, then he gets −10 and Andy gets 
0. If Brian chooses N, then both players obtain 0.
(a) Represent this game in the extensive form.
(b) Draw the Bayesian normal-form matrix of this game.

3. Represent the following game in the Bayesian normal form.

(1/2)

(1/2)

RL 1 2
2, 0

0, 4

4, 0

4, 2

1

0, 0

2, 0
R9

D

D

U

U

L9

4. Draw the extensive-form representation of the following three-card poker 
game. There are three cards in the deck: an Ace, a King, and a Queen. The 
deck is shuffled, one card is dealt to player 1, and one card is dealt to player 2. 
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Assume the deck is perfectly shuffled so that the six different ways in which 
the cards may be dealt are equally likely. Each player observes his own card 
but not the card dealt to the other player.

Player 1 then decides whether to fold or bid. If he folds, then the game 
ends and the payoff vector is (−1, 1); that is, player 1 obtains −1 (he loses 
his ante), and player 2 obtains 1 (gaining player 1’s ante). If player 1 bids, 
then player 2 must decide whether to fold or bid. If player 2 folds, then the 
game ends with payoff vector (1 , −1). If player 2 decides to bid, then the 
players reveal their cards. The player with the higher card wins, obtaining 
a payoff of 2; the player with the lower card loses, getting a payoff of −2. 
Note that when both players bid, the stakes are raised. By the way, the Ace 
is considered the highest card, whereas the Queen is the lowest card.

5. Suppose Microsoft and Celera are considering a joint venture to use con-
sumers’ genetic fingerprints as license keys for software registration. How-
ever, in a joint venture there is always the possibility that one partner is 
trying to extract proprietary trade secrets from the other, rather than trying 
to earn a joint profit. Suppose that there are two possible types of Microsoft: 
Friend and Enemy. Microsoft knows its own type, but Celera knows only 
that the two types are equally likely.
(a)  Consider the following simultaneous game. Microsoft can “Invest” or 

“Sabotage,” and Celera can “Reveal” or “Hide” its proprietary trade 
secrets. This game is shown in extensive form in the illustration that 
follows. Microsoft’s payoffs are listed first. Translate this game into the 
normal form.

ME MF

SF

N

E F

IE SE

½ ½

IF

C

R H R H R H R H

5, 1 0, 3 8, -1 7, 0 9, 9 0, 0 0, 42, 0
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(b)  Next consider the following dynamic game. Microsoft has some Celera 
stock, and it can either “Buy” more or “Sell” what it is holding. Celera 
observes Microsoft’s action and then decides whether to “Reveal” or 
“Hide” its proprietary trade secrets. This game is shown in extensive 
form in the illustration that follows. Microsoft’s payoffs are listed first. 
Represent this game in the normal form.

FS
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5, -1

15, -14

0, -1

SR

SH

SR

SH

MF
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The games with nature that are easiest to analyze are those in which nature’s 
moves occur only at the end. In other words, the players make decisions 

knowing that some random event will make payoffs uncertain, but during the 
game the players have the same information about nature. Such games can be 
analyzed by using the tools developed in Part III of this book.

Payoff uncertainty is an important consideration in contractual relation-
ships because people usually care about whether they are exposed to risk. For 
example, the owner–manager of a retail shopping mall has a lease contract with 
each of his commercial tenants. The profits of the owner and of the tenants 
depend on the number of customers who visit the mall in any given month. The 
contracting parties face uncertainty because mall traffic is partly a function of 
random factors such as the strength of the local economy, demographics, fad 
and fashion, and whether the latest teen-idol or boy band agrees to perform on 
the mall’s stage.

Owner–tenant contracts can be structured to distribute risk. A contract that 
requires the tenant to pay a fixed rent would allocate most of the risk to the 
tenant because then the mall owner gets a guaranteed lease payment, whereas 
the tenant’s revenue is subject to the random factors. Alternatively, the risk can 
be shifted to the mall owner by using a contract that makes the tenant’s rent 
payment contingent on mall traffic.

The objective of distributing risk in any particular way can conflict with the 
goal of providing incentives. For example, if the mall owner gets a fixed lease 
payment, he may not be motivated to exert effort advertising the mall or running 
the kind of promotions that would increase mall traffic (and hence the profits 
of his tenants). The bottom line is that contracts sometimes have to balance the 
concerns of risk and incentives. In this chapter, I provide a model to demonstrate 
this trade-off.

RISK AVERSION

Before sketching the model of risk and incentives, I must elaborate on how 
payoffs represent players’ preferences toward risk. I noted in Chapter 4 that 

25 RISK AND INCENTIVES IN CONTRACTINg
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payoff functions measure more than just the players’ rankings over certain 
outcomes; they also capture the players’ preferences over random outcomes.1 A 
simple thought exercise will demonstrate how this works. Suppose I offer you a 
choice between two alternatives, A and B. If you choose A, then I will give you 
$950. If you choose B, then I will flip a coin and give you $2000 if the coin toss 
yields “heads,” $0 if it yields “tails.” In other words, alternative B is a lottery 
that pays $2000 with probability 1>2 and $0 with probability 1>2. Figure 25.1 
displays your choice as a game.

Note that the picture represents the outcome in words, rather than with 
utility or payoff numbers. As usual, we should convert the outcomes into 
payoffs to analyze the game. You might be inclined to use the dollar amounts 
as payoffs—as has been done many times so far in this book. But at this point I 
would like you to think more generally. Because the outcomes are all in mone-
tary terms and because you ultimately care how much money you receive, we 
can imagine a function v that defines the relation between money and utility. 
That is, v  (x) is the utility of receiving x dollars. I use the term “utility” here 
because I want you to be thinking about preferences over random monetary 
payments, aside from any particular game. In the end, the utility function will 
indicate the payoffs in specific games.

Because you (presumably) prefer more money to less, we better assume that 
v  (0) < v  (950) < v  (2000). Lots of different functions satisfy these inequalities. 
One function that works is the identity function v  (x) = x, which simply associ-
ates utility with the dollar amount. Other functions that are consistent with the 
“more money is better” assumption are v  (x) = x>1000 and v  (x) = 1x . You 
should realize that any increasing function would do the job. But will just any 
increasing function accurately represent your preferences? In fact, no. Remem-
ber that random outcomes are evaluated by computing expected utility. Thus, 
your utility of selecting A is v  (950), whereas your expected utility of selecting 

1John von Neumann and Oscar Morgenstern, in their book The Theory of Games and Economic Behavior 
(1944, 1947), developed the theory of decision making under uncertainty now used by economists everywhere.

FIgURE 25.1  

Lottery or sure thing. A
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B is (1>2) v  (0) + (1>2) v  (2000). If you strictly prefer alternative A, then your 
utility function has the property that

v  (950) >
v  (0)

2
+
v  (2000)

2
.

If you prefer alternative B, then the opposite inequality holds. Your preference 
between A and B therefore further restricts the utility function.

What decision would you make? Most people who are given a choice such 
as this one opt for alternative A—the “sure thing” payoff of $950. As a theo-
rist, you might find this choice interesting because alternative B actually gives 
an expected monetary payment of (1>2)(0) + (1>2)(2000) = 1000, which is 
greater than the payment from picking A. However, there is a big difference 
between expected monetary payments and expected utility, the latter of which 
represents attitudes toward risk. Most people choose A over B because B is a 
lottery that subjects people to risk. Sure, B gives you an expected payment of 
$1000, but you end up with $0 half the time. Most people do not like to face such 
randomness and are willing to forego $50 to get money for sure. This means that 
most people have utility functions satisfying v  (950) > v  (0)>2 + v  (2000)>2. 
Note that the function v  (x) = x does not satisfy the inequality because 
950 < (1>2)(0) + (1>2)(2000). A utility function that does satisfy the inequal-
ity is v  (x) = 1x . You should verify that 1950 > (1>2)(0) + (1>2)12000 (use 
a calculator).

Risk preferences are manifested in the way that a person’s utility func-
tion curves. To interpret the curvature, compare the expected utility of any 
lottery with the utility of its expected monetary payment. For example, the 
lottery that pays 2000 with probability 1>2 has an expected dollar payment of 
(1>2)(0) + (1>2)(2000) = 1000. If a person strictly prefers to get $1000 for 
sure, then his utility function has the property that

v  (0)

2
+
v  (2000)

2
< v  (1000).

Concave utility functions, such as v  (x) = 1x have this property; linear func-
tions, such as v  (x) = x, do not (Figure 25.2). With the use of calculus, concavity 
is measured by the second derivative. If the second derivative is negative, then 
the function is concave (open side down). If the second derivative is equal to 
zero, then the function is linear (a straight line). For example, the second deriva-
tive of 1x is −1>(4 x3>2 ), which is negative (assuming x > 0; otherwise, the 
function is not defined).

A person is said to be risk averse if he strictly prefers to get a monetary 
payment for sure rather than playing a lottery that has the same expected 
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payment. A person is risk neutral if he is indifferent between lotteries and their 
expected payments. As just shown, risk aversion is represented by a concave 
utility function. A higher degree of risk aversion implies a more concave utility 
function; it also implies a greater risk premium, which is the amount of expected 
monetary gain that a person is willing to give up to obtain a sure payment rather 
than a random one. In the preceding choice between alternatives A and B, if you 
choose A, then your risk premium is at least $50 because you are willing to give 
up this amount to get a sure payment.2

2A risk-loving person has a convex utility function and negative risk premiums. I do not address this kind of 
preference, although it does play a role for some people.

FIgURE 25.2 
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340 25: Risk and Incentives in Contracting

One measure of risk aversion—called the Arrow–Pratt measure of relative 
risk aversion—is given by −x v (x)>v (x).3 As an example, consider the util-
ity function v  (x) = xa, where a is a positive constant.4 Taking the derivatives, 
we have v(x) = a xa−1 and v (x) = a (a − 1) xa−2 . The Arrow–Pratt measure 
for this utility function is thus −x a (a − 1) xa−2>a xa−1 , which equals 1 − a. 
Note that if a = 1, then the risk aversion measure is 0 and the utility function is 
a straight line. If a is less than 1, then the risk aversion measure is positive and 
the utility function is concave. As a gets closer to 0, the measure of risk aver-
sion increases. This is pictured in Figure 25.3. Note that linear utility functions 
represent risk neutrality, where the agent is indifferent to risk and treats a lottery 
the same as its expected payment.

A PRINCIPAL–AGENT GAME

With the knowledge of how to represent attitudes toward risk, you can consider 
the management of risk and incentives in contracting. The basic model of 
risk and incentives is called the Principal–Agent Model with Moral Hazard. 
 “Principal–agent” refers to a situation in which one party (the principal) hires 
another party (the agent) to work on a project on her behalf. “Moral hazard” 

3Kenneth Arrow and John Pratt developed this and other measures in the following publications: J. W. Pratt, 
“Risk Aversion in the Small and in the Large,” Econometrica, 32 (1964): 122–136; and K. Arrow, Essays in 
the Theory of Risk Bearing (Chicago: Markham, 1970).
4Such a utility function is valid only for x Ú 0 because, when a  1, xa is undefined for x < 0.

FIgURE 25.3 
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341A Principal–Agent Game

stands for the setting in which the agent’s effort is not verifiable, so the parties 
cannot write an externally enforced contract specifying a transfer as a function 
of effort. Only the outcome of the project is verifiable. Furthermore, the project 
outcome depends not only on the agent’s effort but also on random events.5

Suppose Pat manages a large computer software company and Allen is a 
talented program designer. Pat would like to hire Allen to develop a new soft-
ware package. If Allen works for Pat, Allen must choose whether or not to 
expend high effort or low effort on the job. At the end of the work cycle (say, 
one year), Pat will learn whether the project is successful or not. A successful 
project yields revenue of 6 for the firm, whereas the revenue is 2 if the project 
is unsuccessful. (Imagine that these numbers are in hundreds of thousands of 
dollars.)

Success depends on Allen’s high effort as well as on a random factor. 
Specifically, if Allen expends high effort, then success will be achieved with 
probability 1>2; if Allen expends low effort, then the project is unsuccessful 
for sure. Assume that, to expend high effort, Allen must endure a personal cost 
of 1 in utility terms. The parties can write a contract that specifies compensa-
tion for Allen conditional on whether the project is successful, but it cannot be 
conditioned directly on Allen’s effort. Assume that Allen values money accord-
ing to the utility function vA(x) = x  a. Assume Allen is risk averse, meaning 
that 0 < a < 1. Finally, suppose Pat is risk neutral (because she manages a 
large company that pools the risks of its various divisions) with utility function 
vP (x) = x.

Imagine that the players interact as depicted in Figure 25.4. At the  beginning 
of the game, Pat offers Allen a wage and bonus package. The wage w is to be paid 

5The example I present here is a special case of the model of S. Grossman and O. Hart, “An Analysis of the 
Principal–Agent Problem,” Econometrica, 51 (1983): 7–45.
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FIgURE 25.4 

Principal–agent game.

Watson_c25_336-349hr.indd   341 2/4/13   12:42 PM
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regardless of the project outcome, whereas the bonus b would be paid only if the 
project is successful. Then Allen decides whether or not to accept the contract. If 
he declines (N), then the game ends and both players get zero (corresponding to 
their outside options).

If Allen accepts the contract (Y), then he decides whether to exert high (H) 
or low (L) effort. Low effort leads to an unsuccessful project, whereby Pat gets 
revenue of 2 minus the wage w and Allen gets his utility of the wage, wa. High 
effort leads to a chance node, where nature picks whether the project is success-
ful or not (each with probability 1>2). An unsuccessful project implies the same 
payoffs as with low effort, except that, in this case, Allen also pays his effort 
cost of 1. A successful project raises Pat’s revenue to 6 and triggers the bonus b 
paid to Allen in addition to the wage. Calculating the expected payoffs from the 
chance node, we can rewrite the game as shown in Figure 25.5.

To solve the game and learn about the interaction of risk and incentives, 
we use backward induction. Start by observing that Pat would certainly like 
Allen to exert high effort. In fact, it is inefficient for Allen to exert low effort at 
small levels of compensation. To see this, consider an outcome in which Allen 
chooses L and is paid w. Note that Allen is indifferent between this outcome 
and the one in which he chooses H and is paid y for sure, where we define y so 
that ya − 1 = w 

a. It is not difficult to verify that y < w + 2 for values of w 
that are close to 0. Thus, by having Allen select H, Pat’s revenue increases by 
2 in expectation, and she makes Allen indifferent by raising his compensation 
by an amount less than 2. Another way of looking at this is that if Allen’s effort 
were verifiable, the parties would write a contract that induces high effort.

Given that high effort is desired, we must ask whether there is a contract that 
induces it. That is, can Pat find a wage and bonus package that motivates Allen to 
exert high effort and gives Pat a large payoff? Let us begin by checking what can 

FIgURE 25.5 

Principal–agent game with expected payoffs.

Y A
A

P

N

0, 0 

H

L

w, b

2 − w , wa

2 − w +
1

2
 (4 − b) , 

1

2
 wa +

1

2
 (w + b)a − 1
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343A Principal–Agent Game

be accomplished without a bonus (that is, b = 0). First note that b = 0 implies 
that Allen has no incentive to exert high effort; he gets wa when he chooses L 
and less, wa − 1, when he chooses H. Knowing this, the best that Pat can do 
without a bonus is to offer w = 0, which Allen is willing to accept.6 Thus, the 
best no-bonus contract (w = 0 and b = 0) yields the payoff vector (2, 0).

Next consider a bonus contract designed to induce high effort. In order for 
him to be motivated to exert high effort, Allen’s expected payoff from H must 
be at least as great as is his payoff from L:

 
1

2
 (w + b)a +

1

2
 w a − 1 Ú w a.  (1)

In principal–agent models, this kind of inequality is usually called the effort 
constraint or incentive compatibility condition. In addition to the effort 
constraint, the contract must give Allen an expected payoff at least as great as 
the value of his outside opportunity; otherwise, Allen would reject the contract. 
Mathematically, this is

 
1

2
 (w + b) 

a +
1

2
 w 

a − 1 Ú 0. (2)

Theorists call this the participation constraint.
Assuming that she wants to motivate high effort, Pat will offer Allen the 

bonus contract satisfying inequalities 1 and 2 at terms most favorable to Pat 
(because she gets to make the contract offer). In fact, the best bonus contract 
satisfies inequalities 1 and 2 with equality (meaning that you can replace the  
“Ú” signs with “=”). The reasoning goes as follows. First, if the participation 
constraint does not hold with equality, then there must be a way for Pat to lower 
both w and b such that both the effort constraint and the participation constraint 
remain satisfied. To maintain the effort constraint, w and b have to be adjusted 
in a related way, but the important thing is that the adjustment causes both w 
and w + b to decrease (in fact, b decreases as well). This would increase Pat’s 
expected payoff (because she pays less to Allen in both the successful and the 
unsuccessful outcomes). We thus conclude that the best contract for Pat satisfies

 
1

2
 (w + b)a +

1

2
 w 

 

a − 1 = 0. (3)

Second, consider the effort constraint. If it holds strictly, then Allen is forced 
to face too much risk. We know that he is risk averse (because 0 < a < 1) 
and that a larger bonus increases his risk (because it increases the difference 

6Allen will accept no less because he would otherwise be better off rejecting the contract offer.
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between what Allen gets in the successful and unsuccessful outcomes). Pat can 
lower the bonus and raise the wage slightly in a way that maintains equality 
3 but lowers the risk premium that she has to pay Allen. This increases Pat’s 
expected payoff while keeping Allen’s unchanged.7 Thus, the best contract for 
Pat satisfies inequality 1 with equality, meaning that

 
1

2
 (w + b) a +

1

2
 w 

 

a − 1 = w a. (4)

Combining equations 3 and 4, we find that w a = 0, so w = 0. Substituting 
w = 0 into equation 3, we get b = 21>a. In summary, Pat’s best bonus contract 
specifies the wage w = 0 and the bonus b = 21>a. Allen will accept this contract 
and expend high effort, yielding an expected payoff of

2 − 0 +
1

2
 (4 − 21>a ) = 4 − 2(1−a) >a

for Pat and 0 for Allen. Note that if Allen were risk neutral (so that a = 1) then 
Pat’s payoff would be 4 − 20 = 3. The difference between this payoff and Pat’s 
payoff when a < 1 is the risk premium that Allen requires to exert high effort. 
That is, the risk premium is

3 − [4 − 2 (1−a)>a] = 2 

(1−a)>a − 1.

If a = 1, then the risk premium is equal to 0, whereas the risk premium is posi-
tive when a < 1.

7 Here is a mathematical proof. Look at Allen’s expected payoff from H and think about adjusting w and b in 
a way that does not change the expected payoff. Suppose that we want Allen to get an expected payoff of k. 
Let f  (w) be the function that gives the bonus b corresponding to wage w that yields expected payoff k. That 
is, f  (w) satisfies

1

2
 [w + f (w)]a +

1

2
 w  

a − 1 = k.

Let us find the derivative of f, which tells us the amount that b has to be adjusted when w is increased, to keep 
Allen’s expected payoff equal to k. Differentiating the preceding equation with respect to w yields

a

2
  [w + f  (w)]a−1[1 + f(w)] +

a

2
 wa−1 = 0.

Solving for f  (w) and simplifying, we have

f    (w) = −1 −  aw + f (w)

w
b

1−a

,

which is always less than −2. In words, if w is increased by a small amount, then b can be decreased by more 
than two times this amount, such that Allen’s expected payoff is held constant. Such an alteration of w and b 
is to Pat’s benefit because she has to pay the bonus with probability 1>2. Shifting w up and b down tightens 
the effort constraint.
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The final step in the analysis is to compare the optimal bonus and no-bonus 
contracts. Recall that Allen’s payoff is 0 in either case. Pat’s payoff is 2 in 
the no-bonus case and 4 − 2(1−a)>a in the bonus case. Pat will select a bonus 
contract if and only if

4 − 2(1−a)>a Ú 2.

Rearranging this inequality yields a Ú 1>2. That is, Pat opts for a bonus contract 
if and only if a Ú 1>2. There is important intuition behind this statement. When 
a is close to 0—meaning that Allen is very risk averse—the risk premium that 
Pat would have to pay to motivate high effort is larger than is the expected 
revenue gain that Pat would get from Allen’s high effort.

The moral of the model is that the amount a principal has to pay to motivate 
high effort increases with the agent’s level of risk aversion. Therefore, with an 
agent who is highly risk averse, a principal will resort to a fixed-wage contract 
that induces low effort. With an agent who is closer to risk neutral, a principal 
will optimally motivate high effort by using a bonus contract. This result also 
indicates that the kind of contracts that one would expect in different industries 
depends on the amount of risk in the production process. In fields where the 
productive outcome is influenced more by random factors than by an agent’s 
behavior, we expect to see fixed-wage contracts. In contrast, where an agent’s 
effort is crucial to the success of a business project—such as in real estate trans-
actions, automobile sales, and many other lines of work—bonus contracts are 
very useful.

GUIDED EXERCISE

Problem: Suppose I prefer $20 for sure to a lottery that pays $100 with prob-
ability 1>4 and $0 with probability 3>4. Also suppose that I prefer lottery A to 
lottery B, where lottery A pays $100 with probability 1>8, $0 with probability 
7>8, and lottery B pays $20 with probability 1>2, $0 with probability 1>2. Is 
there a utility function that is consistent with my preferences? If so, describe 
such a utility function. If not, explain why.

Solution: The first preference requires that

v  (20) >
1

4
 v  (100) +

3

4
 v(0).

One function that meets these requirements is u(x) = 1x . That lottery A is 
preferred to lottery B implies

1

8
 v  (100) +

7

8
 v  (0) >

1

2
 v  (20) +

1

2
 v  (0).
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Subtracting v  (0)>2 from each side and then multiplying by 2 yields

1

4
 v  (100) +

3

4
 v  (0) > v  (20),

which contradicts the first preference. Thus, there is no utility function that 
represents the stated preferences.

EXERCISES

1. Discuss some examples of jobs about which you know, highlighting the 
relation between risk, risk aversion, and the use of bonuses.

2. Repeat the analysis of the principal–agent game in this chapter, under the 
assumption that p is the probability of a successful project with high effort 
(rather than 1>2 as in the basic model). How does the optimal contract de-
pend on p?

3. A firm and worker interact as follows. First, the firm offers the worker a 
wage w and a job z; z = 0 denotes the “safe” job and z = 1 denotes the 
“risky” job. After observing the firm’s contract offer (w , z), the worker ac-
cepts or rejects it. These are the only decisions made by the firm and worker 
in this game.

If the worker rejects the contract, then he gets a payoff of 100, which 
corresponds to his outside opportunities. If he accepts the job, then the 
worker cares about two things: his wage and his status. The worker’s status 
depends on how he is rated by his peers, which is influenced by character-
istics of his job as well as by random events. Specifically, his rating is given 
by x, which is either 1 (poor), 2 (good), or 3 (excellent). If the worker has 
the safe job, then x = 2 for sure. In contrast, if the worker has the risky job, 
then x = 3 with probability q and x = 1 with probability 1 − q. That is, 
with probability q, the worker’s peers think of him as excellent.

When employed by this firm, the worker’s payoff is w + v  (x), where 
v  (x) is the value of status x. Assume that v  (1) = 0 and v  (3) = 100, and let 
y = v  (2). The worker maximizes his expected payoff.

The firm obtains a return of 180 − w when the worker is employed in 
the safe job. The firm gets a return of 200 − w when the worker has the 
risky job. If the worker rejects the firm’s offer, then the firm obtains 0.

Compute the subgame perfect equilibrium of this game by answering 
the following questions.

Watson_c25_336-349hr.indd   346 2/4/13   12:42 PM



347Exercises

(a)  How large must the wage offer be in order for the worker rationally to 
accept the safe job? What is the firm’s maximal payoff in this case? The 
parameter y should be featured in your answer.

(b)  How large must the wage offer be in order for the worker rationally to 
accept the risky job? What is the firm’s maximal payoff in this case? 
The parameter q should be featured in your answer.

(c)  What is the firm’s optimal contract offer for the case in which q = 1>2? 
Your answer should include an inequality describing conditions under 
which z = 1 is optimal.

4. Most of this exercise does not concern players’ preferences about risk, but 
it is a good example of a game with moves of nature that can be analyzed 
by using subgame perfection. Consider a T -period bargaining game like the 
alternating-offer game discussed in Chapter 19, except suppose that in each 
period, nature chooses which player gets to make an offer. At the start of a 
period, nature selects player 1 with probability q1 and player 2 with prob-
ability q2 , where q1 + q2 = 1. The selected player proposes a split of some 
surplus (of size 1). The other player then responds by accepting or reject-
ing the offer. Acceptance ends the game and yields the payoff associated 
with the proposal, discounted according to the period in which agreement is 
made. Rejection leads to the next period, except in period T, in which case 
the game ends with zero payoffs. Assume the players are risk neutral and 
have the same discount factor d.
(a)  Describe the extensive form of this game.
(b)  Find and report the subgame perfect equilibrium.
(c)  What are the equilibrium payoffs? Offer an interpretation in terms of 

the standard bargaining solution (bargaining weights and a disagree-
ment point).

(d)  Suppose T = 2 and that the players are not necessarily risk neutral. 
How would you expect the players’ risk preferences to influence the 
equilibrium proposals that are made in the first period?

5. Consider a game inspired by the long-running television program The Price 
Is Right. Three players have to guess the price x of an object. It is common 
knowledge that x is a random variable that is distributed uniformly over the 
integers 1, 2, . . . , 9. That is, with probability 1>9 the value of x is 1, with 
probability 1>9 the value of x is 2, and so on. Thus, each player guesses a 
number from the set {1, 2, 3, 4, 5, 6, 7, 8, 9}.

The game runs as follows: First, player 1 chooses a number n1 ∈ {1, 2, 
3, 4, 5, 6, 7, 8, 9}, which the other players observe. Then player 2 chooses 
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a number n2 that is observed by the other players. Player 2 is not allowed to 
select the number already chosen by player 1; that is, n2 must be different 
from n1 . Player 3 then selects a number n3 , where n3 must be different from 
n1 and n2 . Finally, the number x is drawn and the player whose guess is 
closest to x without going over wins $1000; the other players get 0. That is, 
the winner must have guessed x correctly or have guessed a lower number 
that is closest to x. If all of the players’ guesses are above x, then everyone 
gets 0.
(a)  Suppose you are player 2 and you know that player 3 is sequentially 

rational. If player 1 selected n1 = 1, what number should you pick to 
maximize your expected payoff?

(b)  Again suppose you are player 2 and you know that player 3 is sequen-
tially rational. If player 1 selected n1 = 5, what number should you pick 
to maximize your expected payoff?

(c)  Suppose you are player 1 and you know that the other two players are 
sequentially rational. What number should you pick to maximize your 
expected payoff?

6. Consider a game in which two players take turns moving a coin along a strip 
of wood (with borders to keep the coin from falling off). The strip of wood 
is divided into five equally sized regions, called (in order) A, B, C, D, and 
E. Player l’s objective is to get the coin into region E (player 2’s end zone), 
whereas player 2’s objective is to get the coin into region A (player l’s end 
zone). If the coin enters region A, then the game ends and player 2 is the win-
ner. If the coin enters region E, then the game ends and player 1 is the winner.

At each stage in the game, the player with the move must decide 
between “Push” and “Slap.” If she chooses Push, then the coin moves one 
cell down the wood strip in the direction of the other player’s end zone. For 
example, if the coin is in cell B and player 1 selects Push, then the coin is 
moved to cell C. If a player selects Slap, then the movement of the coin is 
random. With probability 1>3, the coin advances two cells in the direction 
of the other player’s end zone, and with probability 2>3 the coin remains 
where it is. For example, suppose it is player 2’s turn and the coin is in cell 
C. If player 2 chooses Slap, then with probability 1>3 the coin moves to 
cell A and with probability 2>3 the coin stays in cell C. The coin cannot go 
beyond an end zone. Thus, if player 1 selects Slap when the coin is in cell 
D, then the coin moves to cell E with probability 1>3 and it remains in cell 
D with probability 2>3.

If a player wins, then he gets a payoff of 1 and the other player obtains 
zero. If the players go on endlessly with neither player winning, then they 
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both get a payoff of 1>2. There is no discounting. The game begins with the 
coin in region B and player 1 moves first.
(a)  Are there any contingencies in the game from which the player with the 

move obviously should select Push?
(b)  In this game, an equilibrium is called Markov if the players’ strategies 

depend only on the current position of the coin rather than on any other 
aspects of the history of play. In other words, each player’s strategy 
specifies how to behave (whether to pick Push or Slap) when the coin 
is in cell B, how to behave when the coin is in cell C, and so on. For 
the player who has the move, let v  

k denote the equilibrium continu-
ation payoff from a point at which the coin is k cells away from this 
player’s goal. Likewise, for the player who does not have the move, let 
w 

k denote the equilibrium continuation payoff from a point at which the 
coin is k cells away from this player’s goal. Find a Markov equilibrium 
in this game and report the strategies and continuation values. You can 
appeal to the one-deviation property.
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The Nash equilibrium and rationalizability concepts can be applied directly 
to any game with random events. These static concepts are most valid for 

games in which the players’ actions are taken simultaneously and indepen-
dently. Many interesting applications fall into this class of games. For example, 
consider an auction, where bidders may have private information about their 
valuations of the item on the block. In the “sealed bid” auction format, the bid-
ders choose their bids simultaneously. Similarly, interaction between oligopolist 
firms can often be modeled as a static game with incomplete information. In 
fact, for most static situations—from location games to partnership problems—
it is worthwhile and interesting to study variants with incomplete information.

There are two methods of evaluating Bayesian games. The first method is to 
compute rationalizability and Nash equilibrium on the Bayesian normal form. 
This is recommended for any game that can be represented in matrix form. The 
second method entails treating the types of each player as separate players. For 
example, if player 1 is one of two types, A and B, then it may be helpful to think 
of 1A and 1B as distinct players. Treating types separately often simplifies the 
analysis of infinite games, where calculus may be required. Strictly speaking, 
the methods do not always yield identical solutions.1 But no discrepancies arise 
in the applications studied here. By the way, when applied to a game with nature, 
solution concepts receive the “Bayesian” qualifier; thus, we have Bayesian Nash 
equilibrium and Bayesian rationalizability.

For an example of the first method, consider the game discussed at the end 
of Chapter 24 and pictured in Figures 24.3 and 24.4. The extensive-form and 
normal-form representations are reproduced here in Figure 26.1. Examining the 
normal form reveals that A12A0 and B12A0 are dominated strategies for player 1. 
With reference to the extensive form, this is confirmed by observing that player 
l’s action A0 yields a lower payoff than does B0, regardless of whether player 2 
selects C or D. Continuing, note that player 2’s strategy C is dominated in the 
next round of the iterated dominance procedure. The extensive form provides 
more details on this. Player 2 knows that player 1 of type 0 selects B0; given that 

1Differences arise in the rationalizability context and when there is a type of player that arises with zero prob-
ability. One of the exercises at the end of the chapter addresses rationalizability.

26 BAYESIAN NASH EQUILIBRIUM  
AND RATIONALIZABILITY
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C
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x = 0

1

1
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(1/3)

B12

2

1
2

8, 9

10, 6

3, 6

4, 7

5, 84, 3

6, 0 6, 9

C D

type 0 arises with probability 1>3, player 2 strictly prefers D to C, regardless of 
his belief about the behavior of type 12. After C is removed, player l’s strategy 
A12 B0 also is discarded. That is, B12 is the only rational choice for type 12, given 
that player 2 selects D. The Bayesian rationalizable set is thus {(B12 B0, D)}, 
which also identifies the unique Bayesian Nash equilibrium of the game.

As an example of the second approach to solving Bayesian games, consider 
a simple Cournot duopoly game with incomplete information. Suppose that 
demand is given by p = 10 − Q, where Q is the total quantity produced in the 
industry. Firm 1 selects a quantity q1 , which it produces at zero cost. Firm 2’s 
cost of production is private information (selected by nature). With probability 
1>2, firm 2 produces at zero cost. With probability 1>2, firm 2 produces at a 
marginal cost of 4. Call the former type of firm 2 “L” and the latter type “H” (for 
low and high cost, respectively). Firm 2 knows its type, whereas firm 1 knows 
only the probability that L and H occur. Let qH

2  and qL
2 denote the quantities 

selected by the two types of firm 2. Then when firm 2’s type is L, its payoff is 
given by

uL
2 = (10 − q1 − qL

2) qL
2 .

FIGURE 26.1 

A game from Chapter 24.
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When firm 2’s type is H, its payoff is

uH
2 = (10 − q1 − qH

2  ) qH
2 − 4qH.

As a function of the strategy profile (q1; qL
2 , qH

2  ), firm 1’s payoff is

 u1 =
1

2
 (10 − q1 − qL

2) q1 +
1

2
 (10 − q1 − qH

2 ) q1

 = a10 − q1 −
 qL

2

2
−

 qH
2

2
b  q1 .

Note that firm 1’s payoff is an expected payoff obtained by averaging the payoffs 
of facing the low and high types of firm 1, according to the probability of these 
types.

To find the Bayesian Nash equilibrium of this market game, consider the 
types of player 2 as separate players. Then find the best-response functions 
for the three player types and determine the strategy profile that solves them 
simultaneously. The best-response functions are calculated by evaluating the 
 following derivative conditions:

0u1

0q1
= 0, 

0uL
2

0qL
2
= 0, and 

0uH
2

0qH
2
= 0.

This yields:

 BR1 (qL
2 , qH

2  ) = 5 −
qL

2

4
−

qH
2

4
   for player 1,

 BRL
2  (q1) = 5 −

q1

2
   for player-type 2L, and

  BRH
2  (q1) = 3 −

q1

2
   for player-type 2H.

Solving the associated system of equalities,

q1 = 5 −
qL

2

4
−

qH
2

4
, qL

2 = 5 −
q1

2
, qH

1 = 3 −
q1

2
,

the Bayesian Nash equilibrium is found to be the profile q1 = 4,  qL
2 = 3, 

qH
2 = 1. In words, firm 1 produces 4, whereas firm 2 produces 3 if its cost is low 

and 1 if its cost is high.

Watson_c26_350-359hr.indd   352 2/4/13   12:42 PM



353Guided Exercise

GUIDED EXERCISE

Problem: Consider the following game with nature:

(a) Represent this game in the (Bayesian) normal form.
(b)  Calculate the (Bayesian) rationalizable set. Does this game have any pure- 

strategy (Bayesian) Nash equilibria?
(c) Calculate the mixed-strategy Nash equilibrium.

Solution:

(a) Here is the normal-form matrix:

(b)  Regarding the rationalizable set, note that player 2’s strategy BY is domi-
nated by a mixed strategy that puts high probability on BX and a small prob-
ability on either AX or AY. After removing BY, nothing else is dominated 
for either player. Thus, the rationalizable set is

R = {L, D} × {AX, AY, BX}.

You can easily verify that there is no pure-strategy Nash equilibrium.

2
X

2

Y

B

Q

N

P
(1/2) (1/2)

D

2, 2

0, 0

1L

A

4, 0

0, 4

B

A4, 0

0, 4

1
2

AX

L

D

AY BX BY

0, 4

3, 1 2, 0 1, 3 0, 2

0, 4 4, 0 4, 0
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(c)  To find the mixed-strategy equilibrium, first note that it must involve player 
1 randomizing between L and D, for if player 1 selects only L or only D, 
then, given player 2’s best response, player 1 would want to switch. Next 
observe that because player 1 will choose D with positive probability, player 
2 strictly prefers not to play AY. Thus, the mixed-strategy equilibrium will 
have player 1 mixing between L and D and player 2 mixing between AX 
and BX. Suppose that player 1 puts probability p on L and 1 − p on D; 
suppose player 2 puts probability q on AX and 1 − q on BX. Then the 
required indifference conditions are

q # 0 + (1 − q) # 4 = q # 3 + (1 − q) # 1

and

p # 4 + (1 − p) # 1 = p # 0 + (1 − p) # 3.

 Solving these equations, we learn that the mixed-strategy equilibrium speci-
fies p = 1>3 and q = 1>2.

EXERCISES

1. Consider the following game. Nature selects A with probability 1>2 and 
B with probability 1>2. If nature selects A, then players 1 and 2 inter-
act  according to matrix “A.” If nature selects B, then the players interact 
 according to matrix “B.” These matrices are pictured here.

(a)  Suppose that, when the players choose their actions, the players do 
not know which matrix they are playing. That is, they think that with 
probability 1>2 the payoffs are as in matrix A and that with probability 
1>2 the payoffs are as in matrix B. Write the normal-form matrix that 

1
2

V

X

Y

A B

Z

W

6, 0 4, 1

0, 10, 0

5, 1 3, 0

1
2

V

X

Y

Z

W

0, 0 0, 1

4, 16, 0

5, 1 3, 0
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describes this Bayesian game. (This matrix is the “average” of matrices 
A and B.) Using rationalizability, what is the strategy profile that is 
played?

(b)  Now suppose that, before the players select their actions, player 1 
observes nature’s choice. (That is, player 1 knows which matrix is being 
played.) Player 2 does not observe nature’s choice. Represent this game 
in the extensive form and in the Bayesian normal form. Using domi-
nance, what is player l’s optimal strategy in this game? What is the set 
of rationalizable strategies in the game?

(c)  In this example, is the statement “A player benefits from having more 
information” true or false?

2. Two players simultaneously and independently have to decide how much 
to contribute to a public good. If player 1 contributes x1 and player 2 con-
tributes x2 , then the value of the public good is 2(x1 + x2 + x1 

x2), which 
they each receive. Assume that x1 and x2 are positive numbers. Player 1 
must pay a cost x2

1 of contributing; thus, player 1’s payoff in the game is 
u1 = 2( x1 + x2 + x1 

x2 ) − x2
1 . Player 2 pays the cost tx2

2 so that player 2’s 
payoff is u2 = 2( x1 + x2 + x1 

x2 ) − tx2
2 . The number t is private informa-

tion to player 2; player 1 knows that t equals 2 with probability 1>2 and it 
equals 3 with probability 1>2. Compute the Bayesian Nash equilibrium of 
this game.

3. Suppose that nature selects A with probability 1>2 and B with probability 
1>2. If nature selects A, then players 1 and 2 interact according to matrix 
“A.” If nature selects B, then the players interact according to matrix “B.” 
These matrices are pictured here. Suppose that, before the players select 
their actions, player 1 observes nature’s choice. That is, player 1 knows 
from which matrix the payoffs are drawn, and player 1 can condition his 
or her decision on this knowledge. Player 2 does not know which matrix is 
being played when he or she selects between L and R.
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(a)  Draw the extensive-form representation of this game. Also represent 
this game in Bayesian normal form. Compute the set of rationalizable 
strategies and find the Nash equilibria.

(b)  Consider a three-player interpretation of this strategic setting in which 
each of player l’s types is modeled as a separate player. That is, the 
game is played by players 1A, 1B, and 2. Assume that player 1A’s 
payoff is zero whenever nature chooses B; likewise, player 1B’s payoff 
is zero whenever nature selects A. Depict this version of the game in the 
extensive form (remember that payoff vectors consist of three numbers) 
and in the normal form. Compute the set of rationalizable strategies and 
find the Nash equilibria.

(c)  Explain why the predictions of parts (a) and (b) are the same in regard 
to equilibrium but different in regard to rationalizability. (Hint: The 
answer has to do with the scope of the players’ beliefs.)

4. Demonstrate that, for the Cournot game discussed in this chapter, the only 
rationalizable strategy is the Bayesian Nash equilibrium.

5. Consider a differentiated duopoly market in which firms compete by se-
lecting prices and produce to fill orders. Let p1 be the price chosen by firm 
1 and let p2 be the price of firm 2. Let q1 and q2 denote the quantities de-
manded (and produced) by the two firms. Suppose that the demand for firm 
1 is given by q1 = 22 − 2p1 + p2 , and the demand for firm 2 is given by 
q2 = 22 − 2p2 + p1 . Firm 1 produces at a constant marginal cost of 10 and 
no fixed cost. Firm 2 produces at a constant marginal cost of c and no fixed 
cost. The payoffs are the firms’ individual profits.
(a)  The firms’ strategies are their prices. Represent the normal form by 

writing the firms’ payoff functions.
(b)  Calculate the firms’ best-response functions.
(c)  Suppose that c = 10 so the firms are identical (the game is symmetric). 

Calculate the Nash equilibrium prices.
(d)  Now suppose that firm 1 does not know firm 2’s marginal cost c. With 

probability 1>2 nature picks c = 14, and with probability 1>2 nature 
picks c = 6. Firm 2 knows its own cost (that is, it observes nature’s 
move), but firm 1 only knows that firm 2’s marginal cost is either 6 or 
14 (with equal probabilities). Calculate the best-response functions of 
player 1 and the two types (c = 6 and c = 14) of player 2 and calculate 
the Bayesian Nash equilibrium quantities.

6. Find the Bayesian Nash equilibrium of the game pictured here. Note that 
Exercise 3 of Chapter 24 asked you to convert this into the normal form.
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7. Consider the following static game of incomplete information. Nature  
selects the type (c) of player 1, where c = 2 with probability 2>3 and c = 0 
with probability 1>3. Player 1 observes c (he knows his own type), but 
 player 2 does not observe c. Then the players make simultaneous and inde-
pendent choices and receive payoffs as described by the following matrix.

(a) Draw the normal-form matrix of this game.
(b) Compute the Bayesian Nash equilibrium.

8. Consider a simple simultaneous-bid poker game. First, nature selects num-
bers x1 and x2 . Assume that these numbers are independently and uniformly 
distributed between 0 and 1. Player 1 observes x1 and player 2 observes x2 , 
but neither player observes the number given to the other player. Simultane-
ously and independently, the players choose either to fold or to bid. If both 
players fold, then they both get the payoff −1. If only one player folds, 
then he obtains −1 while the other player gets 1. If both players elected 
to bid, then each player receives 2 if his number is at least as large as the 
other player’s number; otherwise, he gets −2. Compute the Bayesian Nash 
equilibrium of this game. (Hint: Look for a symmetric equilibrium in which 
a player bids if and only if his number is greater than some constant a. Your 
analysis will reveal the equilibrium value of a.)
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9. Consider the simple poker game described in Exercise 1 of Chapter 24, 
where there are just two cards in the deck and one card is dealt to player 1. 
This game has a single Nash equilibrium (perhaps in mixed strategies). Cal-
culate and report the equilibrium strategy profile. Explain whether bluffing 
occurs in equilibrium.

10. Consider the Cournot duopoly game with incomplete information. First, 
nature chooses a number x, which is equally likely to be 8 or 4. This number 
represents whether demand is high (x = 8) or low (x = 4). Firm 1 observes 
x because this firm has performed market research and knows the demand 
curve. Firm 2 does not observe x. Then the two firms simultaneously select 
quantities, q1 and q2 , and the market price is determined by p = x − q1 − q2. 
Assume that the firms produce at zero cost. Thus, the payoff of firm 1 is 
(x − q1 − q2) q1 , and the payoff of firm 2 is (x − q1 − q2) q2 .
(a)  Note that there are two types of firm 1, the high type (observing x = 8) 

and the low type (observing x = 4). Let qH
1  and qL

1 denote the quantity 
choices of the high and low types of firm 1. Calculate the players’ best-
response functions.

(b)  Find the Bayesian Nash equilibrium of this game.
(c)  Does firm l’s information give it an advantage over firm 2 in this game? 

Quantify this.

11. Consider a version of the “social unrest” game analyzed in Chapter 8 
 (including Exercise 8) with incomplete information. Two people (players  
1 and 2) have to simultaneously choose whether to protest (P) or stay 
home (H). A player who stays home gets a payoff of 0. Player i’s payoff of 
protesting is determined by this player’s protest value xi and whether the 
other player also protests. Specifically, if player i decides to protest, then her 
payoff is xi −

1
3 if the other player also protests, whereas her payoff is xi −

2
3 

if the other player stays home.
Each player knows her own protest value but does not observe that of 

the other player. Thus, xi is player i ’s type. Assume that x1 and x2 are inde-
pendently drawn from the uniform distribution on [0, 1].
(a)  Calculate the Bayesian Nash equilibrium of this game. (Hint: Note that 

each player’s strategy is a function from her type to {P, H}. Consider 
cutoff strategies, where player i will protest if and only if xi Ú yi , for 
some constant yi .) Document your analysis and report the equilibrium 
cutoffs y *

1 and y *
2 .

(b)  What is the set of rationalizable strategies in this game? Without provid-
ing mathematical details, try to give reasoning based on considering 
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(i) a lower bound on the types that protest regardless of their beliefs 
and (ii) an upper bound on the types that stay home regardless of their 
beliefs.

(c)  Consider an n-player version of the game in which the payoff of protest-
ing is xi −

1
3 if at least m of the other players also protests, and it is 

xi −
2
3 if fewer than m of the other players also protests. Can you find 

values of n and m for which this game has multiple Nash equilibria?
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In this chapter, I present some examples of how incomplete information af-
fects trade and the aggregation of information between two or more economic 

agents. Each of the settings is modeled as a static game.

MARKETS AND LEMONS

You may have had the experience of buying or selling a used automobile. If 
so, you know something about markets with incomplete information. In the 
used-car market, sellers generally have more information about their cars than 
do prospective buyers. A typical seller knows whether his car has a shrouded 
engine problem—something that the buyer might not notice but that would 
likely require a costly repair before long. The seller knows whether the car tends 
to overheat in the summer months. The seller knows the myriad idiosyncracies 
that the car has developed since he acquired it. Prospective buyers may know 
only what they can gather from a cursory inspection of the vehicle. Thus, buyers 
are at an informational disadvantage. You would expect that, as a result, the 
buyers would not fare well in the market. Nonetheless, sellers might lose if the 
market failed owing to justifiably cautious buyers.1

To illustrate, suppose Jerry is in the market for a used car. One day he 
meets a shifty looking man named Freddie, who offers an attractive fifteen-
year-old sedan for sale. Jerry likes the car’s appearance. He imagines himself 
at the wheel, cruising up and down Broadway, taking in the flirtatious glances 
of many a woman through his sunglasses. Then he imagines the engine explod-
ing, followed by an embarrassing scene in which he watches from the curb as a 
firefighter dowses his vehicle with water. Jerry says to Freddie, “The car looks 
good, but how do I know it isn’t a lemon?” Freddie rejoins, “You have my 
word; this car is a peach; it’s in great shape!” Jerry insists, “Galimatias! Let’s 

1The trading example that I present here is inspired by G. Akerlof, “The Market for Lemons: Qualitative 
Uncertainty and the Market Mechanism,” Quarterly Journal of Economics, 84 (1970): 488–500. For his work, 
George Akerlof was awarded the 2001 Nobel Prize in Economic Sciences, with corecipients A. Michael 
Spence and Joseph Stiglitz.

27 LEMONS, AUCTIONS, AND  
INFORMATION AGGREGATION
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FIGURE 27.1 The lemons problem.

put aside the hep-talk. Since I will not likely see you again, your word means 
nothing to me. I know game theory and, as Professor Watson clearly explains, 
you have no way of, or interest in, establishing a reputation with someone you 
will never see again.” Freddie nods and says, “Okay, let’s talk turkey. The Blue 
Book tells us the market price for this car.2 You can look the car over as you 
please. In the end, you will have to decide whether you are willing to pay the 
Blue Book price for the car, as I must decide whether to offer the car at this 
price.”

Interaction between Jerry and Freddie may be quite elaborate, but I would 
like to abstract from this complexity and simply focus on the bottom line. 
Suppose there is some fixed market price for fifteen-year-old sedans of the type 
that Freddie is selling. Call this exogenously given price p. Assume that Jerry 
and Freddie play the game depicted in Figure 27.1. Nature first chooses whether 
the car is a peach or a lemon. If the car is a peach, then it is worth $3000 to Jerry 
and $2000 to Freddie. If the car is a lemon, then it is worth $1000 to Jerry and $0 
to Freddie. Note that, in both cases, Jerry values the car more than does Freddie, 
so efficiency requires that the car be traded and the surplus (in each case $1000) 
be divided between them. But there is incomplete information: Freddie observes 
nature’s choice, whereas Jerry knows only that the car is a peach with prob-
ability q. Then the players simultaneously and independently decide whether to 
trade (T) or not (N) at the market price p. If both elect to trade, then the trade 
takes place. Otherwise, Freddie keeps the car.

Two kinds of equilibria are possible in this game. In the first kind, only 
the lemon is traded. Let us check whether there are values of p for which only 

2The Kelley Blue Book is a publication in the United States that establishes price guidelines for used 
automobiles.
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the lemon is traded in equilibrium. That is, Jerry selects T and Freddie plays the 
strategy NP TL (no trade if peach; trade if lemon). In order for Freddie’s strategy 
to be optimal, it must be that 0 … p and p … 2000 (otherwise Freddie would 
either not want to trade a lemon or want to trade a peach). In order for Jerry’s 
strategy to be optimal, it must be that Jerry is willing to trade, conditional on 
knowing that Freddie only offers the lemon for sale. Jerry obtains an expected 
payoff of q # 0 + (1 − q) (1000 − p) if he chooses T, 0 if he chooses N. Jerry is 
willing to trade if and only if

(1 − q) (1000 − p) Ú 0,

which simplifies to p … 1000. Putting the incentive conditions together, we see 
that if p ∈ (0 , 1000) , then there is an equilibrium in which only the lemon is 
traded. Intuitively, if the market price is below $1000, Freddie would want to 
bring only the lemon to market. Anticipating that only a lemon will be for sale, 
Jerry is willing to pay no more than $1000.

The second kind of equilibrium features trade of both the lemon and the 
peach. That is, Jerry selects T and Freddie plays the strategy TP TL. In order for 
this equilibrium to exist, the market price must be high enough so that Freddie 
is willing to sell the peach; specifically, p Ú 2000. In addition, Jerry’s expected 
value of owning the car must be at least as great as the price. That is, it must be 
that

3000q + 1000(1 − q) Ú p,

which simplifies to 1000 + 2000q Ú p. Thus, there is an equilibrium in which 
both types of car are traded as long as

1000 + 2000q Ú p Ú 2000.

Note that there is a price p that works if and only if

1000 + 2000q Ú 2000,

which simplifies to q Ú 1>2. In words, unless the probability of a peach is suffi-
ciently high (there are not too many lemons in the world), there is no equilib-
rium in which the peach is traded.

If q < 1>2, then only lemons are traded in equilibrium. Recall that this 
outcome is inefficient because trading the peach creates value. Thus, the 
model demonstrates that asymmetric information sometimes causes markets to 
malfunction.
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AUCTIONS

In the lemons example, the seller has private information about his and the 
buyers’ valuations of the good to be traded. Other markets have different infor-
mation structures. In many instances, prospective buyers have private infor-
mation about their valuations for the good. Furthermore, different prospective 
buyers have different tastes, needs, and abilities, leading to variations in people’s 
willingness to pay for things such as houses, artwork, and productive inputs.

The seller of a good naturally wants to trade at the highest price that she can 
obtain. When the seller has one object to sell and there are multiple potential 
buyers, the seller would like to find the buyer with the highest willingness to 
pay for the object and then consummate a deal with this buyer at a price close 
to the buyer’s valuation of the good. Unfortunately for the seller, she may not 
know the prospective buyers’ valuations. One way for the seller to encourage 
competition between prospective buyers and to identify the highest valuation is 
to hold an auction.

Auctions are quite common in reality. All sorts of merchandise is sold at 
formal and informal auction houses, often over the Internet. Many different 
auction formats are in use as well. There are sealed-bid auctions, where bidders 
simultaneously and independently submit offers; sealed bids are often used in 
home sales and for government procurement. There are dynamic oral auctions, 
where an auctioneer suggests prices in a sequence and the prospective buyers 
signal or call out their bids. Several versions of these auction forms are in 
prominent use.

To give you a taste of auction theory and its elemental intuition, I shall 
present an analysis of three examples of sealed-bid auctions. For the first two, 
imagine that a person—the seller—has a painting that is worth nothing to her 
personally. She hopes to make some money by selling the art. There are two 
potential buyers, whom I call bidders 1 and 2. Let v1 and v2 denote the valua-
tions of the two bidders. If bidder i wins the painting and has to pay x for it, then 
bidder i ’s payoff is vi − x. Suppose that v1 and v2 are chosen independently by 
nature and that each is uniformly distributed between 0 and 900. Technically 
speaking, the probability that vi < y is y>900. The bidders observe their own 
valuations before engaging in the auction. However, they do not observe each 
other’s valuations, so each must bid knowing only his own valuation and that  
the other’s valuation is distributed uniformly between 0 and 900. The seller does 
not observe the bidders’ valuations; she knows only their distributions.

In general, the seller designs the auction in which the bidders participate. 
The auction implies a game between bidders 1 and 2, whom we can therefore 
call players 1 and 2. The auction game specifies which bidder gets the painting 
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(or neither) and what monetary payments each bidder must make, as a function 
of the bidding behavior.

Consider a second-price auction.3 In this game, players simultaneously 
and independently submit bids b1 and b2 . The painting is awarded to the high-
est bidder at a price equal to the second-highest bid. For example, if player 1 
bids 420 and player 2 bids 380, then player 1 gets the painting and is required 
to pay $380. In this outcome, player l’s payoff would be v1 − 380 and player 
2’s payoff would be 0 (because player 2 neither gets the painting nor has to pay 
anything).4

Finding the Bayesian Nash equilibrium of the second-price auction is not 
too difficult, once you notice that bidding one’s valuation is a weakly dominant 
strategy for each player. A weakly dominant strategy is one that weakly domi-
nates all other strategies, so it is a best response to every strategy of the other 
player. (Recall the definition of weak dominance from Chapter 6.) When all 
players have a weakly dominant strategy, then this strategy profile obviously is 
an equilibrium in the game.

Here’s how you can prove that bidding one’s valuation is a weakly dominant 
strategy in the second-price auction. Suppose that player i has valuation vi  and 
that he is considering whether to bid bi = vi or to bid some other amount bi = x. 
I will show that bidding vi always gives him a weakly higher payoff than does 
bidding x, regardless of the other player’s (player j ’s) bid. Further, bidding vi 
yields a strictly higher payoff for some bids of player j.

Suppose, for instance, that x > vi and consider the following three possi-
bilities. First, it may be that player j ’s bid bj is at least as large as x. In this case, 
player i will lose the auction regardless of whether he bids x or vi .5 Second, it 
may be that bj is between vi and x. In this case, player i actually does worse by 
bidding x than by bidding vi . If he bids vi , then he will lose the auction and get 
a payoff of 0; in contrast, if he bids x, then he wins the auction and has to pay bj ,
giving him the negative payoff vi − bj . Third, consider the case in which bj  
is less than vi . In this case, bidding vi  and bidding x yield the same payoff to 
player i; either way, player i wins the painting and has to pay bj  for a payoff of 
vi − bj .

3The second-price auction, as well as related mechanisms, is associated with William Vickrey, who, with 
James Mirrlees, won the 1996 Nobel Prize in Economic Sciences. These men made fundamental contribu-
tions to the theory of incentives in environments of incomplete information. Vickrey’s auction analysis is 
contained in his “Counterspeculation, Auctions and Competitive Sealed Tenders,” Journal of Finance, 16 
(l961): 8–37.
4The second-price auction is growing in use and is also closely related to the dynamic ascending bid auction 
form.
5I have not described what the auction specifies (who wins the painting or with what probability) in the case 
in which the bids are equal (b1 = b2). In fact, it will not matter what is specified for this contingency, so I 
ignore it at this point.

Watson_c27_360-377hr.indd   364 2/4/13   12:45 PM



365Auctions

In summary, player i is better off bidding his value vi , rather than bidding 
any other amount x, regardless of what player j does. You can check that the 
same result is reached when x < vi (Exercise 3 at the end of this chapter asks 
you to do this). Thus, bidding one’s valuation is a weakly dominant strategy and 
there is a Bayesian equilibrium in which both players use this strategy.

The equilibrium of the second-price auction is efficient because the painting 
goes to the player with the highest valuation. Therefore, by running an auction, 
the seller locates the highest valuation bidder. But the seller is not able to appro-
priate all of the surplus of the trade because the winning bidder pays only the 
second-highest bid. The seller’s expected revenue equals the expected second-
highest valuation, which is 300.6

Next consider a first-price, sealed-bid auction. The players simultaneously 
and independently submit bids b1 and b2 as before. The painting is awarded to 
the highest bidder, who must pay his bid. For example, if player 1 bids 290 and 
player 2 bids 310, then player 2 obtains the painting for the price of $310. Player 
2’s payoff would then be v2 − 310, whereas player l’s payoff would be 0. First-
price auctions such as this one are very common.

Computing the Bayesian Nash equilibrium of the first-price auction is more 
tricky than is the analysis for the second-price auction. Fortunately, some intu-
ition and a guess can help. Note that a player has no reason to bid more than his 
valuation because he would then get a negative payoff in the event that he wins 
the auction. In fact, each player ought to bid less than his valuation so that he 
can obtain a positive payoff if he wins. Let us start by conjecturing the form of 
the players’ equilibrium bidding strategies and then, by analyzing incentives, 
determine whether the form is correct. Presume that each player adopts a strat-
egy in which he bids a fraction a of his valuation. That is, when player i ’s valu-
ation is vi , he bids bi = avi  . We can compute whether this form of symmetric 
strategy profile is an equilibrium and, if so, we will be able to calculate what the 
parameter a must be.

Let us compute player i ’s optimal strategy under the assumption that bidder 
j uses the strategy bj = avj . Suppose that player i ’s valuation is vi and that he 
is considering a bid of x. If player i wins the auction, then his payoff will be 

6To see how this is computed, note that the expected second-highest valuation, conditional on knowing the 
value v1 , is

Prob[v2 Ú v1](v1) + Prob[v2 < v1]  E [v2   v2 < v1] .

The first term represents the case in which v1 is the second-highest bid (occurring when v2 Ú v1), whereas the 
second term represents the case in which v2 is the second-highest bid. E [v2   v2 < v1] denotes the expected 
value of v2 conditional on v2 being less than v1. Because v2 is distributed uniformly, we know that, with v1 fixed, 
Prob[v2 < v1] = v1  >900, Prob[v2 Ú v1] = 1 − v1  >900, and E [v2   v2 < v1] = v1  >2. If we substitute these 
expressions and simplify, the expected second-highest valuation, conditional on knowing v1 , is v1 − v1

2
 >1800. 

Taking the expectation with respect to v1 (integrating with the density function 1>900) yields 300.
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vi − x. Of course, contingent on winning, player i prefers x to be small. But 
lowering x reduces the chance that he wins the auction. In particular, player i 
wins if and only if player j ’s bid falls below x. Because player j bids accord-
ing to the function bj = avj , a bid of x would be made by the type of player j 
whose valuation is x>a; types of player j with valuations below x>a will bid less 
than x. Because vj is distributed uniformly between 0 and 900, the probability 
that vj < x>a is x>900a. Thus, if player i bids x, then he can expect to win the 
auction with probability x>900a.

By bidding x, player i ’s expected payoff is equal to the probability of 
winning times the surplus that he gets if he wins:

(vi − x)x
900a

.

Note that this payoff is a concave parabola as a function of x. To find player i ’s 
optimal bid, take the derivative with respect to x and set it equal to 0. Solving 
for x yields x = vi>2. In words, player i ’s best response to j ’s strategy is to 
bid exactly half his valuation. That is, bi = vi>2 is player i ’s optimal strategy. 
Because this strategy is of the form that we assumed at the beginning, we know 
that we have found a Bayesian Nash equilibrium and that the bidding param-
eter is a = 1>2. That is, b1(v1) = v1>2 and b2(v2) = v2>2 constitute a Bayesian 
Nash equilibrium.

As with the second-price auction, the equilibrium of the first-price auction 
is efficient; the player with the highest valuation wins the auction. Further-
more, the winner pays one-half his valuation, which bears a resemblance to 
the outcome of the second-price auction. Specifically, recall that the winner 
of the second-price auction pays the second-highest bid, which (as you can 
check) happens to be one-half of the winner’s valuation on average. Thus, the 
first-price and second-price auctions yield the same expected revenue for the 
seller, 300. This fact about “revenue equivalence” between different auction 
forms actually holds in many auction environments.7

What can you learn from all this, besides the fact that auction theory is 
complicated? First, in standard first-price auctions, there is a trade-off between 
the probability of winning and the surplus obtained by winning. Second, under 
first-price auction rules, it is optimal to bid less than one’s valuation. Third, 

7For more on the revenue equivalence result, and auction theory in general, see the following articles: 
P. McAfee and J. McMillan, “Auctions and Bidding,” Journal of Economic Literature, 25 (1987): 699–738; 
P. Milgrom, “Auction Theory,” pp. 1–32, in Advances in Economic Theory, Fifth World Congress, ed. 
T. Bewley (Cambridge, UK: Cambridge University Press, 1987); and P. Milgrom and R. Weber, “A Theory of 
Auctions and Competitive Bidding,” Econometrica, 50 (1982): 1089–1122.
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auctions can be designed to induce “truthful” bidding (as is the case with the 
second-price form). Fourth, competitive bidding produces information about the 
bidders’ valuations and can allow the seller to extract surplus from the trade.

Before leaving the topic of auctions, I’ll introduce yet another wrinkle by 
way of a third example. The preceding two examples are in the setting of private 
values, meaning that each player knows his own valuation of the object but not 
that of the other player. Furthermore, the bidders almost always have different 
valuations. By contrast, in a common-value setting, the players’ valuations are 
the same, but no one has perfectly accurate information.

For instance, consider the sale of a Treasury bill in the United States. Such a 
bill pays a stated amount of money after a specified length of time. The value of 
a T-bill depends on future interest rates and on the risk of default, which are typi-
cally the same regardless of who buys the bill. However, different bidders may 
get different signals about where interest rates are heading. Another example is 
the sale of distressed or seized property to commercial resellers. The winning 
buyer will carefully evaluate the property (after the sale), recondition it, and sell 
it to consumers. The value of doing this is independent of the buyer, unless the 
buyers differ in their reconditioning skills. However, the bidders may get differ-
ent signals about the valuation of the property before making their bids, For 
instance, one bidder may be good at spotting damage, whereas another bidder 
may be good at estimating repair costs.

Let us analyze a simple common-value example. There are two bidders 
(players 1 and 2), and they have the same valuation of the object being 
auctioned. Let Y denote this valuation. Suppose that Y = y1 + y2 , where y1 and 
y2 are uniformly distributed between 0 and 10. That is, for any x ∈ [0 , 10], we 
have yi < x with probability x>10. Player 1 privately observes the signal y1 and 
player 2 privately observes the signal y2 . The players then engage in a first-
price, sealed-bid auction to determine who gets the object.

As a first step in the analysis, consider the strategy in which player i bids 
bi = yi + 5. That is, player i ’s bid is his expected valuation of the object, given 
his own signal yi . (Note that the expected value of yj is 5.) One might think that 
this strategy should yield an expected payoff of zero conditional on winning 
the auction, but this is not so. There is an important subtlety: Conditional on 
winning the auction, player i learns something about player j’s signal yj .

To see how this works, suppose both players use the strategy bi = yi + 5, 
and player 1 happens to get the signal y1 = 8. Player 1 will then bid b1 = 13, 
thinking that y2 is 5 on average. Will player 1 break even? Nope. Player 1 wins 
the object only in the event that player 2’s bid is less than 13. Considering that 
b2 = y2 + 5, player 2 bids less than 13 only if y2 < 8. Conditional on y2 < 8, 
its expected value is 4. Thus, conditional on winning the auction, player 1 must 
lower his estimate of y2 and, along with it, the valuation Y.
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The logic just described is known as “the winner’s curse.” A player wins 
when the other players bid less, but this implies that the other bidders must have 
received relatively bad signals of the object’s valuation. The strategic implica-
tion is that one should factor in that winning yields information, and this infor-
mation should be used in formulating the expected valuation.

The Bayesian Nash equilibrium of this common-value auction is the strat-
egy profile in which b1 = y1 and b2 = y2 , so the players are quite cautious. To 
confirm this equilibrium, let us calculate player l’s optimal bid as a function of 
his signal, assuming that player 2’s bidding rule is b2 = y2 . (The same analysis 
applies to player 2.) Note that for any signal y1 and bid b1 , player l’s expected 
payoff is the probability of winning times the expected payoff conditional on 
winning. The probability of winning is b1>10 because this is the probability that 
player 2 bids below b1 (owing to b2 = y2 and that y2 is uniformly distributed on 
[0,10]). The expected payoff conditional on winning is

y1 +
b1

2
− b1 ,

because b1>2 is the expected value of y2 conditional on y2 < b1 . Multiplying 
these, we see that player l’s expected payoff of bidding b1 is

b1ay1 +
b1

2
− b1b = b1ay1 −

b1

2
b ,

which is maximized by setting b1 = y1 .
The new wrinkle introduced in the common-value environment is that a 

player must consider the informational content of winning the auction, as it 
pertains to the signals that other players received. This feature is also present in 
the setting that I turn to in the next section.

INFORMATION AGGREGATION

The lemon/peach and auction examples just described are cases in which players 
must make a joint decision (whether and how to trade) based on private infor-
mation. More generally, there are many situations in which a group, perhaps 
all of society, must make a collective decision in an environment of incomplete 
information. For instance, a city may be considering whether to extend a trolley 
line and, to make the socially optimal choice, it will depend on its individual 
citizens to report accurately what their own personal costs and benefits from 
the project would be. Another example is society’s decision as to whether to 
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reelect a president, again optimally a function of the citizens’ individual and 
privately known preferences. A third example is the question of whether to 
convict an accused felon, which may be best decided by collecting the various 
pieces of information that members of a jury have about the defendant and the 
nature of the crime.

These examples involve information aggregation—that is, combining infor-
mation from individual players to inform a single decision that affects them 
all. Such settings are typically called social-choice problems. A key issue in 
social choice is whether a communication and decision-making rule (known 
as a mechanism in the technical literature) can be found to achieve social 
objectives. One component of the analysis is determining the incentives of the 
players under any given mechanism. Although a formal analysis of general 
social-choice problems is not a topic for this book, it is worthwhile to examine 
an applied example to help you recognize nuances in the rational reporting of 
private information. In plainer language, you will see that players do not always 
have the incentive to “vote their information.”

Consider a setting in which a jury must decide whether to acquit or convict 
a defendant who is on trial.8 For simplicity, suppose that the jury consists of 
two people who are the players in the game. The defendant’s identity is either 
guilty or innocent and, from the player’s perspective, this is determined by a 
move of nature that assigns equal probability to each possibility. During the 
trial, each juror obtains a signal of the defendant’s identity. Because the jurors 
have different spheres of expertise and are alert at different times in the trial, 
the signal that juror/player 1 obtains is independent of the signal that juror/
player 2 obtains. Suppose that each signal is either I or G, with the following 
distribution: Conditional on an innocent defendant, player i ’s signal is I with 
probability 3>4 and G with probability 1>4. Conditional on a guilty defendant, 
player i ’s signal is I with probability 1>4 and G with probability 3>4. Thus, I 
is an indication of innocence and G is an indication of guilt, although neither 
is absolute.

For example, note that, conditional on the defendant being guilty, the prob-
ability of two G signals is

Prob[GG  guilty] =
3

4
# 3
4
=

9

16
.

8What follows is an example along the lines of D. Austen-Smith and J. Banks, “Information Aggregation, 
Rationality, and the Condorcet Jury Theorem,” American Political Science Review, 90 (1996): 34–45. For a 
more general analysis, see T. J. Feddersen and W. Pesendorfer, “Voting Behavior and Information Aggrega-
tion in Elections with Private Information,” Econometrica, 65 (1997): 1029–1058.
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Conditional on the defendant being innocent, the probability of two G signals is

Prob[GG  innocent] =
1

4
# 1
4
=

1

16
.

In these mathematical expressions, the symbol “|” stands for “conditional on.” 
The calculations show that getting two G signals is nine times as likely with the 
guilty defendant as with the innocent defendant.

We can use Bayes’ rule to calculate the conditional probability of the defen-
dant being guilty given the signals. That is, we can ask a question such as: Given 
that we initially thought that the defendant was guilty with probability 1>2 , and 
now having learned that both players received signal G, what should we believe 
is the probability that the defendant is guilty? The initial belief (1>2  here) is also 
known as the prior belief. The assessment of the likelihood of a guilty defen-
dant conditional on the signals is called the updated or posterior belief. Bayes’ 
rule tells us that the updated probability of guilt equals the probability of the 
particular signals conditional on a guilty defendant, times the prior probability 
that the defendant is guilty, divided by the total probability that the particular 
signals occur (irrespective of the defendant’s type):

Prob[guilty  GG] =
Prob[GG  guilty] Prob[guilty]

Prob[GG]
.

Note that the overall probability of GG in the denominator is a sum of probabili-
ties over the events of guilty and innocent defendants; that is,

Prob[GG] = Prob[GG  guilty] Prob[guilty] 
 + Prob[GG  innocent] Prob[innocent].

Plugging in the numbers, the Bayes’ rule formula yields

Prob[guilty  GG] =
(9>16) (1>2)

(9>16) (1>2) + (1>16) (1>2)
=

9

10
.

This means that observing two G signals would cause us to believe that the 
defendant is guilty with 90 percent probability. Incidentally, if this is your first 
exposure to Bayes’ rule, or you could use a general refresher on the basic defi-
nitions of probability, please read Appendix A. You can test your understand-
ing by performing the calculations necessary to show that if one player gets 
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the I signal and the other player gets the G signal, then the updated probability 
of a guilty defendant is

Prob[guilty  IG] =
Prob[IG  guilty] Prob[guilty]

Prob[IG]
=

1

2
.

At the end of the trial, the court (representing society) must declare the defen-
dant either acquitted or convicted. Suppose that the jurors’ preferences are 
identical and depend only on the defendant’s identity and on the court’s ruling. 
Each juror gets a payoff of 0 if the defendant is acquitted, regardless of the 
defendant’s identity. If the defendant is guilty and is convicted, then each juror 
gets a payoff of 3; if the defendant is innocent and is convicted, then each juror 
gets a payoff of −2. Thus, jurors want to convict the guilty and acquit the 
innocent.

The court’s ruling is issued on the advice of the jurors. Suppose that the 
players are not allowed to converse about the case and that, at the end of the trial, 
they are each asked to vote for acquittal or conviction. Furthermore, consider a 
unanimity voting rule, in which the court declares the defendant convicted if and 
only if both jurors vote to convict. The social objective is for each player to vote 
for conviction if and only if his signal is G, so that the defendant is convicted 
only when both signals are G.

How do rational jurors behave in this game? In particular, does each player 
want to pass along his information by voting to convict if and only if he gets the 
G signal? You might find it curious that the answer is “no.” To be precise, voting 
in this way does not constitute a Bayesian Nash equilibrium of the game. To 
see this, put yourself in player 1’s shoes under the assumption that player 2 will 
vote for conviction if and only if player 2 gets the G signal. Let us then calculate 
whether behaving the same way is a best response.

Note that your vote affects the court’s ruling only in the situation in which 
player 2 is voting for conviction. You see, if player 2 votes for acquittal, then, 
under the unanimity rule, the defendant will be acquitted regardless of what 
you do. In contrast, if player 2 votes for conviction, then the defendant’s fate 
is in your hands. In this case, if you vote to convict, then the defendant will be 
convicted. If you vote to acquit, then the defendant will be acquitted. In the 
jargon of research on voting behavior, your vote is pivotal to the outcome only 
if player 2 votes for conviction. Because our working assumption is that player 2 
votes for conviction just when his signal is G, you know that your vote is pivotal 
precisely when player 2 gets the G signal; your vote makes no difference to the 
outcome when player 2 gets the I signal.

Also note that because you, as player 1, care only about the defendant’s 
identity and the court’s ruling, your action affects your payoff only when your 
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vote is pivotal. Thus, when deciding how to vote, you can limit your attention to 
the case in which player 2’s signal is G. Let us consider your incentives on how 
to vote in the situation in which your signal is I. Conditional on these signals, 
your updated probability of the guilty defendant is 1>2 . Thus, if you vote to 
convict (in which case the defendant is convicted), your payoff is

Prob[guilty  IG] # 3 + Prob[innocent  IG] # (−2) =
1

2
# 3 +

1

2
# (−2) =

1

2
.

If you vote to acquit, then the defendant is acquitted and you get 0. The bottom 
line is that you strictly prefer voting for conviction rather than acquittal when 
your signal is I, which is contrary to the desired social policy.

If “voting one’s information” is not an equilibrium, what is an equilibrium 
of this game? In fact, there are several equilibria. Here is a simple pure- strategy 
equilibrium: Player 2 always votes for conviction, regardless of player 2’s signal, 
whereas player 1 votes to convict if and only if his signal is G. To see that this 
is an equilibrium, let us evaluate the incentives of both players. Given player 2’s 
strategy, player 1 knows that his vote is pivotal regardless of player 2’s signal; 
it is as though there is a jury of one. If player 1 gets signal I then, using Bayes’ 
rule, player 1 believes that the defendant is guilty with probability

Prob[guilty  I] =
Prob[I  guilty] Prob[guilty]

Prob[I]

 =
(1>4) (1>2)

(1>4) (1>2) + (3>4) (1>2)
=

1

4
.

In this case, convicting the defendant yields an expected payoff of 
(1>4) # 3 + (3>4) # (−2) = − (3>4), which is lower than the payoff of acquittal, 
and so voting to acquit (as presumed) is better. If player 1 gets signal G, then, 
using Bayes’ rule, player 1 believes that the defendant is guilty with probability

Prob[guilty  G] =
Prob[G  guilty] Prob[guilty]

Prob[G]

 =
(3>4) (1>2)

(3>4) (1>2) + (1>4) (1>2)
=

3

4
,

which, as you can check, makes conviction preferred. As for player 2, his pref-
erences are exactly as analyzed in the previous paragraphs (under the assump-
tion that player 1 votes to convict on signal G only), and so player 2 rationally 
always votes to convict.

Watson_c27_360-377hr.indd   372 2/4/13   12:45 PM



373Guided Exercise

In this equilibrium, only player l’s signal is used to determine the court’s 
ruling, which is less precise than is the stated social objective. There is another 
pure-strategy equilibrium in which the roles are reversed, with player 1 always 
voting for conviction. There is also a mixed-strategy equilibrium in which play-
ers vote for conviction when they receive the I signal and randomize when they 
get the G signal.

In all of the equilibria, less information is transmitted from the jury to the 
court than society prefers. The main reason for this is that I have assumed in 
the design of the game that the players actually have different preferences than 
does society. To see this, recall that I suggested a social objective of convicting 
the defendant only when both signals are G. Thus, society wants to acquit the 
defendant if one player gets the I signal while the other gets the G signal. In this 
contingency, the updated probability of the defendant being guilty is 1>2 . But 
the players have a strict incentive to convict the defendant because, with equal 
probabilities of innocence and guilt, the benefit of conviction in the case of a 
guilty defendant (a payoff of 3) outweighs the loss of convicting an innocent 
defendant (a payoff of −2).

If the payoffs were changed so that the players had the same preferences as the 
greater society, then there would be an efficient equilibrium, which can be shown. 
Thus, the potential for inefficiency in the voting game rests on a discrepancy 
between the preferences of the jurors and society, or perhaps on a discrepancy 
between the preferences of different jurors.9 Another issue is whether inefficien-
cies disappear as the number of jurors increases; the answer to this question is 
generally “yes.” One might also wonder if society would gain by allowing the 
jurors to talk to one another and share information before voting, as is the case 
in actual jury deliberations. Again, the answer is “yes.” Designing and managing 
the optimal mechanism would be challenging, however, if the players had differ-
ent preferences; the scientific literature has left room for analysis in this direction.

GUIDED EXERCISE

Problem: Consider the auction environment discussed in this chapter, where 
the bidders’ values are independently drawn and distributed uniformly on the 
interval [0, 900], but now suppose that there are n players. Compute the equi-
librium of the first-price auction. (Hint: Presume that the players use a bidding 
function of the form bi = avi ; note that, for a particular group of n − 1 bidders, 
the probability that all of these bidders’ valuations are simultaneously below x 
is (x>900) 

n−1).

9On this, see A. Costinot and N. Kartik, “Information Aggregation, Strategic Voting, and Institutional 
Reform,” unpublished manuscript, UC San Diego Department of Economics, 2006.
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Solution: Assume that the equilibrium strategies take the form bi = avi . Then, 
given that the other players are using this bidding strategy (for some constant a), 
player i ’s expected payoff of bidding x is

(vi − x) c x

900a
d

n−1

.

In this expression, the fraction x>900a represents the probability that an indi-
vidual player j (someone other than player i ) bids less than x, given that player j 
is using strategy bj = avj and that j ’s valuation is uniformly distributed between 
0 and 900. Raising this fraction to the power n − 1 yields the probability that 
the bids of all n − 1 other players are below x, in which case player i wins the 
auction. The first-order condition for player i ’s best response is

(n − 1) (vi − x)  x 

n−2 − x 

n−1 = 0. 

Solving for x yields x = vi  

(n − 1)>n, which identifies the parameter a to be 
(n − 1)>n. That is, in equilibrium each of the players uses the bidding function 
bi = (n − 1) vi  

>n. Note that, as n S  , a approaches 1, and the players bid 
approximately their valuations (good for the seller).

EXERCISES

1. Regarding the trade game played by Jerry and Freddie that was analyzed in 
this chapter, are there values of p such that no equilibrium exists? Are there 
values of p such that the equilibrium entails no trade whatsoever?

2. Suppose you and one other bidder are competing in a private-value auction. 
The auction format is sealed bid, first price. Let v and b denote your valu-
ation and bid, respectively, and let vn  and bn denote the valuation and bid of 
your opponent. Your payoff is v − b if it is the case that b Ú bn. Your payoff 
is 0 otherwise. Although you do not observe vn , you know that vn  is uniformly 
distributed over the interval between 0 and 1. That is, v is the probability 
that vn < v. You also know that your opponent bids according to the func-
tion bn(vn) = vn2 . Suppose your value is 3>5. What is your optimal bid?

3. Complete the analysis of the second-price auction by showing that bidding 
one’s valuation vi is weakly preferred to bidding any x < vi .

4. Suppose that a person (the “seller”) wishes to sell a single desk. Ten people 
are interested in buying the desk: Ann, Bill, Colin, Dave, Ellen, Frank, Gale, 
Hal, Irwin, and Jim. Each of the potential buyers would derive some utility 
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from owning the desk, and this utility is measured in dollar terms by the 
buyer’s “value.” The valuations of the 10 potential buyers are shown in the 
following table.

Ann Bill Colin Dave Ellen Frank Gale Hal Irwin Jim

45 53 92 61 26 78 82 70 65 56

Each bidder knows his or her own valuation of owning the desk. Using 
the appropriate concepts of rationality, answer these questions:

(a)  If the seller holds a second-price, sealed-bid auction, who will win the 
auction and how much will this person pay?

(b)  Suppose that the bidders’ valuations are common knowledge among 
them. That is, it is common knowledge that each bidder knows the valu-
ations of all of the other bidders. Suppose that the seller does not observe 
the bidders’ valuations directly and knows only that they are all between 
0 and 100. If the seller holds a first-price, sealed-bid auction, who will 
win the desk and how much will he or she have to pay? (Think about the 
Nash equilibrium in the bidding game. The analysis of this game is a bit 
different from the [more complicated] analysis of the first-price auction 
in this chapter because here the bidders know one another’s valuations.)

(c)  Now suppose that the seller knows that the buyers’ valuations are 45, 53, 
92, 61, 26, 78, 82, 70, 65, and 56, but the seller does not know exactly 
which buyer has which valuation. The buyers know their own valuations 
but not one another’s valuations. Suppose that the seller runs the follow-
ing auction: She first announces a reserve price p

–
. Then simultaneously 

and independently the players select their bids; if a player bids below p
–

, 
then this player is disqualified from the auction and therefore cannot 
win. The highest bidder wins the desk and has to pay the amount of his 
or her bid. This is called a “sealed-bid, first price auction with a reserve 
price.” What is the optimal reserve price p

–
 for the seller to announce? 

Who will win the auction? And what will the winning bid be?

5. Consider the two-bidder auction environment discussed in this chapter, 
where the bidders’ values are independently drawn and distributed uni-
formly on the interval [0, 900]. Demonstrate that, by setting a reserve price, 
the auctioneer can obtain an expected revenue that exceeds what he would 
expect from the standard first- and second-price auctions. You do not have 
to compute the optimal reserve price or the actual equilibrium strategies to 
answer this question.
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6. Consider an “all-pay auction” with two players (the bidders). Player 1’s valu-
ation v1 for the object being auctioned is uniformly distributed between 0 and 
1. That is, for any x ∈ [0, 1], player 1’s valuation is below x with  probability 
x. Player 2’s valuation is also uniformly distributed between 0 and 1, so the 
game is symmetric. After nature chooses the players’ valuations, each player 
observes his/her own valuation but not that of the other player. Simultane-
ously and independently, the players submit bids. The player who bids higher 
wins the object, but both players must pay their bids. That is, if player i bids 
bi , then his/her payoff is −bi if he/she does not win the auction; his/her payoff 
is vi − bi if he/she wins the auction. Calculate the Bayesian Nash equilibrium 
strategies (bidding functions). (Hint: The equilibrium bidding function for 
player i is of the form bi 

(vi ) = kv  i
2 for some number k.)

7. Suppose that you and two other people are competing in a third-price, 
sealed-bid auction. In this auction, players simultaneously and indepen-
dently submit bids. The highest bidder wins the object but only has to pay 
the bid of the third-highest bidder. Sure, this is a silly type of auction, but it 
makes for a nice exercise. Suppose that your value of the object is 20. You 
do not know the values of the other two bidders. Demonstrate that, in con-
trast with a second-price auction, it may be strictly optimal for you to bid 25 
instead of 20. Show this by finding a belief about the other players’ bids un-
der which 25 is a best-response action, yet 20 is not a best-response action.

8. Suppose John owns a share of stock in Columbus Research, a computer 
software firm. Jessica is interested in investing in the company. John and 
Jessica each receive a signal of the stock’s value v, which is the dollar 
amount that the owner will receive in the future. John observes x1 , whereas 
Jessica observes x2 . It is common knowledge that x1 and x2 are indepen-
dent random variables with probability distributions F1 and F2 , respectively. 
These numbers are between 100 and 1000. The value of the stock is equal 
to v = (x1 + x2)>2.

Imagine a game in which John and Jessica may agree to trade the share 
of stock at price p, which is exogenously given. (Perhaps some third party 
or some external market mechanism sets the price.) Simultaneously and 
independently, John and Jessica select either “trade” or “not.” A party that 
chooses “trade” must pay a trading cost of $1. If they both choose to trade, 
then the stock is traded at price p; otherwise, the stock is not traded. Thus, 
if both announce “trade,” then John’s payoff is  p − 1 and Jessica’s payoff 
is v − p − 1. If John chooses “trade” and Jessica chooses “not,” then John 
receives v − 1 and Jessica gets 0. If  Jessica announces “trade” and John 
picks “not,” then John receives v and Jessica receives −1. Finally, if they 
both say “not,” John’s payoff is v and Jessica’s payoff is 0.
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(a)  Suppose that the probability distributions F1 and F2 are the same and 
that they each assign positive probability to just two numbers. Specifi-
cally, xi = 200 with probability 1>2, and xi = 1000 with probability 
1>2, for i = 1, 2. In other words, there are two types of player John (200 
and 1000) and there are two types of player Jessica (200 and 1000). 
Remember that p is a fixed constant, which you can assume is between 
100 and 1000. Compute the Bayesian Nash equilibria of the trading 
game, given these assumptions on F1 and F2 .

(b)  Does trade occur in equilibrium with positive probability? Do the 
predictions of this model conform to your view of the stock market? In 
what ways would the model have to be altered to better explain market 
phenomena?

(c)  Prove, if you can, that the result of part (a) holds more generally—for 
any p, F1 , and F2 . To complete this proof, you will need to evaluate 
some double integrals.

9. Consider the common-value auction described in this chapter, where 
Y = y1 + y2 and y1 and y2 are both uniformly distributed on [0, 10]. Player 
i privately observes yi . Players simultaneously submit bids and the one who 
bids higher wins.
(a)  Suppose player 2 uses the bidding strategy b2 (y2) = 3 + y2 . What is 

player 1’s best-response bidding strategy?
(b)  Suppose each player will not select a strategy that would surely give 

him/her a negative payoff conditional on winning the auction. Suppose 
also that this fact is common knowledge between the players. What can 
you conclude about how high the players are willing to bid?

(c)  Show that for every fixed number z > 0, there is no Bayesian Nash equi-
librium in which the players both use the bidding strategy bi = yi + z.

10. Consider a first-price auction with three bidders, whose valuations are inde-
pendently drawn from a uniform distribution on the interval [0, 30]. Thus, 
for each player i and any fixed number y ∈ [0, 30], y>30 is the probability 
that player i ’s valuation vi is below y.
(a)   Suppose that player 2 is using the bidding function b2 

(v2) = (3>4) v2 , 
and player 3 is using the bidding function b3 

(v3) = (4>5) v3 . Determine 
player 1’s optimal bidding function in response. Start by writing player 
1’s expected payoff as a function of player 1’s valuation v1 and her bid b1 .

(b)  Disregard the assumptions made in part (a). Calculate the Bayes-
ian Nash equilibrium of this auction game and report the equilibrium 
bidding functions.
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The games with moves of nature that were surveyed in preceding chapters 
are those to which standard concepts of equilibrium, subgame perfection, 

and rationalizability can be applied. Two classes of games were distinguished: 
those in which nature moves last and those in which all of the players’ actions 
are taken simultaneously. This chapter examines a third class of games, where 
players have private information and they move sequentially. Many interesting 
economic settings have these features, from some types of auctions to cases of 
signaling one’s quality to a prospective business partner. To study games with 
sequential moves and incomplete information, the appropriate notion of equi-
librium goes beyond subgame perfection to allow sequential rationality to be 
applied to all information sets.

The gift game described in Chapter 24 illustrates the need for a modifica-
tion of the subgame perfect equilibrium concept. Consider the version of the 
game pictured in Figure 28.1. Relative to the game in Figure 24.1, in the vari-
ant player 2 enjoys opening gifts from both types of player 1. Suppose that 
you are interested in applying equilibrium theory to this game. Because the gift 

28 PERFECT BAYESIAN EQUILIBRIUM

FIGURE 28.1 

A variant of the gift game.
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379Conditional Beliefs About Types

game has sequential decisions, it seems appropriate to look for subgame perfect 
equilibria. But the game has no proper subgames, so every Nash equilibrium is 
subgame perfect. In particular, (NF NE, R) is a subgame perfect equilibrium of 
the game; you should verify this through examination of the Bayesian normal 
form. In this equilibrium, both types of player 1 choose not to give a gift and 
player 2 plans to refuse gifts.

One problem with the profile (NF NE, R) is that it prescribes behavior for 
player 2 that is clearly irrational conditional on the game reaching his infor-
mation set. Regardless of player 1’s type, player 2 prefers to accept any gift 
offered. This preference is not incorporated into the subgame perfect equilib-
rium because (1) player 2’s information set is not reached on the path induced 
by (NF NE, R), and (2) player 2’s information set does not represent the start of a 
subgame. As this example shows, not all information sets are necessarily evalu-
ated in a subgame perfect equilibrium. In other words, the concept of subgame 
perfection does not sufficiently capture sequential rationality (that players 
maximize their payoffs from each of their information sets).

To address sequential rationality better, we must employ an equilibrium 
concept that isolates every information set for examination. Perfect Bayes-
ian equilibrium does just that. The key to this equilibrium concept is that it 
combines a strategy profile with a description of beliefs that the players have 
at each of their information sets. The beliefs represent the players’ assessments 
about each other’s types, conditional on reaching different points in the game.

CONDITIONAL BELIEFS ABOUT TYPES

The gift game in Figure 28.1 illustrates the idea of a conditional belief. Recall 
that in this game, player 2 does not observe nature’s decision. Therefore, at the 
beginning of the game, player 2 knows only that player 1 is the friend type with 
probability p and the enemy type with probability 1 − p. This belief p is called 
player 2’s initial belief about player 1’s type. Keep in mind that this is a belief 
about player 1’s type, not a belief about player 1’s strategy (which is the sort of 
belief with which we were dealing in Parts I through III of this book).

Although player 2 does not observe nature’s decision, player 2 does observe 
whether player 1 decided to give a gift. Furthermore, player 2 might learn some-
thing about player 1’s type by observing player 1’s action. As a result, player 
2 will have an updated belief about player 1’s type. For example, suppose that 
you are player 2 in the gift game and suppose that player 1 behaves according 
to strategy NF GE; thus, you expect only to receive a gift from the enemy type. 
What should you conclude, then, if player 1 actually gives you a gift? Given 
player 1’s strategy, you should conclude that player 1 is an enemy. In reference 
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to Figure 28.1, when your information set is reached, you believe that you are 
playing at the lower of the two nodes in the information set.

In general, player 2 has an updated belief about player 1’s type, conditional on 
arriving at player 2’s information set (that is, conditional on receiving a gift). Note 
that player 2’s updated belief about player l’s type can be put in terms of a prob-
ability distribution over the nodes in player 2’s information set. In Figure 28.1, 
this probability distribution is described by the numbers q and 1 − q that appear 
beside the nodes. Literally, q is the probability that player 2 believes he is at the 
top node when his information set is reached. Thus, q is the probability that player 
2 believes player 1 is the friend type, conditional on receiving a gift.

SEQUENTIAL RATIONALITY

Taking account of conditional beliefs allows us to evaluate rational behavior 
at all information sets, even those that may not be reached in equilibrium play. 
Consider, again, the gift game pictured in Figure 28.1. Regardless of player l’s 
strategy, player 2 will have some updated belief q at his information set. This 
number has meaning even if player 2 believes that player 1 adopts the strategy 
NF NE (where neither type gives a gift). In this case, q represents player 2’s 
belief about the type of player 1 when the “surprise” of a gift occurs. Given 
the belief q, we can determine player 2’s optimal action at his information set. 
You can readily confirm that action A is best for player 2, whatever is q. Thus, 
sequential rationality requires that player 2 select A.

For another example, consider the gift game pictured in Figure 28.2. This is 
the same game discussed in Chapter 24. Note that regardless of the probability 
q, player 2 receives a payoff of 0 if he selects R at his information set.

FIGURE 28.2 

The gift game.
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381Consistency of Beliefs

In contrast, if player 2 chooses A, then he gets a payoff of 1 with probability q 
(the probability that his decision is taken from the top node in his information 
set) and he gets a payoff of −1 with probability 1 − q. Player 2’s expected 
payoff of selecting A is therefore

q + (−1) (1 − q) = 2q − 1.

Player 2 will select A if q > 1>2, he will select R if q < 1>2, and he will be 
indifferent between A and R if q = 1>2.

CONSISTENCY OF BELIEFS

In an equilibrium, player 2’s updated belief should be consistent with nature’s 
probability distribution and player l’s strategy. For example, as noted earlier, if 
player 2 knows that player 1 adopts strategy NFGE, then player 2’s updated belief 
should specify q = 0; that is, conditional on receiving a gift, player 2 believes 
that player 1 is the enemy type. In general, consistency between nature’s prob-
ability distribution, player 1’s strategy, and player 2’s updated belief can be 
evaluated by using Bayes’ rule. Recall that Bayes’ rule was discussed in the 
context of information aggregation in the previous chapter. If you did not read 
about it there or if you could use a brief review, please read Appendix A.

The Bayes’ rule calculation is quite simple and intuitive. Here is the general 
form for the gift game in Figure 28.2. At player 2’s information set, his updated 
belief gives the relative likelihood that player 2 thinks his top and bottom nodes 
have been reached. Let r F and r E be the probabilities of arriving at player 2’s top 
and bottom nodes, respectively. That is, r F is the probability that nature selects 
F and then player 1 selects GF.  Likewise, r E is the probability that nature selects 
E and then player 1 chooses GE. As an example, suppose that r F = 1>8 and 
r E = 1>16. In this case, player 2’s information set is reached with probability 
1>8 + 1>16 = 3>16, which is not a very likely event. But note that the top node 
is twice as likely as is the bottom node. Thus, conditional on player 2’s informa-
tion set actually being reached, player 2 ought to believe that it is twice as likely 
that he is at the top node than at the bottom node. Because the probabilities must 
sum to 1, this updated belief is represented by a probability of 2>3 on the top 
node and 1>3 on the bottom node.

In general, the relation between r F, r E, and q is given by

q =
r F

r F + r E .
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382 28: Perfect Bayesian Equilibrium

In words, q is the probability of reaching the top node divided by the total prob-
ability of reaching the top and the bottom nodes (the latter of which is the proba-
bility of reaching the information set). Numbers r F and r E can be calculated from 
nature’s probability distribution and player l’s strategy. Specifically, let aF and 
aE denote the probabilities that the friend and enemy types of player 1 choose 
to give a gift. Then player 2’s top node is reached with probability r F = paF, 
whereas player 2’s bottom node is reached with probability r E = (1 − p) aE. 
Therefore,

q K
paF

paF + (1 − p)aE .

This fraction can be represented in a more intuitive way. Let Prob[G] denote 
the overall probability that player 1 gives a gift, which is the denominator of 
the fraction. The numerator is the probability that nature selects the friend type, 
Prob[F], times the probability that the friend gives a gift, Prob[G   F]. The 
number q is the probability that player 1 is a friend conditional on player 1 
giving a gift. Substituting for the terms in the preceding fraction, we have

q = Prob[F  G] K
Prob[G  F] Prob[F]

Prob[G]
,

which is the familiar Bayes’ rule expression.
Note that Bayes’ rule cannot be applied if player 2’s information set is 

reached with 0 probability, which is the case when player 1 employs strategy 
NF NE. In this situation, q is still meaningful—it is the belief of player 2 when 
he is surprised to learn that player 1 has given a gift—but q is not restricted to 
be any particular number. In other words, any updated belief is feasible after a 
surprise event.

EQUILIBRIUM DEFINITION

Perfect Bayesian equilibrium is a concept that incorporates sequential rational-
ity and consistency of beliefs. In essence, a perfect Bayesian equilibrium is a 
coherent story that describes beliefs and behavior in a game. The beliefs must 
be consistent with the players’ strategy profile, and the strategy profile must 
specify rational behavior at all information sets, given the players’ beliefs. In 
more formal language:

Consider a strategy profile for the players, as well as beliefs over the 
nodes at all information sets. These are called a perfect Bayesian equi-
librium (PBE) if: (1) each player’s strategy specifies optimal actions, 
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given his beliefs and the strategies of the other players, and (2) the 
beliefs are consistent with Bayes’ rule wherever possible.1

Two additional terms are useful in categorizing the classes of potential equilibria. 
Specifically, we call an equilibrium separating if the types of a player behave 
differently. In contrast, in a pooling equilibrium, the types behave the same.

To determine the set of PBE for a game, you can use the following procedure.

Steps for calculating perfect Bayesian equilibria:

1. Start with a strategy for player 1 (pooling or separating).
2. If possible, calculate updated beliefs (q in the example) by using Bayes’ 

rule. In the event that Bayes’ rule cannot be used, you must arbitrarily select 
an updated belief; here you will generally have to check different potential 
values for the updated belief with the next steps of the procedure.

3. Given the updated beliefs, calculate player 2’s optimal action.
4. Check whether player 1’s strategy is a best response to player 2’s strategy. 

If so, you have found a PBE.

To solidify your understanding of the PBE concept, follow along with the 
computation of equilibria in the gift game of Figure 28.2. Let us focus on pure-
strategy equilibria, as usual. Then there are four potential equilibria: (1) a sepa-
rating equilibrium featuring strategy NF

 GE, (2) a separating equilibrium featur-
ing strategy GF

 NE, (3) a pooling equilibrium with strategy GF
 GE, and (4) a 

pooling equilibrium with NF
 NE.

Here is the procedure in action:

Separating with NF
 GE: Given this strategy for player 1, it must be that 

q = 0. Thus, player 2’s optimal strategy is R. But then player 1 would 
strictly prefer not to play GE when of the enemy type. Therefore, there 
is no PBE in which NF

 GE is played.

Separating with GF
 NE: Given this strategy for player 1, it must be that 

q = 1. Thus, player 2’s optimal strategy is A. But then the enemy type 
of player 1 would strictly prefer to play GE rather than NE. Therefore, 
there is no PBE in which GF

 NE is played.

1The progression of ideas leading to the standard, formal definition of perfect Bayesian equilibrium is well 
represented by the following articles: R. Selten, “Reexamination of the Perfectness Concept for Equilib-
rium Points in Extensive Games,” International Journal of Game Theory, 4 (1975): 25–55; D. M. Kreps and 
R. Wilson, “Sequential Equilibria,” Econometrica, 50 (1982): 863–894; D. Fudenberg and J. Tirole, “Perfect 
Bayesian and Sequential Equilibrium,” Journal of Economic Theory, 53 (1991): 236–260; and P. Battigalli, 
“Strategic Independence and Perfect Bayesian Equilibria,” Journal of Economic Theory, 70 (1996): 201–234.
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Pooling with GF
 GE: Here Bayes’ rule requires q = p, so player 2 opti-

mally selects A if and only if p Ú 1>2. In the event that p < 1>2, player 
2 must select R, in which case neither type of player 1 wishes to play 
G in the first place. Thus, there is no PBE of this type when p < 1>2. 
When p Ú 1>2, there is a PBE in which q = p and (GF

 GE, A) is played.

Pooling with NF
 NE: In this case, Bayes’ rule does not determine q. But 

notice that the types of player 1 prefer not giving gifts only if player 2 
selects R. In order for R to be chosen, player 2 must have a sufficiently 
pessimistic belief regarding the type of player 1 after the “surprise” event 
in which a gift is given. Strategy R is optimal as long as q … 1>2. Thus, 
for every q … 1>2, there is a PBE in which player 2’s belief is q and the 
strategy profile (NF

 NE, R) is played.

The example shows that because the types of player 1 have the same prefer-
ences over outcomes, there is no separating equilibrium. There is always a pool-
ing equilibrium in which no gift is given. In this equilibrium, player 2 believes 
that a gift signals the presence of the enemy. You probably know a misanthrope 
who has beliefs such as this. Finally, if there is a great enough chance of encoun-
tering a friend (so that p Ú 1>2), then there is a pooling equilibrium in which 
gifts are given by both types. In this equilibrium, a sanguine player 2 gladly 
accepts gifts.

GUIDED EXERCISE

Problem: Consider a game between two friends, Amy and Brenda. Amy wants 
Brenda to give her a ride to the mall. Brenda has no interest in going to the mall 
unless her favorite shoes are on sale (S) at the large department store there. Amy 
likes these shoes as well, but she wants to go to the mall even if the shoes are 
not on sale (N). Only Amy subscribes to the newspaper, which carries a daily 
advertisement of the department store. The advertisement lists all items that are 
on sale, so Amy learns whether or not the shoes are on sale. Amy can prove 
whether or not the shoes are on sale by showing the newspaper to Brenda. But 
this is costly for Amy, because she will have to take the newspaper away from 
her sister, who will yell at her later for doing so.

In this game, nature first decides whether or not the shoes are on sale, and 
this information is made known to Amy. (Amy observes whether nature chose  
S or N.) Nature chooses S with probability p and N with probability 1 − p. Then 
Amy decides whether or not to take the newspaper to Brenda (T or D). If she 
takes the newspaper to Brenda, then it reveals to Brenda whether the shoes are 
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on sale. In any case, Brenda must then decide whether to take Amy to the mall 
(Y) or to forget it (F). If the shoes are on sale, then going to the mall is worth 1 
unit of utility to Brenda and 3 to Amy. If the shoes are not on sale, then traveling 
to the mall is worth 1 to Amy and −1 to Brenda. Both players obtain 0 utility 
when they do not go to the mall. Amy’s personal cost of taking the newspaper to 
Brenda is 2 units of utility, which is subtracted from her other utility amounts.

(a) Draw the extensive form of this game.
(b)  Does this game have a separating perfect Bayesian equilibrium? If so, fully 

describe it.
(c)  Does this game have a pooling perfect Bayesian equilibrium? If so, fully 

describe it.

Solution:

(a) Here is the extensive-form diagram, with Amy’s payoffs given first:

  Note that the newspaper provides verifiable information of whether the 
shoes are on sale. Thus, Brenda can distinguish between her top-left node 
or her bottom-left node. Therefore, in any PBE, Brenda must use a strategy 
that selects Y and F, respectively, at these two information sets.

(b)  This game does have a separating PBE. As shown in the extensive form, let 
q denote Brenda’s updated probability that the shoes are on sale, conditional 
on Amy not showing her the newspaper. Clearly, Amy has no incentive to 
choose T because Brenda selects F. Thus, the only candidate for Amy’s 
strategy in a separating equilibrium is TD, which implies q = 0. Given 
this value of q, Brenda’s optimal action at her right information set is F, 
which makes Amy’s prescribed strategy a best response. In summary, the 
 separating equilibrium is (TD, YFF ) with q = 0.
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(c)  This game has a pooling equilibrium if and only if p Ú 1>2. As observed 
for part (b), Amy must choose D in any equilibrium, so the only candi-
date for Amy’s strategy in a pooling equilibrium is DD, which implies that 
Brenda’s updated belief is q = p. If p Ú 1>2, so that q Ú 1>2 as well, then 
Brenda prefers action Y at her right information set. This, in turn, justifies 
Amy selecting the prescribed strategy. In contrast, if p < 1>2, then Brenda 
strictly prefers F, and it would not be rational for Amy to select D. To sum-
marize, if p Ú 1>2, then there is a pooling equilibrium with strategy profile 
(DD , YYF ) and q = p. If p < 1>2, then there is no pooling  equilibrium, 
and Amy is forced to bring the newspaper to Brenda in the event of a  
shoe sale.

EXERCISES

1. Consider the market game in the Guided Exercise of Chapter 24.
(a)  Find a separating perfect Bayesian equilibrium for this game. (Report 

strategies and beliefs.)
(b)  Find a pooling perfect Bayesian equilibrium for this game. Under what 

values of q does it exist?

2. Consider the following game with nature:

(a)  Does this game have any separating perfect Bayesian equilibrium? 
Show your analysis and, if there is such an equilibrium, report it.

(b)  Does this game have any pooling perfect Bayesian equilibrium? Show 
your analysis and, if there is such an equilibrium, report it.

(c)  Draw the normal-form matrix for this game.
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3. Consider the following game of incomplete information.

(a)  Does this game have a separating perfect Bayesian equilibrium? If so, 
fully describe it.

(b)  Does this game have a pooling perfect Bayesian equilibrium? If so, 
fully describe it.

4. Consider an extensive-form game in which player 1 is one of two types: A 
and B. Suppose that types A and B have exactly the same preferences; the 
difference between these types has something to do with the payoff of an-
other player. Is it possible for such a game to have a separating PBE, where 
A and B behave differently?

5. A defendant in a court case appears before the judge. Suppose the actual 
harm to the plaintiff caused by the defendant is equal to 1000x dollars, where 
either x = 0 or x = 1. That is, the defendant is either innocent (x = 0) or 
guilty of 1000 dollars of damage (x = 1). The defendant knows x and has 
evidence to prove it. The judge does not observe x directly; she only knows 
that x = 1 with probability 1>2 and x = 0 with probability 1>2.

The judge and defendant interact as follows: First, the defendant has 
an opportunity to provide his evidence of x. He freely chooses whether or 
not to provide the evidence; the court cannot force him to do it. Providing 
evidence to the court costs the defendant one dollar (for photocopying). If 
the defendant chooses to provide the evidence, then it reveals x to the judge. 
Whether or not evidence is provided, the judge then decides the level of 
damages y (in thousands of dollars) that the defendant must pay. The judge 
prefers to select y “fairly”; she would like y to be as close as possible to x. 
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The defendant wishes to minimize his monetary loss. These preferences and 
the players’ interaction are summarized by the extensive-form diagram that 
follows. Note that “E” stands for “provide evidence” and N stands for “do 
not provide evidence.”

(a)  This game has a unique perfect Bayesian equilibrium. Find and report 
it. (Hint: Start by showing that it is optimal for the judge to set y equal 
to the expected value of x, given her belief.)

(b)  In one or two sentences, explain why the result of part (a) is interesting 
from an economic standpoint.

(c)  Consider a version of the game in which x is an integer between 0 and 
K, inclusive, with each of these values equally likely. Compute the 
perfect Bayesian equilibrium of this game. (Hint: Use your intuition 
from part (a).)

6. In the classic Rob Reiner movie The Princess Bride, there is a scene at the 
end where Wesley (the protagonist) confronts the evil prince Humperdinck. 
The interaction can be modeled as the following game: Wesley is one of 
two types: weak or strong. Wesley knows whether he is weak or strong, 
but the prince only knows that he is weak with probability 1>2 and strong 
with probability 1>2. Wesley is lying in a bed in the prince’s castle when 
the prince enters the room. Wesley decides whether to get out of bed (O) or 
stay in bed (B). The prince observes Wesley’s action but does not observe 
Wesley’s type. The prince then decides whether to fight (F) or surrender (S) 
to Wesley. The payoffs are such that the prince prefers to fight only with the 
weak Wesley, because otherwise the prince is an inferior swordsman. Also, 
the weak Wesley must pay a cost c to get out of bed. The extensive-form 
representation of the game follows the questions.
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(a)  What conditions on c guarantee the existence of a separating PBE? 
Fully describe such an equilibrium.

(b)  For what values of c is there a pooling equilibrium in which both strong 
and weak Wesleys get out of bed? Fully describe such an equilibrium.

7. Consider the “worker status” model of Exercise 3 in Chapter 25. Suppose 
there are two possible types of worker, H and L. The types differ in the pa-
rameters y and q. Specifically, y = 75 and q = 3>5 for the H type, whereas 
y = 65 and q = 2>5 for the L type.
(a)  Using your answer from Exercise 3 of Chapter 25, what contract would 

the firm offer if it knew that the worker’s type is L? What if it knew that 
the worker’s type is H?

(b)  Consider the game of incomplete information in which the worker knows 
his own values of y and q, but the firm only knows that the worker is L 
with probability p and H with probability 1 − p. Suppose the firm can 
offer two contracts to the worker, which we can write as (w0, 0) and 
(w1, 1). The interpretation is that the firm is willing to pay w0 for the safe 
job and w1 for the risky job. After observing the firm’s offer, the worker 
decides whether to accept a job and, if so, which contract to take. Suppose 
that because of market pressure, the firm is constrained to set w0 = 35. 
(Other firms are offering job z = 0 at wage 35.) Compute the firm’s opti-
mal choice of w1. Explain the steps you take to solve this problem.

(c)  Try to find the optimal contract offers for the firm when w0 is not 
constrained to equal 35.

8. Compute the PBE of the three-card poker game described in Exercise 4 of 
Chapter 24. (Hint: Start by determining whether there are any information 
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sets at which a player has an optimal action that is independent of his belief 
about his opponent’s strategy.) Show that the PBE strategy profile is also the 
unique Bayesian Nash equilibrium.

9. Consider the following game with nature:

(a) Represent this game in the normal form.
(b)  Calculate and report the unique Nash equilibrium of this game. (It may 

be in mixed strategies.)
(c)  Is there a perfect Bayesian equilibrium with the strategy profile you 

found in part (b)? If so, what is the equilibrium belief q?

10. Suppose that a delivery person named Clifford (player 2) is to deliver a 
package to a house with a chihuahua (player 1) in the yard. The yard around 
the house is fenced, but the gate is unlocked. Clifford can either enter the 
yard and deliver the package (action D) or leave an “attempted delivery” 
notice on the gate (action A). There are two types of chihuahua that Clifford 
may face. The first has no teeth; call this type W for “weak.” The second 
has teeth and jaws similar to those of a steel bear trap; call this type G for 
“gnarly.” The chihuahua is equally likely to be each type. Prior to entering 
the yard, Clifford cannot tell which type of chihuahua he faces.

Clifford likes to deliver all packages, but he would not like to have an 
encounter with the gnarly type of chihuahua. If Clifford chooses action A, 
he receives the payoff of 0 regardless of the chihuahua’s type. Delivering 
the package with the weak chihuahua in the yard yields a payoff of 4 for 
Clifford, but delivering the package with the gnarly chihuahua in the yard 
results in a payoff of −4 for Clifford. That is, the gnarly chihuahua will bite 
Clifford, but the weak one will not. Both types of chihuahua would receive a 
benefit of 4 if Clifford delivers the package and a benefit of 0 if not.
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Prior to Clifford’s choice (D or A), each type of chihuahua chooses 
whether to bark (B) or not bark (N). The gnarly chihuahua does not like 
to bark—the “steel trap” mouth makes barking difficult—so barking costs 
this type an amount c > 0. The weak chihuahua likes to bark and receives a 
benefit x > 0 from doing so. These costs and benefits are in addition to the 
chihuahua’s benefit of Clifford’s selection of D described earlier.
(a) Represent this game in the extensive form.
(b)  For what values of x and c is there a separating equilibrium for which 

the saying “barking dogs never bite” holds true?
(c)  How does this compare with the education signaling models?

11. Find the perfect Bayesian equilibrium in the extensive-form game that fol-
lows. To help you analyze the game, player 2’s beliefs are labeled as p, q, 
and 1 − p − q. These beliefs are not part of the description of the game. 
(Hint: Start your analysis with player 2.)

12. Consider the Microsoft–Celera game described in Exercise 5(b) of  
Chapter 24. Determine whether this game has any pooling or separating 
equilibria and, if so, describe them.
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In this chapter, I present two examples of dynamic games with incomplete 
information. The examples illustrate two important economic ideas: (1) that 

a worker can signal his ability by engaging in costly schooling, and (2) that a 
person may have an incentive to establish a reputation for being someone she 
is not.

JOBS AND SCHOOL

Have you ever wondered why you are working so hard to complete an academic 
degree? Is it because schooling helps you develop valuable skills, learn facts, 
and recognize important insights? Will academic wisdom serve you in the work-
place? Will an understanding of the causes of the Peloponnesian War help you 
to be a better nurse, lawyer, or salesperson? Do you think your potential future 
employers care about what you learn in college? Why do universities set such 
formal standards for degrees?

I think it would be insane to suggest that academic training has no intrinsic 
value. Writing of essays about Peloponnesia helps you develop a critical mind 
and good writing skills. Studying game theory helps you to develop a logical 
mind and understand social interaction. Surely these facilities will enhance your 
productivity later in life, particularly on the job. Prospective employers ought to 
pay a premium for the labor of a well-trained, intelligent person like yourself. 
Education adds value.

Yet, formal education has another—perhaps equally important—role in 
the marketplace. An academic degree is a sign of quality to the extent that 
highly productive people are more likely than less-productive people to get 
degrees.1 People obtain degrees to prove their quality to prospective  employers, 
colleagues, friends, and spouses. In this respect, degrees serve as signaling 
mechanisms. Perhaps rather than helping people become smart, colleges exist 

1This is a gross generalization. There are many unjust barriers that keep some of the brightest people from 
going to college. Nonetheless, the impression in our society is that academic degrees are associated with 
intelligence and skills.

29 JOB-MARKET SIGNALING AND REPUTATION
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393Jobs and School

merely to help people who are already smart prove that they are smart. It is an 
extreme view—offensive to some—but not without some validity.

Here is a simple model demonstrating the signaling role of education.2 
Imagine a game of incomplete information played by a worker (W) and a firm 
(F); see Figure 29.1. The worker has private information about her level of 
 ability. With probability 1>3 she is a high type (H) and with probability 2>3 she 
is a low type (L). After observing her own type, the worker decides whether to 
obtain a costly education (E) or not (N); think of E as getting a degree. The firm 
observes the worker’s education (which is described in her resumé), but the firm 
does not observe the worker’s quality type. The firm then decides whether to 
employ the worker in an important managerial job (M) or in a much less impor-
tant clerical job (C). In equilibrium, the firm may deduce the worker’s quality 
level on the basis of the worker’s education.

The worker’s payoff is listed first at the terminal nodes of the extensive 
form. As the payoff numbers indicate, both types of worker would like to have 
the managerial job. In particular, the managerial job yields a benefit of 10 units 
of utility to the worker, irrespective of type. The clerical job yields a benefit 
of 4 to both types of worker. In contrast, the high and low types have different 
education costs; to obtain an education, the high type pays 4 units of utility, 
whereas the low type pays 7 units. The education cost is subtracted from the job 
benefit in the event that the worker obtains an education. The interpretation of 

2This model is due to M. Spence, “Job Market Signaling,” Quarterly Journal of Economics, 87 (1973): 
355–374.

FIGURE 29.1 Job-market signaling.
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differential education costs is that low-ability workers have a more difficult time 
getting through college; they have to work harder, hire tutors, and so on.

The firm would like to put the high-ability worker in the management posi-
tion; this yields the firm a profit of 10. In contrast, giving the management job to 
the low-ability worker would be a disaster for the firm, leading to a profit of 0.  
When assigned to the clerical job, both types of worker produce a profit of 4 
for the firm. Importantly, education is of no direct value to the firm; the firm’s 
payoff does not depend on whether the worker gets an education. Thus, educa-
tion is inefficient in this model. However, it can serve to separate the two types 
of worker.

To compute the perfect Bayesian equilibria of this game, divide the analysis 
into two cases: pooling equilibria and separating equilibria. Regarding pooling 
equilibria, first note that there is no pooling equilibrium in which the worker 
plays strategy EE. This is because with EE the only consistent belief at the 
firm’s right information set is q = 1>3 (because both types get an education, 
the firm learns nothing at this information set). But under the belief q = 1>3, C 
is the firm’s optimal action. This gives the low type a negative payoff, which is 
worse than the least she could expect by playing N.

There is a pooling equilibrium in which the worker adopts strategy NN. 
The firm’s belief at its left information set is p = 1>3 and there it selects action 
C. In this equilibrium, the high-type worker is deterred from selecting E by 
anticipating the firm’s selection of C at its right information set. The firm’s 
choice of C is justified by a belief q that is less than 2>5.3 In summary, there is a 
pooling equilibrium with strategies NN and CC and beliefs given by p = 1>3 
and any q … 2>5.

The game has a single separating equilibrium, which captures the idea of 
education as a signaling device. To find the separating equilibrium, first realize 
that NE cannot be part of a PBE.  If this strategy were played by the worker, then 
the only consistent beliefs would be p = 1 and q = 0 and the firm would select 
CM; facing CM, action E is obviously not rational for the low-type worker. 
Thus, the separating equilibrium must feature strategy EN by the worker, imply-
ing beliefs p = 0 and q = 1 for the firm. The firm’s equilibrium strategy is MC.

You should take two insights away from this example. First, the only way 
for the high-type worker to get the job that she deserves is to signal her type 
by getting an education. Otherwise, the firm judges the worker to be a low 
type. The connection between education and perceived ability level gibes with 
reality. Second, the value of education as a signaling device depends on the 
types’ differential education costs, not on any skill enhancement that education 

3Because the right information set is not reached, given the worker’s strategy, any q is consistent with Bayes’ 
rule.
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delivers. This insight forces us to think more deeply about career preparation in 
the real world; at the least, we should try to separate between the signaling and 
the human capital aspects of education.

REPUTATION AND INCOMPLETE INFORMATION

Here is the last example of this textbook—are you relieved or dejected to have 
reached the terminus? I hope the latter. Examine the extensive-form game 
pictured in Figure 29.2. This is an investment game played between two people. 
Player 1 owns an asset that can be put to productive use only if both players make 
an investment. For example, the asset might be a motorcycle that is in need of 
repair. Player 1 might be an expert in electrical systems, so his investment would 
be to perform the electrical repairs on the bike. Player 2 might be a mechanical 
specialist, whose investment would be to repair the engine mechanics.

At the beginning of the game, player 1 decides whether to invest in the 
asset (perform the electrical repair). Player 1’s choice is observed by player 2.  
If player 1 decides not to invest (N), then the game ends with zero payoffs. 
If player 1 invests (I), then player 2 must decide whether to invest (repair the 
engine). If he fails to invest (N), then the asset is of no productive use; in this 
case, the game ends and player 1 gets a negative payoff owing to his wasted 
investment. If player 2 invests (I), then the asset is made productive, creating a 
net value of 4. That is, investment by both players puts the motorcycle in oper-
ating condition so that it can be enjoyed at the local park for off-road vehicles. 
But because player 1 owns the asset, he determines how it will be used. He can 
decide to be benevolent (B) by sharing the asset with player 2 (that is, allowing 
player 2 to ride the bike) or he can be selfish (S) and hoard the asset.

The game is easily solved by backward induction. Given the payoffs, player 1  
would select S at the last decision node in the game. Anticipating this selec-
tion from the middle decision node, player 2 would choose N. That is, player 2 
would have no reason to invest because she would expect that player 1 would 
not share the fruits of investment with her. Expecting this, player 1 would select 

FIGURE 29.2 

An investment game.
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396 29: Job-Market Signaling and Reputation

N at the beginning of the game. Thus, the unique subgame perfect equilibrium is 
(NS, N). Investments are not made and the asset sits idle. It is a sorry situation.

Next imagine the slight, possibly more realistic, variation of the investment 
game pictured in Figure 29.3. There are two types of player 1. The “ordinary” 
type (O) has payoffs as specified in the original game. You can see this by 
confirming that the top half of the extensive form in Figure 29.3 is identical with 
the extensive form in Figure 29.2. The “cooperative” type (C) is more altruistic; 
this type likes to share and likes to invest regardless of what the other player 
does. Nature picks the ordinary type with probability 3>4 and the cooperative 
type with probability 1>4. Player 1 knows whether he is cooperative or ordinary; 
player 2 does not observe player l’s type.4

To compute the perfect Bayesian equilibria of this game of incomplete 
information, we need to find strategies for the players as well as the belief of 
player 2 at her information set (designated q in Figure 29.3). We should begin 
the analysis by observing that the cooperative player 1 has a strict incentive to 
invest and take the benevolent action, regardless of player 2’s behavior. In other 
words, player 1’s optimal choice at his lower-right decision node is B and his 
optimal choice at the lower-left decision node is I. Furthermore, as with the 

4Games similar to this investment game were first analyzed by theorists David Kreps, Paul Milgrom, John 
Roberts, and Robert Wilson. An example of their work is “Rational Cooperation in the Finitely Repeated 
Prisoners Dilemma,” Journal of Economic Theory, 27 (1982): 245–252. There is a decent chance that by the 
time you read this book, one or more of these researchers will have been awarded the Nobel Prize in Economic 
Sciences.
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397Reputation and Incomplete Information

original game, player 1’s optimal choice at his top-right decision node is S. 
Thus, every PBE specifies S, I, and B. Regarding player 1, only the behavior 
of the ordinary type at the beginning of the game has yet to be determined. This 
depends on what player 2 does.

Examine player 2’s information set, where q is the probability she attaches 
to the bottom node (the probability of the C type conditional on investment by 
player 1). Anticipating rational play from player 1, when player 2 selects I, she 
expects a payoff of 2 if player 1 is cooperative and −2 in the event that player 1 
is ordinary. Given her belief q, selecting I will give player 2 an expected payoff 
of

2q − 2(1 − q) = 4q − 2.

Player 2 has the incentive to choose I if and only if 4q − 2 Ú 0, which simplifies 
to q Ú 1>2. Player 2 is indifferent between I and N if q = 1>2.

With an understanding of the relation between player 2’s belief and optimal 
strategy, we can return to evaluate player l’s action at the top-left node. Can 
the ordinary type of player 1 select N in a PBE? In fact, no. Here is why. If the 
O type chooses N and the C type chooses I, then, in the event that player 2’s 
information set is reached, she can deduce that player l’s type is C. In math-
ematical terms, Bayes’ rule implies that q = 1. Thus, player 2 must select I. But 
anticipating that player 2 will invest, the ordinary player 1 will want to choose 
I, contradicting what we presumed.

Can type O choose I in a PBE? Again, no. If O chooses I, then—because C 
chooses I as well—player 2 learns nothing about player 1’s type upon reach-
ing her information set. Mathematically, here Bayes’ rule implies that q = 1>4. 
Therefore, player 2 must choose N, making type O’s choice of I a bad one 
indeed.

You might think that having checked both actions I and N for the ordinary 
player 1, the analysis is complete. In neither case did we find a PBE, so you 
might be inclined to conclude that no PBE exists in this game. Finish the book 
already, you say. Not so fast. In fact, so far we have examined only pure strate-
gies. What if the ordinary player 1 selects a mixed strategy? What if player 2 
chooses a mixed strategy as well? In Figure 29.3, r designates the probability 
that the O type of player 1 chooses I; s designates the probability that player 2 
selects I.

In order for the O type to be indifferent between I and N, it must be that his 
expected payoff from I is exactly zero. This occurs only when player 2 mixes 
between I and N, putting probability 1>4 on I. Thus, it must be that s = 1>4. 
Further, player 2 is willing to randomize only if her expected payoff from I is 
exactly zero (because she obtains zero by choosing N, regardless of player l’s 
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type). For this to be the case, player 2’s belief must put equal weight on the two 
types of player 1; that is, q = 1>2. However, player 2’s belief must be justified in 
that it is consistent with Bayes’ rule and player l’s strategy. Bayes’ rule requires

q =
1
4

1
4 +

3
4 r

.

The numerator is the probability that player 2’s lower decision node is reached, 
whereas the denominator is the probability that her information set is reached 
(the sum of the probabilities of reaching the two nodes in her information set). 
Plugging in 1>2 for q and solving for r yields r = 1>3. That is, if the O type 
picks I with probability 1>3, then, upon reaching her information set, player 2 
will believe that player l’s type is C with probability 1>2.

In summary, there is a unique PBE in this game of incomplete information. 
Player 1 uses the strategy specifying S, I, and B with certainty and action I 
with probability 1>3. Player 2 holds belief q = 1>2, and she chooses I with prob-
ability 1>4. Player 2 and the ordinary player 1 get payoffs of zero, but the coop-
erative player 1 obtains a positive payoff of 5>4. Thus, with some probability, 
the players invest in the asset and it creates value. Notably, in equilibrium, the 
behavior of the ordinary type of player 1 causes investment to serve as a signal 
that player 1 is the cooperative type. On observing that player 1 has invested, 
player 2 upgrades her assessment that player 1 is the cooperative type from a 
probability of 1>4 to a probability of 1>2. When the ordinary player 1 invests, he 
is pretending to be cooperative. In other words, the presence of the cooperative 
type helps the ordinary type establish a reputation for cooperative behavior.

GUIDED EXERCISE

Problem: Consider the following bargaining game with incomplete informa-
tion: Player 1 owns a television that he does not use; thus, the value of the 
television to him is zero. Player 2 would like to have the television; his value 
of owning the television is v, which is private information to player 2. (Assume 
v > 0.) These players engage in a two-period, alternating-offer bargaining game 
to establish whether player 1 will trade the television to player 2 for a price. The 
players discount the second period according to the discount factor d . In the first 
period, player 1 makes a price offer and player 2 responds with “yes” or “no.” 
If player 2 rejects player l’s offer, then player 2 makes the offer in the second 
period. Agreement in the first period yields the payoff p1 to player 1 and v − p1 
to player 2. Agreement in the second period yields d p2 to player 1 and d (v − p2 

) 
to player 2. (Note the discounting.)
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(a)  Suppose that nature selects v = 2 with probability r and v = 1 with prob-
ability 1 − r.  Player 2 observes nature’s choice; player 1 knows only these 
probabilities. Compute the perfect Bayesian equilibrium of this game and 
note how it depends on d and r. (Assume that if a player is indifferent be-
tween accepting and rejecting an offer, then he or she accepts it.)

(b)  Now suppose that nature selects v according to a uniform distribution on the 
interval [0, 1]. That is, for any number a between 0 and 1, the probability 
that nature selects v < a is equal to a. Compute the perfect Bayesian equi-
librium of this game and note how it depends on d. (Hint: Use the knowl-
edge that you have gained from part (a) and do not try to draw the extensive 
form—it is a bit messy.)

Solution:

(a)  The perfect Bayesian equilibrium is easy to calculate in this example be-
cause there are no difficult updated beliefs to analyze. In fact, we can basi-
cally solve the game using backward induction. It is easy to see that the 
outcome of negotiation in the second period is trade at price p2 = 0 because 
it is the lowest price that player 1 will accept. Thus, if the game reaches 
the second period, then player 2’s payoff will be d v and player 1 will get 
 nothing. An implication is that in the first period, player 2 will accept any 
price p1 that satisfies

v − p1 Ú d v,

 which simplifies to p1 … (1 − d )v. Note that the high-type buyer is willing 
to accept a higher price than is the low-type buyer. Because player 1 does 
not observe v, this leaves player 1 with a simple choice: (1) offer a price 
that only the high-type buyer will accept or (2) offer a lower price that both 
types will accept. With alternative (1), the best price to offer is 2(1 − d ) 
because it is the highest price that the high-type buyer will accept. At this 
price, player 1’s expected payoff would be 2(1 − d )r. With alternative (2), 
the best price to offer is 1 − d, which yields to player 1 the payoff 1 − d. 
Alternative (1) yields a higher expected payoff than does alternative (2) if 
r Ú 1>2. Thus, in the case of r Ú 1>2, player 1 offers p1 = 2(1 − d ); in the 
case of r < 1>2, player 1 offers p1 = 1 − d.

Player 1’s offer is decreasing in the discount factor; that is, a more 
patient player 2 implies a lower p1 . For low values of r, where player 1 is 
reasonably sure that player 2 is the low type with v = 1, player 1 makes 
the “safe” price offer 1 − d and agreement is reached without delay. In 

Watson_c29_392-405hr.indd   399 2/4/13   12:48 PM



400 29: Job-Market Signaling and Reputation

contrast, for high values of r where player 1 thinks it more likely that player 
2 is the high type, player 1 offers a higher price, and agreement is delayed 
(and inefficiency results) with probability 1 − r.

(b)  Behavior in the second period is exactly as described in part (a). Also, as 
before, in the first period type v of player 2 accepts any price p1 … (1 − d )v. 
Rearranging this inequality yields

v Ú
p1

1 − d
,

 which is to say that all types above p1>(1 − d ) will accept the offer p1 . 
Because v is uniformly distributed on [0, 1], the probability that v exceeds 
p1>(1 − d ) is

1 −
p1

1 − d
.

Thus, player 1’s expected payoff of offering price p1 is

p1 

a1 − p1

1 − d
b .

 To find player 1’s optimal offer, we take the derivative of this expression, set 
it equal to 0, and solve for p1 . This yields p* = (1 − d )>2.

As in part (a), player 1’s offer is decreasing in the discount factor. Also, 
the equilibrium is inefficient because agreement is delayed in the event that 
v is less than 1>2.

EXERCISES

1. Consider the job-market signaling model analyzed in this chapter. Would an 
education be a useful signal of the worker’s type if the types had the same 
education cost? Explain your answer.

2. Compute the PBE of the job-market signaling model under the assumption 
that the worker is a high type with probability 1>2 and a low type with prob-
ability 1>2 (rather than probabilities of 1>3 and 2>3 as assumed in the text).

3. Consider the extensive-form game of incomplete information in the diagram 
that follows. There is a firm and a worker. In this game, nature first  chooses 
the “type” of the firm (player 1). With probability p, the firm is of high 
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 quality (H) and, with probability 1 − p, the firm is of low quality (L). The 
firm chooses either to offer a job to the worker (O) or not to offer a job (N). If 
no job is offered, the game ends and both parties receive 0. If the firm offers 
a job, then the worker either accepts (A) or rejects (R) the offer. The worker’s 
effort on the job brings the firm a profit of 2. If the worker rejects an offer of 
employment, then the firm gets a payoff of −1 (associated with being jilted). 
Rejecting an offer yields a payoff of 0 to the worker. Accepting an offer yields 
the worker a payoff of 2 if the firm is of high quality and −1 if the firm is of 
low quality. The worker does not observe the quality of the firm directly.

(a)  Is there a separating PBE in this game? If so, specify the equilibrium and 
explain under what conditions it exists. If not, briefly demonstrate why.

(b)  Is there a pooling PBE in which both types of firms offer a job? If so, 
specify the equilibrium and explain under what conditions it exists. If 
not, briefly demonstrate why.

(c)  Is there a pooling PBE in which neither type of firm offers a job? If so, 
specify the equilibrium and explain under what conditions it exists. If 
not, briefly demonstrate why.

4. What is the relation between the PBE of the investment–reputation game in 
this chapter and the Bayesian Nash equilibria of its normal-form representa-
tion? You do not need to draw the normal-form representation to determine 
the answer, but it will help. Explain why you find this relation.

5. Compute the PBE for the investment–reputation model discussed in this 
chapter, under the assumption that nature chooses the cooperative type 
with probability p (rather than 1>4 as assumed in the text). What happens 
if p > 1>2?

A 2, 2

R
H

L A

R

2
0,  0

0,  0

NH 1 OH

NL 1 OL

(p)

(q)

−1, 0

(1 − q)
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2, −1
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6. Recall the bargaining game from part (b) of this chapter’s Guided Exercise, 
where player 1 is interested in selling a television to player 2. Player 2’s 
value of owning the television, v, is privately known to player 2. Player 
1 only knows that v is uniformly distributed between 0 and 1. Consider a 
variation of the game in which player 1 makes the offer in both periods, 
rather than having alternating offers as in the Guided Exercise. That is, in 
the first period, player 1 offers a price p1 . If player 2 rejects this offer, then 
play proceeds to the second period, where player 1 makes another offer, 
p2 . Assume, as before, that the players discount second-period payoffs by 
the factor d.

Calculate the perfect Bayesian equilibrium of this game. Here are some 
hints to help you with the analysis. In the perfect Bayesian equilibrium, 
player 2 uses a cutoff rule in the first period. The cutoff rule is characterized  
by a function c : [0, 1] S [0, 1], whereby player 2 accepts an offer p1 if 
and only if v Ú c ( p1 ). Thus, whatever player 1 offers in the first period, if 
the offer is rejected, then player 1’s updated belief about player 2’s type is 
that it is uniformly distributed between 0 and c ( p1 ). In other words, because 
player 1 knows that any type v Ú c ( p1 ) would have accepted p1 , that the 
offer was rejected tells player 1 that player 2’s valuation is between 0 and 
c ( p1 ). This is Bayes’ rule in action.

Begin your analysis by determining player 2’s optimal behavior in the 
second period and then calculating player 1’s optimal second-period price 
offer when facing the types in some interval [0, x]. Then try to determine the 
function c. In this regard, the key insight is that type c ( p1 ) will be indifferent 
between accepting p1 and waiting for the offer in period 2.

7. Suppose that two people (person 1 and person 2) are considering whether to 
form a partnership firm. Person 2’s productivity (type) is unknown to person 
1 at the time at which these people must decide whether to create a firm, 
but person 1 knows that, with probability p, person 2’s productivity is high 
(H) and, with probability 1 − p, person 2’s productivity is low (L). Person 
2 knows her own productivity. If these two people do not form a firm, then 
they each receive a payoff of 0. If they form a firm, then their payoffs are as 
follows: If person 2’s type is H, then each person receives 10. If person 2’s 
type is L, then person 2 receives 5 and person 1 receives −4 (which has to 
do with person 1 having to work very hard in the future to salvage the firm).
(a)  Consider the game in which person 1 chooses between forming the firm 

(F) or not forming the firm (O). Draw the extensive form of this game 
(using a move of nature at the beginning to select person 2’s type). Note 
that only one person has a move in this game. What is the Bayesian 
Nash equilibrium of the game? (It depends on p.)
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(b)  Now suppose that before person 1 decides whether to form the firm, 
person 2 chooses whether or not to give person 1 a gift (such as a 
dinner). Player 1 observes person 2’s choice between G and N (gift 
or no gift) before selecting F or O. The gift entails a cost of g units of 
utility for person 2; this cost is subtracted from person 2’s payoff desig-
nated earlier. The gift, if given, adds w to person 1’s utility. If person 2 
does not give the gift, then it costs her nothing. Assume that w and g are 
positive numbers. Draw the extensive form of this new game.

(c)  Under what conditions (values of g and w) does a (separating) perfect 
Bayesian equilibrium exist in which the low type of person 2 does not 
give the gift, the high type gives the gift, and person 1 forms the firm if 
and only if a gift is given? Completely specify such an equilibrium.

(d)  Is there a pooling equilibrium in this game? Fully describe it and note 
how it depends on p.

8. Consider the same setting as that in Exercise 7, except now consider that both 
players have private information. Player 1’s type is either high or low as well. 
The players’ types are independently selected by nature with the probability p. 
(Thus, p2 is the probability that both players are the high type, p(1 − p) is the 
probability that player 1’s type is H and player 2’s type is L, and so on.) Sup-
pose that if the firm is not formed, both players receive 0. If the firm is formed, 
then the payoffs are as follows: If both players have high productivity, then 
they each receive 10. If both have low productivity, then they each receive 0. 
If one of the players has high productivity and the other has low productivity, 
then the high-type player gets −4 and the low-type player gets 5.

(a)  Consider the game in which the players simultaneously and indepen-
dently select Y or O. The firm is formed if they both select Y. Otherwise, 
the firm is not formed. Note that a strategy for each player specifies what 
the player should do conditional on being the high type and conditional 
on being the low type. Demonstrate that (O, O; O, O) is a  Bayesian 
Nash equilibrium in this game, regardless of p.

(b)  Under what values of p is (Y, Y; Y, Y) an equilibrium? (In this 
 equilibrium, both types of both players choose Y.)

(c)  Now suppose that before the players choose between Y and N, they 
have an opportunity to give each other gifts. The players simultaneously 
and independently choose between giving (G) and not giving (N) gifts, 
with the cost and benefit of gifts as specified in Exercise 7. Under what 
conditions is there a perfect Bayesian equilibrium in which the high 
types give gifts and the firm is formed if and only if both players give 
gifts? Specify the equilibrium as best you can.
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9. A manager and a worker interact as follows. The manager would like the 
worker to exert some effort on a project. Let e denote the worker’s effort. 
Each unit of effort produces a unit of revenue for the firm; that is, revenue 
is e. The worker bears a cost of effort given by ae2, where a is a positive 
constant. The manager can pay the worker some money, which enters their 
payoffs in an additive way. Thus, if the worker picks effort level e and the 
manager pays the worker x, then the manager’s payoff is e − x and the work-
er’s payoff is x − ae2. Assume that effort is verifiable and externally en-
forceable, meaning that the parties can commit to a payment and effort level.

Imagine that the parties interact as follows: First, the manager makes a 
contract offer to the worker. The contract is a specification of effort en and 
a wage xn. Then the worker accepts or rejects the offer. If she rejects, then 
the game ends and both parties obtain payoffs of 0. If she accepts, then the 
contract is enforced (effort en is taken and xn is paid). Because the contract is 
externally enforced, you do not have to concern yourself with the worker’s 
incentive to exert effort.
(a)  Solve the game under the assumption that a is common knowledge 

between the worker and the manager. That is, find the manager’s optimal 
contract offer. Is the outcome efficient? (Does the contract maximize 
the sum of the players’ payoffs?) Note how the equilibrium contract 
depends on a.

(b)  Let e– and x– denote the equilibrium contract in the case in which 
a = 1>8 and let e and x denote the equilibrium contract in the case in 
which a = 3>8. Calculate these values. Let us call a = 3>8 the high-
type worker and a = 1>8 the low-type worker.

(c)  Suppose that a is private information to the worker. The manager 
knows only that a = 1>8 with probability 1>2 and a = 3>8 with 
probability 1>2. Suppose that the manager offers the worker a choice 
between contracts (e–, x–) and ( e, x )—that is, the manager offers a menu 
of contracts—in the hope that the high type will choose ( e, x ) and the 
low type will choose (e–, x–). Will each type pick the contract intended 
for him? If not, what will happen and why?

(d)  Suppose that the manager offers a menu of two contracts (eL , xL 

) and 
(eH, xH 

), where he hopes that the first contract will be accepted by the 
low type and the second will be accepted by the high type. Under what 
conditions will each type accept the contract intended for him? Your 
answer should consist of four inequalities. The first two—called the 
incentive compatibility conditions—reflect that each type prefers the 
contract intended for him rather than the one intended for the other type. 
The last two inequalities—called the participation constraints—reflect 
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that by selecting the contract meant for him, each type gets a payoff that 
is at least 0.

(e)  Compute the manager’s optimal menu (eL , xL 

) and (eH, xH). Note that 
the manager wants to maximize his expected payoff

(1>2)[eH − xH] +  (1>2)[eL − xL],

 subject to the worker’s incentive compatibility conditions and participa-
tion constraints. (Hint: Only two of the inequalities of part (d) actually 
bind—that is, hold as equalities. The ones that bind are the high type’s 
participation constraint and the low type’s incentive compatibility con-
dition. Using these two equations to substitute for xL and xH, write the 
manager’s payoff as a function of eL and eH. Solve the problem by tak-
ing the partial derivatives with respect to these two variables and setting 
the derivatives equal to 0.)

(f)  Comment on the relation between the solution to part (e) and the effi-
cient contracts identified in part (b). How does the optimal menu under 
asymmetric information distort away from efficiency?

10. Consider the following two-player team production problem. The players 
simultaneously choose effort levels (a1 for player 1 and a2 for player 2), and 
revenue is given by 2k[a1 + a2 

]. Suppose that player i ’s cost of effort is a2
i  

in monetary terms. Revenue is split equally between the players, so player 
i ’s payoff is k[a1 + a2] − a2

i .
Assume that the value of k is privately observed by player 1 prior to her 

selection of a1 . Player 2 does not know the value of k before choosing a2 . 
Player 2 knows only that k is either 4 or 8, with these being equally likely.
(a) Find the Bayesian Nash equilibrium (effort levels) for this game.
(b)  Consider a variation of the game in which, after observing k and prior 

to effort selection, player 1 can provide evidence of the value of k to 
player 2. That is, after either realization of k, player 1 chooses either E 
or N. If she selects E, then k is revealed to player 2; otherwise, player 
2 observes nothing other than that player 1 selected N. Represent this 
game in the extensive form and calculate the perfect Bayesian equi-
libria. Are there any perfect Bayesian equilibria in which, at the time 
player 2 selects a2 , she is uncertain of k?

(c)  Would player 1 prefer to have the option of revealing k, as in part (b) 
relative to part (a)? Explain.
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These appendices contain some additional technical material 
that you might find handy as you read the textbook. Appendix 
A reviews some basic mathematical concepts. Appendix B 
elaborates on the definitions of dominance and rationalizability. 
Appendix C discusses the existence of Nash equilibrium, and 
Appendix D presents the Nash bargaining solution. Appendix E 
provides solutions to Exercises 1, 3, 5, and 9 from each chapter 
(except where there are no such exercises).

Appendices

Watson_Appendix_407-476hr1.indd   407 4/15/13   2:11 PM



Watson_Appendix_407-476hr1.indd   408 4/15/13   2:11 PM



409

In this appendix, I define and discuss a few basic mathematical concepts used 
in the book. The coverage here is in no way general; it is not intended to stand 

alone as an introduction to mathematical analysis. Rather, it is designed to help 
you refresh your memory and solidify your understanding of the concepts by 
reviewing some elementary definitions and examples. For a serious treatment 
of mathematical analysis, you should consult calculus and analysis textbooks.1

SETS

A set is any collection of distinct items. For example, the “days of the week” 
is a set comprising the following seven things: Monday, Tuesday, Wednesday, 
Thursday, Friday, Saturday, Sunday. Each member of a set is called an element 
of the set; the term point has the same meaning. One way of mathematically 
describing a set is to list its elements, separated by commas and surrounded by 
brackets, as such:

{M, Tu, W, Th, F, Sa, Su}.

Note that for convenience, I use M to stand for Monday, Tu for Tuesday, and so 
on. Abbreviations such as these are often helpful.

Another example of a set is “integers from 1 to 100,” which can be repre-
sented as

{1, 2, 3, c, 100}.

Note how an ellipsis (c) is used to signify the continuation of a pattern. The 
set of “positive odd integers” has no upper bound, so we represent it as

{1, 3, 5, c}.

REVIEW OF MATHEMATICS

1For analysis, I recommend K. Binmore, Mathematical Analysis, 2nd ed. (New York: Cambridge University 
Press, 1982). For probability theory, you could try S. Ross, Introduction to Probability Models, 6th ed. (San 
Diego: Academic Press, 1997).

A
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Sometimes sets are most easily defined by mathematical conditions, such as 
“the set of numbers that are the squares of positive integers”:

{x   x = n2  for n = 1, 2, 3, c}.

That is, x is an element of this set if there is a positive integer n such that x = n2. 
Finite sets contain only a finite number of elements; “the days of the week” is 
an example of a finite set. Infinite sets contain an infinite number of elements; 
the set of positive odd integers is an infinite set.

An interval is a set of numbers between two endpoints. For example, the 
set of numbers between 0 and 1, including these two numbers, is an interval. It 
can be written as

{x   0 … x … 1}.

It is also standard to represent intervals by enclosing the endpoints in parenthe-
ses or square brackets. For example, [a, b] denotes the set of points between a 
and b, including the endpoints—that is, a and b are included in this set; (a, b) 
describes the same interval except without the endpoints included. Finally, 
(a, b] and [a, b) denote the intervals with only one of the endpoints included 
(b in the first case, a in the second).

Often, capital letters, such as X and S, are used to name sets. For example, 
we could have

X K {M, Tu, W, Th, F, Sa, Su},

where “ K ” denotes “is defined as.” Then we can write X instead of {M, Tu, W, 
Th, F, Sa, Su} in our calculations. The symbol “∈” stands for “is an element of.” 
Thus, we write x ∈ X to say that x is an element of X. In general expressions, 
sometimes lowercase letters refer to elements and uppercase letters denote sets. 
A letter that represents individual elements of a set is called a variable. For 
example, if X is the set of days of the week and I write x ∈ X, then I mean that 
the variable x can stand for any of the individual days of the week. I could “plug 
in” Tu for x, or M for x, and so forth.

The symbol “⊂” means “is a subset of.” For two sets X and Y, X ⊂ Y 
means that every element of X is also an element of Y; that is, x ∈ X implies 
x ∈ Y. For example, if we define

X K {1, 3, 5, c},

and

Y K {1, 2, 3, c},
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then X ⊂ Y. The union of two sets consists of the elements that are in at least one 
of the sets. The intersection of two sets consists of the elements that are in both 
of the sets. Formally, for sets X and Y, the union is

X  Y K {x | x ∈ X or x ∈ Y or both} 

and the intersection is

X  Y K {x   x ∈ X and x ∈ Y}. 

The symbol “0” represents the set with no elements; we call this the empty set. 
The symbol “R” represents the set of real numbers (all of the usual numbers that 
you can think of). We sometimes use the term space for a large set that contains 
all of the elements relevant for a particular mathematical problem, in which case 
all of the sets that we define are subsets of the space.

A vector is what you get when you put elements of different sets together 
in a specific order. For example, you might want to combine a day of the week 
with an hour of the morning, such as Tuesday and eight o’clock. Mathemati-
cally, this vector would be written (Tu, 8). Other vectors of this type are (M, 9) 
and (Sa, 11). Note that the first component of these vectors is an element of the set 
D K {M, Tu, W, Th, F, Sa, Su}, whereas the second component is an element 
of T K {1, 2, c, 11}. The vectors themselves are elements of a larger set 
called the Cartesian product of the individual sets. The product set is written 
D × T and it comprises all of the vectors of the form (d, t) where d ∈ D and 
t ∈ T . That is,

 D × T = {(M, 1), (M, 2), c, (M, 11), (Tu, 1), (Tu, 2), c,

 (Su, 10), (Su, 11)}.

Note that D × T contains 77 elements (7 elements in D times 11 elements in 
T). For a simpler example of a product set, note that the product of {A, B} and 
{1, 2} is

{(A, 1), (A, 2), (B, 1), (B, 2)}.

In general, if we have n sets X1 , X2 , c, Xn , then the product set X is given by

X K {(x1 , x2 , c, xn )  x1 ∈ X1 , x2 ∈ X2 , c, xn ∈ Xn}.

FUNCTIONS AND CALCULUS

A function describes a way of associating the elements of one set X with 
elements of another set Y. For each point x ∈ X, the function names a single 
point y ∈ Y ; the point y associated with x is denoted by y = f (x). For ex ample, 
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suppose X = {a, b} and Y = {3, 4}. A function f might be defined by f (a) = 4 
and f (b) = 3. Another function g might be defined by g (a) = 3 and g (b) = 3. 
(A single y value can be associated with more than one x value.) To make clear 
between which sets a function relates, we usually write the expression f : X S Y , 
which means “f maps X into Y.” Here X is called the domain and Y is called the 
codomain. The set of points that f can return, which is defined by

{  f (x)  x ∈ X },

is called the range of f. Many functions of interest map the real numbers into the 
same set. For example, we could define the function f : R S R by f (x) = x2. 
In this case, if x = 3 then y = f (3) = 9, if x = 5 then y = 25, and so forth.

Real functions (those with real domains and ranges) can be graphed in 
the R × R product space—this is the usual x>y plane. The graph plots the set 
of vectors of the form (x, y), where x ∈ R and y = f (x) is the value at x. The 
graph of f (x) = x2 is depicted in Figure A.1. To determine the graph of a func-
tion, start by plugging in some numbers for x and plotting the resulting (x, y) 
vectors. Also find the x- and y-intercepts, which are the vectors that correspond 
to x = 0 in the first case and y = 0 in the second case. Another useful exercise 
is to check what happens to y as x converges to positive and negative infinity. 
For example, as x gets either very high or very low (large negative), x2 becomes 
a very large positive number. Thus, the graph of f (x) = x2 points upward on 
the right and the left.

The slope of a function measures the degree to which the value of the 
function increases or decreases as x goes up. The slope may be different at 
various points in the function’s domain, and it depends on the amount that x 
is changed. Technically, the slope equals the rise (the difference in y) divided 

FIGURE A.1 

The graph of f (x) = x2 .
y

x

f(x)

9

3
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by the run (the difference in x). For example, once again look at the function 
f (x) = x2, whose graph near x = 1 is magnified in Figure A.2. To find the 
slope of f between the points x = 1 and x = 2, we simply compute the rise and 
run between these two points. The rise is

f (2) − f (1) = 22 − 12 = 4 − 1 = 3,

whereas the run is 2 − 1 = 1. Thus, the slope is 3>1 = 3. In Figure A.2, the 
slope corresponds to the straight line segment drawn between vectors (1, 1) 
and (2, 4).

The derivative of a function is defined as the limit of the slope (where the 
slope goes) as the change in x (that is, the run) becomes small. In other words, 
the derivative is the instantaneous slope at a point x. In formal terms, the deriva-
tive of f at x is defined as

lim
âS0

 
f (x + â) − f (x)

â
.

The expression “â S 0” means that the fraction is evaluated for a number â 
that is taken to be very close to zero. Note that in this definition, the run is â 
because this is the distance from the starting point x that we are measuring. We 
denote the derivative of f at x by f  9(x); alternatively, where y = f (x), we also 
write the derivative as dy>dx. 

FIGURE A.2 

Magnified graph of f (x) = x2.
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x
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Let us compute the derivative of the function f (x) = x2 at an arbitrary 
point x. In accord with the definition in the preceding paragraph, this is the limit of

(x + â)2 − x2

â

as â gets close to zero. Expanding the term in parentheses, we get

x2 + 2âx + â2 − x2

â
= 2x + â.

As â approaches zero, clearly this value converges to 2x. Thus, f  9(x) = 2x. 
You can check that multiplying a function by a fixed number a implies that 
the derivative also is multiplied by a. Thus, if f (x) = ax2, then f  9(x) = 2ax. 
You can also compute that for any constant b and the function f (x) = bx, the 
derivative is f  9(x) = b. Finally, if f (x) = c for some constant c, then f  9(x) = 0. 
Putting these things together, it is no surprise that for any function of the form 
f (x) = ax2 + bx + c, we have f  9(x) = 2ax + b. Such a function f is called a 
quadratic function.2

The graph of any quadratic function is a parabola, such as that pictured 
in Figures A.1 and A.2. If the constant a is positive, then the ends of the 
parabola point upward; if the constant is negative, then the ends point down-
ward. This is shown in Figure A.3. In the case in which a < 0, the maximum 
value attained by f occurs where the slope is equal to zero. Thus, to find the 
value of x that maximizes f (x), simply solve the equation f  9(x*) = 0 for x*. 
In the case in which a > 0, the function is minimized where the slope equals 
zero. In general, for any function with a well-defined derivative, you can find 
the maxima and minima (at least the “local” ones) by calculating where the 

2In general, for a function of the form f (x) = axk, we have f  9(x) = akxk−1.

FIGURE A.3 

Functions of the form 

f (x) = ax2 +  bx + c.

a > 0 a < 0
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derivative equals zero. For most of the exercises in this textbook that require 
calculus, computing where the derivative equals zero is all you have to do. To 
reassure yourself about whether you are finding a maximum or a minimum, it 
is helpful to sketch the graph of the function and check whether it looks like 
one of the cases shown in Figure A.3.3

Some functions are defined on several variables. For example, the func-
tion f (x, y) = xy + 2y associates a number z = f (x, y) with any two numbers 
x and y. In this case, we write f : R × R S R, because with this function 
we plug in two real numbers and get out one real number. With multivariate 
functions such as this, we sometimes need to evaluate slopes on just one of 
the dimensions of the domain (x or y). We can do so by simply treating the 
other variables as fixed constants. For example, if f (x, y) = xy + 2y, then 
the derivative of f with respect to x is defined as the change of z divided 
by the change of x, holding y fixed. This defines the partial derivative of f 
with respect to x, which is the standard derivative calculation with y held 
constant. We write 0z>0x for the partial derivative of f with respect to x. With 
the function z = f (x, y) = xy + 2y, the partial derivatives are 0z>0x = y and 
0z>0y = x + 2. In general, suppose x is an n-dimensional vector, so that 
x = (x1 , x2 , c, xn ). If y = f (x), then we can compute the n partial deriva-
tives, 0y>0x1 , 0y>0x2 , c, 0y>0xn .

PROBABILITY

A coin toss produces a random event, where the outcome can be either “heads” 
or “tails.” For a “fair” coin, we assess that these outcomes are equally likely. 
Sometimes we use the phrase “fifty-fifty” to describe the prospects. In more 
formal terms, we would say that the probability of heads is 1>2 and the prob-
ability of tails is 1>2. Using the concept of probability, we have an organized 
and logical way of considering random events.

There are all sorts of situations that have random components. The weather 
is random, machines fail randomly, and sometimes people behave randomly. 
To study the random component, it is useful to consider a state space that 
describes all of the possible resolutions of the random forces. For example, 
if you are interested in a particular horse race, the state space may consist of 
all of the different orderings of the horses (ways in which they could finish in 
the race). If you are a poker player, the state space may comprise the different 
ways in which the cards can be dealt. If you like flipping coins, the state space 

3You can also use second-derivative conditions. If the second derivative (the derivative of the derivative) is nega-
tive, then the function roughly has a downward parabola shape, meaning that f  9(x*) = 0 identifies a maximum. 
If the second derivative is positive, then f  9(x*) = 0 identifies a minimum.
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is {heads, tails}. Each of the states in the state space is assumed to describe an 
outcome that is mutually exclusive of what other states describe. Further, the 
states collectively exhaust all of the possibilities. In other words, one and only 
one state actually occurs.

To describe the relative likelihood of the different individual states, we 
can posit a probability distribution over the state space. For example, suppose 
the state space is {A, B, C}. Think of this as the possible outcomes of a 
horse race, where all you care about is which horse wins (horse A, horse B, 
or horse C ). A probability distribution for this state space implies a function 
p: {A, B, C} S [0, 1] from which we get three numbers, p(A), p(B), and p(C ). 
The number p(A) is the “probability that A occurs,” p(B) is the probability that 
B occurs, and p(C ) is the probability that C occurs. Each of these numbers is 
assumed to be between 0 and 1 (as you can see from the codomain designation 
of p) and the numbers sum to 1. For example, if horse A is twice as likely to win 
as are horses B and C individually and if B and C are equally likely to win, then 
p(A) = 1>2, p(B) = 1>4, and p(C  ) = 1> 4.

In general, for a finite state space X, a probability distribution is repre-
sented by a function p: X S  [0, 1] such that g x∈X  p(x) = 1. Note that “g x∈X” 
means adding the numbers that you get by plugging in all of the different states, 
where a generic state is represented by x. A random variable is a variable that 
describes the actual state that occurs. For example, using the horse-race state 
space, we could let y denote the winning horse. Then y is called a random vari-
able; it equals A with probability p(A), B with probability p(B), and C with 
probability p(C ). More generally, a random variable is any function of the state 
space.

In many cases, a random variable gives a real number—your dollar 
winnings at the racetrack, for instance. We can then speak of the expected 
value of the random variable, which is its average value weighted by the prob-
ability distribution. For example, suppose that you will get a payment of $60 
if horse A wins the race and $0 if horse A does not win. Suppose you believe 
that A will win the race with probability 1>2. Then your expected payment is 
30, which is the average of 60 and 0. If A will win only with probability 1>4, 
then your expected payment is 15. This is because there is a one-quarter 
chance that you will get $60 (in other words, “one-quarter of the time”), so 
the expected value is 1>4 times the payment of $60. In general, expected value 
is the sum of the possible payment amounts, each weighted by its probability. 
With the use of E to denote expectation, the expected value of random variable 
y is defined as

E[y] = a
x∈X

y(x) p(x).
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In this expression, y(x) is the value of the random variable (your payment) in 
state x. As an example, suppose you get $60 in state A, $20 in state B, and $0 
in state C. Further suppose that p(A) = 1>2, p(B) = 1>4, and p(C  ) = 1> 4, as 
before. Then your expected payment is

(1>2)(60) + (1>4)(20) + (1>4)(0) = 35.

Probability distributions attribute probabilities not only to single states but 
also to sets of states. In the horse-race example, imagine that horses A and B are 
from Kentucky, whereas horse C is from Tennessee. If you have a bet with your 
friend regarding whether a horse from Kentucky wins, then you care about the 
set {A, B}. Such a set of states is called an event. In formal terms, an event is any 
subset of states—including a singleton set containing only one state. Because 
all states are mutually exclusive (only one occurs), the probability of an event 
is just the sum of the probabilities of the states that compose the event. For 
instance, the probability that a horse from Kentucky wins is p(A) + p(B). In 
general, if the state space X is finite, an event is any set D ⊂ X. The probability 
of event D is defined as

Prob[D] K a
x∈D

p(x).

Note that the probability of the entire state space is 1; that is, Prob[X] = 1.
There are two ways of thinking about probability. The frequentist way asso-

ciates probability numbers with an objective test: the fraction of times that a 
state will occur if the underlying situation were repeated over and over again. 
For example, if you flipped a coin l000 times and discovered that it came up 
heads 504 times and tails 496 times, then you would say that the probabilities 
of heads and tails are about 1>2 and 1>2. The second way of thinking about 
probabilities is the Bayesian approach, where the probability numbers are not 
derived from repetitive testing but are subjectively assessed. I can look at a 
coin and surmise that heads and tails are equally likely results of a coin flip.  
I can size up a horse at the racetrack and conclude that he will win the race with 
probability 1>3, although it is not even possible to verify this number through 
testing (which would require repeating the race an arbitrary number of times 
under identical conditions). In fact, my probability assessment may be wrong in 
the sense that I ignored some information that would have led me to a different 
assessment—the horse may have been scratched from the race, but I did not 
realize it. However, my assessment is still valid for me because it is the basis of 
my decision making.

Game theory utilizes both the frequentist and the Bayesian interpretations 
of probability to some degree. However, game theory leans heavily toward the 

Watson_Appendix_407-476hr1.indd   417 4/15/13   2:12 PM



418 Appendix A: Review of Mathematics

Bayesian approach, especially regarding players’ beliefs about each other’s 
actions. Probability theory is essential for game-theoretic reasoning because it 
is the foundation for dealing with uncertainty in a logically consistent and prac-
tical way.

For an infinite state space, probability distributions are more complicated. 
In fact, it may be that no state has positive probability by itself. Although the 
infinite setting requires a general, more sophisticated theory of probability 
measure, you can often deal with infinite state spaces without delving far into 
the mathematics. In the most common case of an infinite state space, the state 
is a real number. For example, the state x might be a number between a and b, 
where a < b, in which case the state space is [a, b]. A probability distribution 
is then represented by a cumulative probability function F : [a, b] S  [0, 1], 
which gives the probability that x is less than or equal to any given number. 
That is, F(z) is the probability of the event that x … z. It is proper, therefore, 
to write

F (z) = Prob[x … z].

The cumulative probability function satisfies two main conditions. First, 
because the state is between a and b, the probability that x … b must be 1; that 
is, F(b) = 1. Second, F is weakly increasing, meaning that F(z) … F(z9) for any 
numbers z and z9 such that z < z9. The greater is z, the higher is the probability 
that x … z.

The uniform distribution is a particularly simple and useful one. Roughly, 
in a uniform distribution, all numbers between a and b are equally likely. 
Because there are infinite numbers between a and b, this means that each 
individual number has probability 0. However, some standard events can 
be easily assessed. For example, the probability that x < (a + b)>2 is 1>2, 
because (a + b)>2 is the midpoint between a and b. In other words, (a + b)>2 
is the point that divides the state space in half; the probability that x lies below 
(a + b)>2 is the same as the probability that x lies above (a + b)>2. More 
generally, if we look at any point between a and b, the probability that x lies 
below this point is equal to the proportion that this point represents on the 
way to b from a. That is, the cumulative probability function for the uniform 
distribution on [a, b] is given by

F(z) = Prob[x … z] =
z − a

b − a
,

where z ∈ [a, b]. The expected value of a uniformly distributed random variable 
is simply the midpoint of the distribution, (a + b)>2.
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Sometimes people start with a state space and probability distribution and 
then update their assessment on the basis of new information. When a prob-
ability distribution arises because of new information, it is called conditional 
probability. To illustrate the concept, I continue with the horse-race example. 
Suppose, as before, that there are three horses in the race: A, B, and C. The first 
two horses are from Kentucky, whereas C is from Tennessee. The probability 
distribution is given by p(A) = 1>2, p(B) = 1>4, and p(C  ) = 1>4. If I ask you 
about the chance that horse A will win, you will tell me that A wins with prob-
ability 1>2. However, what if I tell you that the race has been run and that I heard 
from a reliable source that a horse from Kentucky won. (That is, C did not win.) 
On the basis of this new information, what would you assess the probabilities 
of A and B to be?

Your updated assessment should be A with probability 2>3 and B with 
probability 1>3. Here is why. Initially, you believed that A is twice as likely 
to win as is B. Knowing that C lost does not contradict this statement; it 
merely implies that the probability of C has been reduced to 0. Your updated 
probability distribution must assign probability 1 to the set of all states. Thus, 
because the probability of C has been reduced to 0, the probabilities of A and 
B have to be raised so that they sum to 1. Maintaining that A is twice as likely 
as is B, you conclude that A and B must now have probabilities of 2>3 and 
1>3, respectively. These are the only two numbers that sum to 1 and have a 
ratio of 2.

In general, conditional probability can be figured by reducing to 0 the 
probabilities of states that have been ruled out and scaling up the probabili-
ties of states that are left. The “scaling up” operation is done by using the 
same scaling factor for all states, and it makes the sum of the probabilities 
equal to 1. In more technical language, take a state space X, a probability 
distribution p, and two events K ⊂  X and L ⊂ X. Suppose you learn that the 
state is definitely in the set L and you want to know the updated probability 
that the state is in K. Because the state cannot be outside of L, the only way 
in which the state can be in K is if it is an element of K  L. To maintain the 
proportions between the states in L, you need to scale up the probabilities by 
the factor Prob[L]. Thus, the probability of event K conditional on event L is 
defined as

Prob[K  L] K
Prob[K  L]

Prob[L]
.

Note that this expression is undefined if Prob[L] = 0. That is, if you initially 
believe that L cannot occur and then I ask you about the probability of K given 
that L has occurred, your initial assessment is of little guidance in calculating 
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the conditional probability. In this case, the conditional probability of K can be 
arbitrarily defined, as long as K  L  0.

Rearranging the definition of conditional probability yields the following 
expression:

Prob[K  L] = Prob[K | L]Prob[L].

In words, the probability that x ∈ K  L equals the probability that x ∈ L times 
the probability that x ∈ K conditional on x ∈ L. Reversing the roles of K and L, 
we have

Prob[L  K] = Prob[L | K]Prob[K].

Note that the set K  L is exactly the same as the set L  K. Thus, the left 
sides of the two preceding equations are the same. Equating the right sides and 
rearranging yields

Prob[K | L] =
Prob[L | K]Prob[K]

Prob[L]
.

This equation is known as Bayes’ rule.4 It is very useful for applications of 
conditional probability. Note that, as with the definition of conditional probabil-
ity, Bayes’ rule does not constrain the assessment Prob[K | L] if the probability 
of L is zero.

4Bayes’ rule is named for Thomas Bayes, who reported the equation in “An Essay towards Solving a Problem 
in the Doctrine of Chances,” Philosophical Transactions of the Royal Society of London 53, 1764.
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This appendix concerns two of the components of rationalizability: the re-
lation between best response and dominance and the procedure by which 

dominated strategies are iteratively removed. I first sketch some of the analy-
sis not provided in Chapter 6 on the relation between dominance and best 
response. Then I develop the formal mathematical construction of the ratio-
nalizable set of strategies. Finally, I describe the construction of iterated weak 
dominance and iterated conditional dominance (presented in Chapter 15). 
These topics are technical and are not essential material for those interested 
only in concepts and applications.

DOMINANCE, BEST RESPONSE, AND CORRELATED CONJECTURES

To understand the formal relation between dominance and best response, you 
have to begin with the concept of correlated conjectures. Remember that a 
belief, or conjecture, of player i is a probability distribution over the strategies 
played by the other players. In two-player games, this amounts to a probabil-
ity distribution over the strategy adopted by player j (player i ’s opponent). In 
games with more than two players, though, player i ’s belief is more compli-
cated. It is a probability distribution over the strategy combinations (profiles) 
of player i ’s opponents. For example, consider a three-player game in which 
player 1 chooses between strategies A and B, player 2 chooses between M and 
N, and player 3 chooses between X and Y. The belief of player 1 represents his 
expectations about both player 2’s and player 3’s strategies. That is, player l’s 
conjecture is an element of S−1 . The belief is a probability distribution over

{M, N} × {X, Y} = {(M, X), (M, Y), (N, X), (N, Y)}.

Let us explore the possible beliefs.
Suppose that player 1 thinks that with probability 1>2 player 2 will select 

M, that with probability 1>2 player 3 will choose X, and that his opponents’ 
actions are independent. The last property implies that the probability  
of any profile of the opponents’ strategies is the product of the individual 
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422 Appendix B: The Mathematics of Rationalizability and Iterated Dominance

probabilities.1 That is, player 1 thinks that (M, X) is his opponents’ strat-
egy profile with probability 1>4, (M, Y) occurs with probability 1>4, 
and so on. We can represent this belief by the matrix in Figure B.1(a). The 
marginal distributions appear on the outside of the matrix, on the right 
for player 2 and below for player 3. The marginals are the probabilities 
of each strategy for these players individually. Note that the probability 
of each strategy profile (the number in a given cell) is the product of the 
marginal probabilities.

Take another example of a conjecture of player 1, as depicted in the matrix 
in Figure B.l (b). Here player 1 thinks that with probability 1>3 player 2 will 
select M and with probability 2>3 player 2 will select N. He believes that player 
3’s strategies are equally likely. Again, he believes that his opponents’ actions 
are independent, as evident in the matrix because the joint probabilities of the 
opponents’ strategies are equal to the product of the marginal probabilities.

The belief represented in the matrix in Figure B.l (c) has a different flavor. 
Here player 1 believes that player 2’s strategies are equally likely and that 
player 3’s strategies are equally likely; the marginal probabilities are both  
(1>2, 1>2). However, in this case, the joint distribution over the strategies of 
players 2 and 3 is not defined by the product of the marginal distributions. 
Player 1 does not believe that the actions of players 2 and 3 are independent. 
He believes that with probability 1>2 his opponents will play (M, X) and with 
probability 1>2 they will play (N, Y).

To have such a belief, it is not necessary for player 1 to think that players 
2 and 3 are in cahoots. That is, they do not have to be actively coordinating 
their strategies to support such a belief. For example, player 1’s belief seems 
reasonable in the following kind of situation. Suppose player 1 engages in this 
game in a foreign country. He knows that, in some regions of the world, people 

FIGURE b.1 Possible beliefs of player 1.

1If this is beginning to confuse you, think about flipping coins. The outcome of one flip is independent of the 
outcome of a second flip. If the probability of heads is 1>2, then the probability of getting heads in both of the 
two flips is (1>2)(1>2) = 1>4.
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423Dominance, Best Response, and Correlated Conjectures

tend to play the strategies M and X in this game. In other regions, people tend 
to play N and Y. Player 1 is uncertain of the culture of the people in the foreign 
country and thus has the belief shown in the matrix in Figure B.1(c).

The beliefs captured by the matrices in Figure B.l (a and b) are called 
uncorrelated conjectures, whereas the belief captured by the matrix in Figure 
B.l (c) is a correlated conjecture. In a given game, a correlated conjecture for 
player i is any general belief from the set S−i . An uncorrelated conjecture has 
the property that the joint distributions over S−i are equal to the product of the 
marginal distributions over each Sj , for j  i. In this case, the strategies of the 
other players are, probabilistically speaking, independent. In general, we shall 
assume that beliefs are uncorrelated. But, where a distinction must be made, 
I denote uncorrelated distributions by u and correlated distributions by . 
Write as Bi the set of best responses of player i over uncorrelated conjectures; 
denote by Bc

i  the set of best responses over all conjectures, including correlated 
conjectures.

As written in Chapter 6, the relation between dominance and best response 
for general, finite n-player games, is described by:

Result: For a finite game, Bi ⊂ UDi and Bc
i = UDi for each 

i = 1, 2, c, n.

To expose you to the methodology of formal proof, I shall prove parts of this 
result.

First, let us prove that Bc
i ⊂ UDi . That is, we will prove that if a strategy is a 

best response to some belief, then it cannot be strictly dominated.2 Take a strategy 
si

* for player i and suppose that it is a best response to some belief u−i ∈ S−i . 
(The belief may be correlated.) We need to establish that there is no mixed strat-
egy si  for player i such that ui (si , u−i ) > ui (si

*, u−i 

). Let us use a proof “by 
contradiction,” which requires (1) assuming that such a si does exist and then 
(2) showing that this implies that si

* cannot be a best response (a contradiction).
The mixed strategy si is a probability distribution over player i ’s pure 

 strategies.3 The expected payoff of strategy si against belief u−i  is

ui (si , u−i ) = a
si∈Si

ui (si , u−i )si (si ),

which can exceed ui (si
*, u−i ) only if there is a pure strategy s9i ∈ Si such that 

ui (s9i , u−i ) > ui (si
*, u−i 

). This is because the expected payoff from si is an 

2Note that because allowing correlation means allowing more conjectures and possibly more best responses, 
Bi ⊂ Bc

i .
3It may put probability 1 on a single pure strategy, in which case it is synonymous with that pure strategy.
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average over the expected payoffs of player i ’s pure strategies. Because s9i  yields 
a higher expected payoff than does si

*, it cannot be that si
* is a best response to 

the belief u−i. This concludes the proof that Bc
i ⊂ UDi.

To complete the analysis behind the result, we must establish that UDi ⊂ Bc
i  

as well. Taken together, Bc
i ⊂ UDi and UDi ⊂ Bc

i  imply that Bc
i = UDi ; that is, 

with correlated conjectures, the set of undominated strategies is equivalent to 
the set of strategies that are best responses for some possible beliefs. Rather than 
prove UDi ⊂ Bc

i  for general games, which is quite difficult and requires more 
sophisticated mathematics than most readers would care to see, I just prove this 
claim for the following special case. There are two players; player 1 has three 
strategies and player 2 has two strategies.

In such a game, because player 2 has only two strategies, we do not need to 
worry about one of player 2’s strategies being dominated by a mixed strategy. 
Let us therefore focus on the strategies of player 1 and, for the sake of analysis, 
call them a, b, and c. Name the strategies of player 2 m and w. Note that because 
this game has only two players, correlated conjectures are not an issue and we 
know that Bi = Bc

i  , for i = 1, 2. To prove that UD1 ⊂ B1 , I shall demonstrate 
that if a strategy is not a member of B1, then it cannot be a member of UD1 .

Suppose strategy c is not a member of B1. This means that for every belief 
that player 1 may have about player 2’s strategy, c is not a best response. 
In mathematical terms, for every probability p ∈ [0,1], c  BR1 (p, 1 − p). 
[Here, the belief ( p, 1 − p) refers to player 2’s strategy m occurring 
with probability p and strategy w occurring with probability 1 − p.] 
We must show that there is a strategy of player 1 that strictly dominates 
strategy c. The proof is easy if either a ∈ BR1 ( p, 1 − p) for all p or if 
b ∈ BR1 ( p, 1 − p) for all p, because in this case it is obvious that either 
a or b (or both strategies) strictly dominates c. Let us take the case in 
which BR1 ( p, 1 − p) = {a} for some values of p and BR1 ( p, 1 − p) = {b} 
for other values of p, but neither a nor b is a best response for all p. An 
example is pictured in Figure B.2.

As functions of p, the payoffs u1 (a, (  p, 1 − p)), u1 (b, (  p, 1 − p)), and 
u1 (c, (  p, 1 − p)) are affine—that is, their graphs are straight lines, as pictured 
in Figure B.2. Furthermore, player l’s expected payoff from choosing the 
mixed strategy (q, 1 − q, 0)—the strategy that puts probability q on a, 1 − q 
on b, and zero probability on c—also is affine as a function of p. That is, the 
graph of qu1 (a, ( p, 1 − p)) + (1 − q)u1 (b, ( p, 1 − p)) as a function of p is 
a straight line. As Figure B.2 indicates, one can find a number p9 between 
0 and 1 such that u1 (a, (p9, 1 − p9)) = u1 (b, (p9, 1 − p9)). We know that at 
p9 the expected payoffs from choosing a and b are equal and strictly greater 
than the expected payoff from choosing c. Graphically, the a and b lines cross 
(at p9) above line c. We also know that the expected payoff line associated 
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425Rationalizability and Iterated Dominance Construction

with mixed strategy (q, 1 − q, 0) crosses the a and b lines at p9 as well. Such 
a line is included in Figure B.2 and is labeled q. The point at which the lines 
cross is designated as point A.

We need to find a number q9 ∈ [0, 1] such that the expected payoff of strat-
egy (q9, 1−q9, 0) is strictly greater than the payoff of strategy c, for all p. It 
is not difficult to see that such a number exists. By varying q, one changes the 
slope of the q line, shifting it from the a line (where q = 1) to the b line (where 
q = 0). But, regardless of the value of q, the line giving the expected payoff 
of the mixed strategy passes through point A. We can just pick the value q9 
that makes this line parallel to line c. Obviously, the q9 line is above the c line, 
which means that the expected utility from the mixed strategy (q9, 1−q9, 0) 
is strictly greater than the expected utility from strategy c, and this is true 
for all values of p. In particular, it is true for p = 0 and p = 1. That is, the 
mixed strategy (q9, 1−q9, 0) yields a strictly greater payoff than does strat-
egy c against both of player 2’s strategies. Thus, mixed strategy (q9, 1−q9, 0) 
strictly dominates strategy c, which establishes what we needed to prove.

RATIONALIzABILITY AND ITERATED DOMINANCE CONSTRUCTION

Next let us examine the iterative dominance procedure in more detail. 
Remember that in each new round of deleting dominated strategies for some 
player, one does not consider the other players’ strategies that were deleted 
in preceding rounds. That is, when a strategy has been “thrown out,” it does 
not have to be considered to determine whether strategies of other players 
are dominated. Let us define Bi and UDi in relation to subsets of the strategy 
space as follows.
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Remember that n is the number of players in the game. A set of strat-
egy profiles X ⊂ S is called a product set if X = X1 × X2 ×gXn , for some 
X1 ⊂ S1,  X2 ⊂ S2 , c, Xn ⊂ Sn . For any product set X ⊂ S, we say that player 
i’s strategy si is dominated in X if si ∈ Xi and there is a mixed strategy si ∈ Xi 
such that ui (si , s−i ) > ui  (si , s−i ) for each s−i ∈ X−i . This is the version of domi-
nance in which one focuses on the “reduced” game with strategy profiles in X. 
(This definition is repeated in Chapter 15.) Given a product set X ⊂ S, define

UDi (X ) K {si ∈ Si | si is not dominated in  Si × X−i 

}

and

Bi (X ) K {si ∈ Si | si ∈ BRi (u− i ) for some u− i ∈ u X−i 

}.

These definitions are the same as the ones in Chapter 6 except restricted to the 
set of strategies in X−i for player i’s opponents. Thus, “u X−i” means the set of 
uncorrelated probability distributions over S−i that assign positive probability 
only to strategies in X−i . The definitions of UDi (X) and Bi (X) have the same 
properties as do UDi and Bi . For instance, in two-player games, Bi (X) = UDi (X).

I can now formally describe the procedure of iterative removal of domi-
nated strategies. Let R0 K S and define

UD(X) K UD1 (X) × UD2 (X) ×g× UDn (X).

Starting with the full game, we must delete players’ strategies that are strictly 
dominated. Those strategies of player i that survive are given by UDi  (R0), and 
so UD(R0) is the set of strategy profiles that survive the first round of iterated 
dominance. Let R1 K UD(R0). We then continue with a second round of delet-
ing strictly dominated strategies. In evaluating strategies in the second round, 
we do not need to consider strategies that were removed in the first. Thus, R1 is 
the relevant set of strategy profiles, and so UD(R1) is the set of strategy profiles 
that survive through the second round.

This process continues. In mathematical terms, it defines a sequence of sets 
R0, R1, R2, c, where R0 K S and, for every positive integer k,

Rk K UD(Rk−1).

The set of strategies that survives the iterative removal of strictly dominated 
strategies is equal to the limit of this sequence. This may seem complicated, and 
it can be in general. However, for finite games the process is fairly simple, at 
least in application (as you can see from reading Chapter 7).

A few more comments are in order. First, it is not difficult to show that 
UD has the following property (which is, technically, called a monotonicity 
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 property): for any product sets X and Y that are subsets of S, if X ⊂ Y then 
UD(X) ⊂ UD(Y). This follows from the fact that if a strategy is dominated with 
respect to a particular set of strategies for the other players, then it will also be 
dominated with respect to any smaller set of strategies for the others. Also, if 
X is finite and not empty (that is, it contains at least one strategy profile), then 
UD(X) is also not empty. For finite games, these facts imply that, for all k, Rk 
is not empty and Rk ⊂ Rk−1. The facts also imply that the process of removing 
dominated strategies stops at some point, in the sense that no more strategies are 
deleted in future rounds. In mathematical terms, this means that there is a posi-
tive integer K (which depends on the game) such that, for all k > K, Rk = RK. 
The set of strategies that survive iterated dominance is equal to RK. A more 
elegant way of writing this is t 

k=1 Rk.
One can perform the same kind of routine by using the operator Bi in 

place of UDi. In formal terms, the set of rationalizable strategies is defined as 
R = t 

k=1 Rk, where Bi is used instead of UDi. We know that one will arrive 
at exactly the same set of strategies if the game has two players, because Bi and 
UDi are identical in this case. With games of more than two players, the result-
ing set depends on whether correlated conjectures are allowed, as noted earlier 
in this appendix.

Note that in the definition of UDi (X ) above, even though Xi may be smaller 
than Si , all strategies in Si are evaluated and allowed to be included in UDi (X ) 
if they pass the dominance test. You might wonder why, in a given round of the 
iterated dominance procedure, we should have to look at strategies that were 
removed in previous rounds. In fact, because of the monotonicity property of 
UD, this is not necessary. Thus, we can redefine UDi as follows, without affect-
ing the steps of the iterated dominance procedure:

UDi (X ) K {si ∈ Xi | si  is not dominated in X}.

Thus, as described in Chapter 7, in each round of the procedure we can look 
only at the “reduced” game comprising the strategies that have survived so far.

ITERATED WEAK DOMINANCE

As with best response and dominance, one can develop an iterated-removal 
procedure based on the weak dominance notion.This amounts to using WUDi in 
place of UDi . However, a technical issue arises.

Recall that a strategy removed in one round of iterated dominance would 
never become justified (and therefore reintroduced) in a later round. This is 
because for a strategy si and product sets X−i and Y−i satisfying Y−i ⊂ X −i , if 
si is dominated in Si × X−i then si must also be dominated in Si × Y−i . Weak 
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dominance does not have this property. So a strategy that is removed in one 
round of iterated weak dominance could cease to be weakly dominated in a later 
round of the procedure.

Thus, it makes a difference whether we define the weakly undominated 
operator WUDi (X ) to be “strategies not weakly dominated in X ” or “strategies 
not weakly dominated in Si × X−i . ” In fact, the sequence R1, R2, c may not 
converge with the latter definition. So the only useful way of defining iterated 
weak dominance is to use the operator

WUDi (X ) K {si ∈ Xi | si is not weakly dominated in X}.

This operator is not monotone, but it does generate a sequence R1, R2, c that 
is nested, meaning that Rk ⊂ Rk−1 for all k.

ITERATED CONDITIONAL DOMINANCE

As discussed in Chapter 15, iterated conditional dominance works just like iter-
ated dominance. Here is the construction. Recall that, given the information sets 
H in an extensive-form game, and for any product set X, a strategy si is said to 
be conditionally dominated if there is an information set h ∈ H 

i such that si is 
dominated in X  S(h). To make reference to H and X, let us call this “condi-
tional dominance on (H 

i, X).” Then we define

UDi  (X; H ) K {si ∈ Xi | si is not conditionally dominated on (H   

i, X)}

and

UD(X; H ) K UD1 (X; H ) × UD2 (X; H ) × g × UDn (X; H ).

The sequence R1, R2, c is defined as before, with R1 K UD (S; H) and 
Rk K UD (Rk−1; H ) for every integer k Ú 2. By construction, this sequence is 
nested and converges.

As with the relation between dominance and best response in the normal 
form, conditional dominance is closely connected to sequential best response. 
Without getting into technical details, we can imagine that a player i has a 
“system of beliefs,” which gives this player’s belief about the other players’ 
strategies conditional on each of player i’s information sets. A strategy si is a 
sequential best response to this belief system if, for every information set h ∈ Hi 
and restricting attention to strategies in S(h), si is a best response to player i’s 
belief at h. It turns out that a strategy is conditionally dominated if and only if 
there is no belief system that would make it a sequential best response. Thus, 
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iterated conditional dominance is equivalent to the concept of extensive-form 
rationalizability.4

EXERCISES

The following exercises are challenging and recommended only for readers 
with ample mathematics background.

1. Prove the following assertions made at the end of this appendix: for finite 
games, (a) Rk is nonempty for each k; (b) Rk ⊂ Rk−1, for each positive inte-
ger k; and (c) there exists an integer K such that Rk = RK for all k > K.

2. Consider the following game. There are n students. Simultaneously and in-
dependently, they each write an integer between 1 and 100 on a slip of paper. 
The average of all of the students’ numbers is then computed, and the stu-
dent coming closest to 2>3 of this average wins $20. If two or more students 
tie for the closest to 2>3 of the average, then these students equally share the 
$20 prize. Compute the set of rationalizable strategies in this game. It may 
be helpful to construct the best-response function for a typical student; think 
of this as a function of the expected average of the other students’ numbers. 
Calculate the strategies that are removed in the first round of deleting strictly 
dominated strategies by calculating the strategies that are best responses 
over various beliefs. That is, calculate the set Bi 

 

(S ). Then calculate those 
that are removed in the second round by calculating Bi 

 

(Bi 
 

(S )). Try to find a 
formula for Rk as a function of k.

3. Examine the game pictured here.

4For more on conditional dominance and the connection between it and sequential best response, see “Condi-
tional Dominance, Rationalizability, and Game Forms,’’ by M. Shimoji and J. Watson, Journal of Economic 
Theory 83 (1998): 161–195. For the extensive-form rationalizability concept, see D. Pearce, “Rationalizable 
Strategic Behavior and the Problem of Perfection,’’ Econometrica 52 (1984): 1029–1050, and also P. Batti-
galli, “On Rationalizability in Extensive Games,’’ Journal of Economic Theory 74 (1997): 40–61.

M N

U

D

6 0

0 0

3
2 M N

U

D

0 0

0 6

3
2 M N

U

D

5 −100

−100 5

3
2

A B C
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430 Appendix B: The Mathematics of Rationalizability and Iterated Dominance

 In this three-player game, player 1 selects between A, B, and C and therefore 
chooses which matrix will be effective. Players 2 and 3 select between U 
and D and between M and N, respectively. The actions of the three players 
are taken simultaneously. Only the payoff of player 1 appears in the cells of 
the matrices. This game illustrates the relation between correlated conjec-
tures and the best-response/dominance equivalence. Show first that player 
l’s strategy C is not strictly dominated. Then show that C is never a best re-
sponse if player 1’s conjecture about the strategies of the other players is not 
allowed to exhibit correlation. Finally, show that C can be a best response for 
player 1 if his belief exhibits correlation. [Look at a belief in which player 1 
thinks the other players will coordinate on (U, M) or (D, N).]

4. Consider an alternative definition of WUDi (X) in which the strategies for 
player i are not limited to the set Xi :

WUDi (X ) K {si ∈ Si | si is not weakly dominated in Si × X−i}.

 Find a normal-form game for which the iterative removal of weakly domi-
nated strategies does not converge but rather leads to a cycle of sets.
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EXISTEnCE OF nASH EQUIlIbRIUM

In Chapter 11, I stated a useful result, due to John Nash, on the existence of 
Nash equilibrium. Here it is again:

Result: Every finite game (one that has a finite number of players and 
a finite strategy space) has at least one Nash equilibrium (in pure or 
mixed strategies).

The proof of this result is based on intuition that you can get from going over a 
simple example. Consider the game pictured on the left side of Figure C.1. You 
will quickly observe that this game has no pure-strategy Nash equilibrium but 
that the mixed-strategy profile ((1>2, 1>2), (1>3, 2>3)), where player 1 selects 
U with probability 1>2 and player 2 selects L with probability 1>2, is a mixed-
strategy Nash equilibrium. If this does not make sense to you, then I suggest 
that you review the definitions in Chapters 9 and 11. If you haven’t read through 
Chapter 11 yet, I say “quit skipping ahead!”

Examine how equilibrium arises in the example of Figure C.1. Let us do 
this from the perspective of the players’ best responses in the space of mixed 
strategies. Let p denote the probability that player 1 selects U, meaning that his 
mixed strategy is ( p, 1 − p). Likewise, let q denote the probability that player 
2 selects L, meaning that her mixed strategy is (q, 1 − q). Note that player 1’s 
belief about player 2’s strategy is then given by q and player 2’s belief about 
player l’s strategy is given by p.

1
2

L

U

D

3, 2

1, 3

4, 3

5, 2

R

MBR2

MBR1

p

q
1

0 1

FIGURE C.1 

A normal-form game and 

mixed best responses.

C

431
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432 Appendix C: Existence of Nash Equilibrium

Against player 2’s mixed strategy, player 1 obtains an expected payoff of 
3q + 4 (1 − q) if he selects U, whereas he expects q + 5(1 − q) if he were to 
select D. The payoff of U is strictly higher if

3q + 4 (1 − q) > q + 5(1 − q),

which simplifies to q > 1>3. Thus, U is player l’s only best response if q > 1>3, 
D is the only best response if q < 1>3, and both U and D are best responses 
if q = 1>3. Observe how this statement translates this into mixed strategies. 
If q > 1>3, then the only mixed strategy that player 1 can rationally select is 
p = 1 (the mixed strategy that puts all probability on U). If q < 1>3, then the 
only mixed strategy that player 1 can rationally select is p = 0 (the mixed strat-
egy that puts all probability on D). Finally, if q = 1>3, then all mixed strategies 
p ∈ [0, 1] are best responses for player 1. This last point is critical. At q = 1>3, 
player 1 is indifferent between U and D, so he is indifferent between any mixture 
of the two.

We can represent player l’s mixed-strategy best responses in terms of a 
function MBR1 that maps the belief q into subsets of the interval [0, 1]. That is, 
MBR1 (q) is the set of mixed strategies that are best responses for player 1 to the 
belief q. In the example, we have MBR1 (q) = {1} for q > 1>3, MBR1 (q) = {0} 
for q < 1>3, and MBR1 (q) = [0, 1] for q = 1>3. A graphical representation of 
MBR1 appears as the dashed line in the right part of Figure C.1.1

Repeating the analysis for player 2, you can see that the expected payoff of 
L is strictly higher than the payoff of R if

2p + 3(1 − p) > 3p + 2(1 − p),

which simplifies to p < 1>2. Thus, writing MBR2 as player 2’s set of mixed-
strategy best responses, we have MBR2 ( p) = {1} if p < 1>2, MBR2 ( p) = {0} 
if p > 1>2, and MBR2 ( p) = [0,1] if p = 1>2. This is represented by the solid 
line in the right part of Figure C.1.

The mixed-strategy Nash equilibrium occurs where the dashed and solid 
lines cross—that is, where the players are best responding to each other. The key 
intuition about the existence of a Nash equilibrium is that MBR1 and MBR2 have 
a continuity property. Specifically, MBR1 is a mapping that applies from q = 0 
to q = 1, meaning from the bottom to the top of the box in Figure C.1. Like-
wise, MBR2 is a mapping that applies from p = 0 to p = 1, meaning from the 
left to the right of the box in the figure. These mappings are continuous in the 

1In technical terms, we would say that the dashed line is the graph of MBR1 when viewed as a “correspon-
dence,” which is a special function whose domain is the set of subsets of a given set.
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433Appendix C: Existence of Nash Equilibrium

sense that you can draw each of them without lifting your writing instrument off 
the page as you scan across the box. In summary, if you draw two lines through 
a box, one that goes from the bottom to the top and the other from the left to the 
right, and these lines are each continuous, then they must cross at some point. 
The crossing point is a Nash equilibrium by definition.

The general existence proof works in the same way. One starts with the best-
response functions for each player (in mixed-strategy space) and collects them 
into a function MBR that gives the profile of best responses for a given profile 
of mixed strategies. One can show that MBR is well defined for finite games and 
has a continuity property along the lines of what we saw in the example.2 One 
then uses Kakutani’s fixed-point theorem, which establishes the existence of a 
mixed-strategy profile s* such that s* ∈ MBR(s*).3 The profile s* is a mixed-
strategy Nash equilibrium because for each player i, si ∈ MBRi (s−i ). That is, 
each player’s strategy is a best response to the strategies of the others.

2The continuity property is called upper hemi-continuity.
3S. Kakutani, “A Generalization of Brouwer’s Fixed Point Theorem,” Duke Mathematical Journal 8 (1941): 
457–459.
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This appendix presents a more general version of the standard bargaining solu-
tion shown in Chapter 18. It was developed by John Nash and is thus called the 

“Nash bargaining solution.” 1 Nash’s theory initiated what we now call “axiomatic 
bargaining theory,” which seeks to describe bargaining problems and their out-
comes without making reference to any particular noncooperative game. Accord-
ing to this axiomatic theory, a bargaining problem is given by a bargaining set and a 
disagreement point (as discussed in Chapter 18). The theory posits general axioms 
that represent intuition about the agreements one might expect players to reach.

To review Nash’s theory, let us start by recalling that a bargaining set V is 
the set of feasible payoff vectors for the players. That is, every point in V  is a 
possible agreement point. I’ll focus on two-player settings, so V  is a subset of R2.
Recall as well that the disagreement point, denoted d, is the payoff vector that 
would result if the players fail to reach an agreement. We assume that d ∈ V . 
A bargaining problem is given by the pair (V, d ).

In Chapter 18, I made the assumption of transferable utility—that (i) the 
players can freely transfer money and (ii) money enters payoffs in an additive 
way. The key generalization here is that we can dispense with the assumption of 
transferable utility, which implies that the efficient frontier of the bargaining set 
may not be linear. Thus, a generic bargaining problem looks like this:

nASH bARGAInInG SOlUTIOn

1J. Nash, “The Bargaining Problem,” Econometrica 18 (1950): 155–162.

The set V  encompasses the shaded region and its boundary.

D

u1

a

b

Vd

u2
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435Appendix D: Nash Bargaining Solution

We must make two assumptions about V . First, V  is closed and bounded, 
meaning that there is an upper bound on the players’ payoffs and the set contains 
its boundary points (in particular, on the efficient boundary). Otherwise, it would 
be impossible to find efficient points. Second, V  is convex, which means that for 
every two points a, b ∈ V , the line between a and b is also fully contained in V . 
This is shown in the diagram on the previous page.

A bargaining solution is a function that maps the space of bargaining prob-
lems to feasible payoff vectors. To be precise, for a given bargaining solution 
f  and a bargaining problem (V, d ), the predicted outcome of the problem in 
payoff terms is f (V, d ), which is an element of V . As in Chapter 18, bargaining 
solutions may make reference to fixed bargaining weights p = (p1 , p2 ), where 
p1 , p2 Ú 0 and p1 + p2 = 1. The Nash bargaining solution with weights p is 
denoted Np and is defined as the point v* ∈ V  that solves

 max1v1 − d1 2p1
 1v2 − d2 2p2 ,

subject to v ∈ V , v1 Ú d1 , and v2 Ú d2 .
The standard bargaining solution developed in Chapter 18 is a restricted 

version of the Nash bargaining solution. The two are equivalent where the 
former is defined—on bargaining problems with transferable utility. To see this, 
consider the bargaining problem in which the players must divide one unit, they 
can throw away resources, and the disagreement point is zero for both players. 
Then the bargaining problem is given by (W, (0, 0)), where

W = 5v ∈ R2   v1 + v2 … 16 ,

as pictured below.

For this bargaining problem, note that the standard bargaining solution 
yields the payoff vector p. The Nash bargaining solution solves max vp1

1  vp2
2  

subject to v1 + v2 = 1. Substituting for v2 using the constraint, the problem 

u
2

u
1

W

1

1
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436 Appendix D: Nash Bargaining Solution

becomes max vp1
1  (1 − v1 )p2 . Taking the derivative and setting it equal to zero, 

we have the first-order condition

p1 vp1−1
1

# (1 − v1 

)p2 − vp1
1  # p2 (1 − v1 

)p2−1 = 0.

Multiplying by v1−p1
1  (1 − v1 )1−p2 and simplifying yields

p1 − p1 

v1 − p2 v1 = 0.

Recognizing that p1 v1 + p2 v1 = v1 , we get v1 = p1 and v2 = p2 .
We conclude that the Nash bargaining solution is a general version of the 

standard bargaining solution. Nash showed that his bargaining solution is beau-
tifully related to some simple and intuitive axioms. These axioms are properties 
that a given bargaining solution f  may or may not have. Here is a version of 
Nash’s first axiom:

Invariance (INV): Consider any bargaining problem (V, d ) and, for 
any positive numbers a1 and a2 , define

V9 K { 1a1 (v1 − d1 ), a2 (v2 − d 2)2  v ∈ V}.

Let v* =  f (V, d ) be the solution of the given bargaining problem and 
let v9 =  f (V9, (0, 0)). Then v91 = a1 

(v*
1 − d1 

) and v92 = a2 

(v*
2 − d2 

).

The idea here is that one can perform an “affine transformation” of the bargain-
ing problem—redefining the set of feasible payoff vectors by subtracting the 
constant d and then scaling by the factors a1 and a2—and the result is essentially 
the same bargaining problem. The players’ relative payoffs and rankings have 
not changed. Therefore, we expect that the solution to the bargaining problem 
will be essentially the same—that is, transformed in exactly the same way.

Nash’s second axiom is that the players ought to reach an efficient resolu-
tion to their bargaining problem:

Efficiency (EFF): For any bargaining problem (V, d ), the solution 
f (V, d ) is on the efficient boundary of V  above the disagreement point.

It seems reasonable to expect that the players would not settle for an inefficient 
outcome when they can find an outcome that makes them both better off.

Nash’s third axiom compares bargaining problems that have a special rela-
tionship. The version here supposes that the disagreement point is d = (0, 0).

Independence of Irrelevant Alternatives (IIA): Consider any two 
bargaining problems (V9 , (0, 0)) and (W, (0, 0)) with the properties that 
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f (W, (0, 0)) ∈ V9 and for all v ∈ V9 with v1 Ú 0 and v2 Ú 0, it is the 
case that v ∈W. Then f (V9, (0, 0)) = f (W, (0, 0)).

In words, this axiom says that if players would settle on outcome v* in bargain-
ing problem (W, (0, 0)) and if, for a different bargaining problem (V9, (0, 0)) it 
is the case that there are less alternatives available but v* is still feasible, then 
the players would agree to v* as well in the second problem.

One can quibble with these axioms. Perhaps each is unreasonable to some 
degree. One can also come up with alternative axioms to describe or prescribe 
behavior. There is a big literature on this. The beauty of Nash’s approach is 
the tight connection between the axioms and his suggested bargaining solution, 
which is formalized in the following theorem.

Result: A bargaining solution f  satisfies axioms INV, EFF, and IIA if 
and only if it is the Nash bargaining solution for some fixed bargaining 
weights p.

The proof has two components. First, we need to show that N  

p satisfies the three 
axioms for every p. This is easy, so I will leave it for you to do on your own if you 
are interested. Second, we need to show that if a solution f  satisfies the three axioms, 
then there are bargaining weights p such that f = N  

p . Here is the argument.
Consider any bargaining solution f  that satisfies the three axioms. Let us 

start by defining bargaining weights p in reference to the bargaining problem 
(W, (0, 0)), where

W = {v ∈ R2
 v1 + v2 … 1}.

Recall that in this bargaining problem, the players divide one unit and have trans-
ferable utility. From the EFF axiom, we know the solution f   (W, (0, 0)) is effi-
cient and therefore the players’ payoffs sum to one, so we define p K f   (W, (0, 0))  
We also have Np

 (W, (0, 0)) = p as shown earlier in this chapter. These facts are 
depicted thus:

u
2

u
1

W

1

1
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438 Appendix D: Nash Bargaining Solution

Next consider any bargaining problem (V, d). Suppose that f   (V, d ) 
Np

 (V, d ), and I will demonstrate that this leads to a contradiction, proving that in 
fact f   (V, d ) must equal Np

 (V, d ). Under the supposition that f   (V, d )  Np
 (V, d ), 

the picture looks like this:

Note that both f   (V, d ) and Np
 (V, d ) are on the efficient boundary of V  because 

both f  and Np satisfy the EFF axiom. Let v* = Np
 (V ).

Next consider the related bargaining problem (V9 , (0, 0)), where

V9 K {1a1 (v1 − d1 ), a2 (v2 − d2 )2   | v ∈ V},

for the numbers a1 and a2 that solve a1 (v*
1 − d1 ) = p1 and a2 (v*

2 − d2 ) = p2 . 
Note that bargaining problem (V9 , (0, 0)) results from an affine transformation 
of (V, d ) and that the transformation maps the solution v* = Np

 (V, d ) to the 
point p. By the INV axiom, we know that Np

 (V9 , (0, 0)) = p = Np
 (W, (0, 0)). 

We also know that f  (V9 , (0, 0))  p. Here is the picture of (V9 , (0, 0)) super-
imposed on (W, (0, 0)):

u1 

Vd

u2 

 

u2

u1

WV�

1

1
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Sets V9 and W  have a key property: For all v ∈ V9 with v1 Ú 0 and v2 Ú 0,
it is the case that v ∈W. It probably will not be obvious to you why this is so. 
It follows from the fact that p = Np

 (W, (0, 0)). That is, p solves the problem 
max vp1

1  vp2
2  subject to v1 + v2 = 1. If the points above the origin in V9 are not 

all in W , then there would be a point v ∈ V9 with v1 + v2 > 1, meaning that 
this point lies beyond the efficient boundary of W . By convexity, points on the 
line from p to v must also be in the set V9. One can then confirm that p could 
not be the solution to max vp1

1  vp2
2  subject to v ∈ V9 and v1 , v2 Ú 0. This comes 

down to examining the slope of the boundary of V9 and recalling the differential 
condition for maximization. So, the points in V9 that are above the origin are 
also in W .

Here comes the contradiction that finishes the proof. Sets V9 and W  satisfy 
the presumptions of the IIA axiom. Because f  satisfies IIA, and because 
f   (W, (0, 0)) = p, this axiom implies that f   (V9, (0, 0)) = p as well, which 
contradicts what we found earlier.

Whether or not you have followed this proof, you can see that the Nash 
bargaining solution—and hence the standard bargaining solution—has an intui-
tive characterization in terms of some simple axioms.
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This appendix contains solutions to Exercises 1, 3, 5, and 9 from each chapter 
(except where there are no such exercises) for use as a study aid. The best 

way to learn the material is first to work on the exercises yourself, and then 
check the solutions to confirm or clarify your understanding.

CHAPTER 2: THE EXTENSIVE FORM

SOlUTIOnS TO SElECTEd EXERCISESE

3. Note that payoffs are not specified here; you can fill in your own.

R

A

B

G

100, 0, 0

100, 0, 0

0, 10, 100

0, 10, 100

L

J

J

A

B
a

b

r

g

M

M

0, 0, 100

100, 10, 0A

B

0, 0, 100

100, 10, 0a

b

1. 

H

H

L

L
1

A P

N
P

N

H

L

2

2

P

N
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441Chapter 3: Strategies and the Normal Form

5. The payoffs below are in the order A, B, and C.

CHAPTER 3: STRATEGIES AND THE NORMAL FORM

1. Liz chooses between door A and door B at the initial node, so SL = {A, B}. 
Monty has two information sets; each is a single decision node, at which 
Monty chooses “red” or “green” after observing Liz’s choice of doors. A 
strategy for Monty specifies which color he chooses at each of these in-
formation sets. Thus, we can write SM = {Rr, Rg, Gr, Gg}. The first/capi-
tal letter of each strategy specifies the color Monty announces after Liz’s 
choice of door A, and the second/lowercase letter specifies the color Monty 
announces conditional on Liz choosing door B. Similarly, because Janet 
chooses a door after hearing Monty’s statement, her strategy specifies a 
door contingent on the color Monty announces: SJ = {Aa, Ab, Ba, Bb}.

3. (a) (b)

H

H

F

F

1, 0, −1

−1, 0, 1

B

A

C
Y

N

H�

F�

B

−1, 0, 1

1, 0, −1Y

N

0, 0, 0

0, 0, 0

CE CF DE DF

A

B

0, 0 0, 0

2, 2 3, 4

1, 1

3, 4

1, 1

2, 2

2
1

2
1 I O

IU

ID

OU

OD

4, 0 −1, −1

3, 2 −1, −1

1, 1 1, 1

1, 1 1, 1
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2
1 A B

UXW

UXZ

UYW

UYZ

3, 3 5, 1

3, 3 5, 1

3, 3 3, 6

3, 3 3, 6

2, 2

2, 2

2, 2

2, 2

DXW

DXZ

DYW

DYZ

4, 2

9, 0 

4, 2

9, 0 

AC AD BC BD

UE

UF

3, 3 3, 3

3, 3 3, 3

5, 4

5, 4

5, 4

5, 4

DE

DF

6, 2 2, 2

2, 6 2, 2

2, 2

2, 2

6, 2

2, 6

2
1

U D

A

B

2, 1 1, 2

6, 8 4, 3

C 2, 1 8, 7

2
1

2
1 A B

UXP

UXQ

UYP

UYQ

DXP

DXQ

DYP

DYQ

3, 8 1, 2

3, 8 1, 2

8, 1 2, 1

8, 1 2, 1

5, 5

0, 0

5, 5

0, 0

6, 6

6, 6

6, 6

6, 6

 (c)  (d)

 (e) (f)

5. The normal form specifies players, strategy spaces, and payoff functions. 
Here there are two players, so n = 2, and S1 = S2 = [0,  ). The payoff to 
player i is given by ui 

 

( qi , qj 

) = (2 − qi − qj 

) qi , for i = 1, 2 and j denoting 
the other player.
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443Chapter 6: Dominance and Best Response

CHAPTER 4: BELIEFS, MIXED STRATEGIES, AND EXPECTED PAYOFFS

1. (a) u1 (U, C) = 0.
(b) u2 (M, R) = 4.
(c) u2 (D, C) = 6.
(d) For s1 = (1>3, 2>3, 0), u1 (s1 , C) = (0)1>3 + (10)2>3 + 0 = 20>3.
(e) u1 (s1 , R) = 3(1>4) + 6(1>2) + 6(1>4) = 21>4.
(f) u1 (s1 , L) = 2.
(g) u2 (s1 , R) = 3(1>3) + 4(2>3) + 6(0) = 11>3.
(h) u2 (s1 , s2) = 0(1>2)(1>4) + 10(1>2)(1>4) + 3(1>2)(1>2) +
 10(1>2)(1>4) + 2(1>2)(1>4) + 4(1>2)(1>2) + 3(0)(1>4) +
  6(0)(1>4) +  6(0)(1>2) = 9>2.

3. (a) u1 (s1 , I) = 2(1>4) + 2(1>4) + 4(1>4) + 3(1>4) = 11>4.
(b) u2 (s1 , O) = 21>8.
(c) u1 (s1 , s2) = 2(1>4) + 2(1>4) + 4(1>4)(1>3) + (1>4)(2>3) +
 (3>4)(1>3) + 14(2>3) = 23>12.
(d) u1 (s1 , s2) = 7>3.

5. The expected profit of player 1 is (100 − 2(14) − 2(6 + 11 + 13)>3)14 −
20(14) = 448.

CHAPTER 6: DOMINANCE AND BEST RESPONSE

1. (a) B dominates A and L dominates R.
(b) L dominates R.
(c)  For player 1, mixed strategy (2>3, 0, 1>3), which we may also describe 

as “2>3 U, 1>3 D,” dominates M. X dominates Z. Note that (2>3, 0, 1>3) 
is not the only mixed strategy that dominates M. Consider a mixed strat-
egy s1 = (p, 0, 1 − p), in which U is played with probability p and D 
is played with probability 1 − p. In order for s1 to dominate M, the 
following four inequalities must be satisfied.

3p + 1(1 − p) > 2

4p + 2(1 − p) > 3

5p + 3(1 − p) > 4

0p + 4(1 − p) > 1.
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444 Appendix E: Solutions to Selected Exercises

  Simplifying each of the first three inequalities yields p > 1>2. 
Simplifying the fourth yields 3>4 > p. So for any p such that 
1>2 < p < 3>4, (p, 0, 1 − p) dominates M.

(d) None.

3. Player 1 solves maxq1
 (100 − 2q1 − 2q2)q1 − 20q1. The first-order condition 

is 100 − 4q1 − 2q2 − 20 = 0. Solving for q1 yields BR1 (q2) = 20 − q2>2, 
and so BR1 (0) = 20. Because q2 Ú 0, it cannot be that 25 is ever a best 
response. Given the specified beliefs, player 1’s best response is 15.

5. 

R P S

R

P

S

0, 0 −1, 1

1, −1 0, 0

1, −1

−1, 1

−1, 1 1, −1 0, 0

2
1

(a) BR1 (u2) = {P}.
(b) BR1 (u2) = {R, S}.
(c) BR1 (u2) = {P}.
(d) BR1 (u2) = {R, P, S}.

9. (a)  The strategy ( gi , hi ) = (0, 0) yields a payoff of ui = 0 regardless of what 
the other player does. It is dominated by the strategy ( gi , hi 

) = (1, 0), 
which always yields a payoff of ui = 6 # 1 − 12 = 5.

(b)  Any strategy ( gi , hi 

) with hi > 5 is dominated by the strategy ( gi , 5): 
The difference in payoffs between them, for any strategy of player − i, is

 ui ( gi , 5, g− i , h− i 

) − ui ( gi , hi , g− i , h− i 

)

= (max{0, 10 − h− i} − max{0, 2hi − h− i}) a
j=S, T

 (5 − gj) − 50 + 2h2
i ,

 which is strictly less than zero since 2hi > 10 and 2h2
i > 50.

(c) If ( g1 , h1 

) = ( g2 , h2 

) = (1, 4), then

u1 = u2 = (2 # 4 − 4)(10 − 1 − 1) + 6 # 1 − 12 − 2 # 42 = 5,
  where as the city-states could instead play ( g=1 , h=1 

) = ( g=2 , h=2 

) = (3, 2) 
to attain
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445Chapter 7: Rationalizability and Iterated Dominance

u1 = u2 = (2 # 2 − 2)(10 − 3 − 3) + 6 # 3 − 32 − 2 # 22 = 9.

  Hence  ( g=1 , h=1 

) = ( g=2 , h=2 

) = (3, 2) is more efficient than ( g1 , h1 

) =
( g2 , h2 

) = (1, 4).

CHAPTER 7: RATIONALIzABILITY AND ITERATED DOMINANCE

1. (a) R = {U, M, D} × {X, Y}.
(b)  U dominates D. When D is ruled out, Z dominates Y. Thus, 

R = {U, M} × {X, Z}.
(c) R = {(U, X)}.
(d) R = {U, M} × {X, Y}.
(e) R = {A, B} × {X, Y}.
(f) R = {A, B} × {X, Y}.
(g) R = {(D, Y)}.

3. R = {(x, c)}. The order does not matter because if a strategy is dominated 
(not a best response) relative to some set of strategies of the other player, 
then this strategy will also be dominated relative to a smaller set of strate-
gies for the other player.

5. Yes. If s1 is rationalizable, then s2 is a best response to a strategy of player 1 
that may rationally be played. Thus, player 2 can rationalize strategy s2 .

9. (a)

¼

BR1

BR2

1

1

q1

q
2

 (b) B1 = [0, 1], B2 = 31
4 , 14 , and R = {(1, 1)}.
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CHAPTER 8: LOCATION, PARTNERSHIP, AND SOCIAL UNREST

1. Label the regions as shown below.

1 2 3

4 5 6

7 8 9

 It is straightforward to confirm that strategy 5 dominates strategies 1, 3, 7, 
and 9 for both players. One can find beliefs that make the other strategies 
best responses. Thus, after the first round of iterated dominance we have 
R1

i = {2, 4, 5, 6, 8} for i = 1, 2. Restricting attention to these strategies of 
the opponent, we see that strategy 5 then dominates 2, 4, 6, and 8, and so 
R2

i = Ri = {5} for i = 1, 2.

3. (a)  Yes, preferences are as modeled in the basic location game. How-
ever, if each player’s objective is to maximize his or her probabil-
ity of winning, the best responses are a bit different. For example, 
BR1 (1) = {2, 3, 4, c, 8} because all of these strategies give player 1 
certain victory. In the basic location game, BR1 (1) = {2}.

(b)  R = {5, 6} × {5, 6}. Unlike in the basic location model, there is not 
a single region that is “in the middle.” Here, each of the rationalizable 
strategy profiles yields 250 to each candidate. No rationalizable profile 
leads one of the candidates to win with probability 1.

(c)  When x > 75, R = {(6, 6)}. For intuition, note that player i ’s 
best response to 5 is 6, and his or her best response to 6 is 6. When 
x < 75, R = {(5, 5)}.

5. (a) u1 ( p1 , p2 

) = (10 − p1 + p2 

) p1 . u2 ( p1 , p2 

) = (10 − p2 + p1 

) p2 .
(b)  We have ui ( p1 , p2 

) = 10pi − p2
i + pj pi . We solve for pi that maxi-

mizes player i’s payoff given pj , the expected value of pj according to 
player i’s belief. The first-order condition yields BRi ( pj 

) = 5 + pj>2.
(c)  There is no upper bound on the price a player can select. Thus, we do 

not obtain a unique rationalizable strategy profile. The best-response 
functions are represented in the following diagram.
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447Chapter 9: Nash Equilibrium

  We have R1
i = [5,  ) for i = 1, 2. Noting that BRi (5) = 15>2, we 

have R2
i = [15>2,  ). Repeating the analysis yields Ri = [10,  ) for 

i = 1, 2.

9. (a) pi ( pi , pj 

) = max{0, (24 − 2pi + pj 

) pi}.
(b)  Note that 0pi>0pi = 24 − 4pi + pj as long as profits are strictly posi-

tive. Because pj Ú 0, both profits and this partial derivative are strictly 
positive whenever pi < 6. Thus, increasing pi in this range yields an 
increase in profits. Hence a price of 6 dominates all lower prices. Simi-
larly, because pj … 20, 0pi>0pi = 24 − 4pi + pj is always negative 
for pi > 11. Note that pi 

 

(11, pj 

) = 22 + 11pj so for any pj ∈ [0, 20], 
choosing pi = 11 results in a nonnegative profit. So pi = 11 dominates 
all pi > 11. To see that Bi = [6, 11], consider player i’s first-order condi-
tion for maximizing (24 − 2pi + pj 

) pi , which is 24 − 4pi + pj = 0. 
We thus have BR*

i  ( pj 

) = 6 + pj>4, which runs from 6 to 11 as pj goes 
from 0 to 20. This implies that Bi = [6, 11] for i = 1, 2.

(c)  The analysis proceeds as in Exercise 5, but here there is an upper bound 
on strategies and so high prices are removed in the iterative procedure. 
The maximum and minimum values of Rk

i  converge to 8 as k increases, 
so the only rationalizable strategy profile is (8, 8).

CHAPTER 9: NASH EQUILIBRIUM

1. (a) The Nash equilibria are (w, b) and (y, c).
(b) (y, c) is efficient.
(c) X is not weakly congruous because strategy “a” is never a best response.

BR2

BR1

x

5

5 7.5

10

y
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3. (a) None.
(b) (U, Z) and (M, X).
(c) (U, X).
(d) (A, X) and (B, Y).
(e) (A, X) and (B, Y).
(f) (A, X) and (B, Y).
(g) (D, Y).

5. Player 1 chooses s1 to maximize 3s1 − 2s1s2 − 2s2
1 . Differentiating with re-

spect to s1 yields the first-order condition 3 − 2s2 − 4s1 = 0. Rearranging, 
we obtain player 1’s best-response function: BR1 (s2) = 3>4 − s2>2. Player 
2 chooses s2 to maximize s2 + 2s1s2 − 2s2

2 . Her best-response function is 
BR2 (s1) = 1>4 + s1>2. The Nash equilibrium is the strategy profile that 
solves the system of equations s1 = 3>4 − s2>2 and s2 = 1>4 + s1>2. This 
is s* = (1>2, 1>2).

9. (a)  The Nash equilibria are (2, 1), (5>2, 2), and (3, 3).
(b) R = [2, 3] × [1, 3].

CHAPTER 10: OLIGOPOLY, TARIFFS, CRIME, AND VOTING

1. (a)  Si = [0,  ). ui ( qi , Q−i 

) = [a − bQ−i − bqi 

]qi − cqi , where Q−i Kg j i qj .
(b)  Firm i solves maxqi

[a − bQ− i − bqi]qi − cqi . This yields the first-
order condition a − bQ− i − c = 2bqi . Player i’s best-response func-
tion is given by qi (Q− i) = (a − c)>2b − Q− i>2. This is represented in 
the graph below.

q
1

Q
−1

BR1

(c)  One way to find the equilibrium is to sum the best-response equa-
tions qi = (a − c)>2b − Q− i>2 over i = 1, 2, c, n. This yields an 
expression for Q*, the equilibrium total output. Using the  substitution 
Q*
− i = Q* − q*

i  in firm i’s best-response equation identifies q*
i .
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449Chapter 10: Oligopoly, Tariffs, Crime, and Voting

Another method is to realize that the equilibrium will be symmet-
ric (the firms choose the same quantity q*). Then we know that 
Q*
− i = (n − 1)q*, which we can use in firm i’s best-response equa-

tion to get q* = [a − c − b(n − 1)q*]>2b. Solving for q* yields 
q* = [a − c]>b(n + 1) and Q* = n[a − c]>b(n + 1). After a bit of alge-
bra, we also find that p* = [a + cn]>(n + 1), and the equilibrium profit 
for each firm is u* = (a − c)2>b(n + 1)2 . As n becomes large, the equi-
librium price converges to the marginal cost c and profits converge to zero.

(d)  In the duopoly case, player i ’s best-response function is 
qi (qj) = (a − c)>2b − qj>2. The Nash equilibrium is found by 
solving the system of equations q1 = (a − c)>2b − q2>2 and 
q2 = (a − c)>2b − q1>2, or simply by setting n = 2 in the expressions 
of part (c). We find that both firms select q* = (a − c)>3b. By examin-
ing the best-response functions, we can identify the sequence Rk

i , and 
inspection reveals that Ri = {(a − c)>3b} for i = 1, 2.

3. (a) BRi (xj) = 30 + xj>2.
(b) The Nash equilibrium is (60, 60).
(c) ui (60, 60) = 200. ui (0, 0) = 2000.
(d) The best-response functions are represented below.

30 80 100

100

80

x2

x1

BR1

BR2

30

  It is easy to see that player i will never set xi < 30 or xi > 80. 
Thus, R1

i = [30, 80], R2
i = [45, 70], and so on. Thus, Ri = {60} for 

i = 1, 2.

5. In equilibrium, b1 = b2 = 15,000. Clearly, neither player wishes to bid 
higher than 15,000 as she will receive a negative payoff. Further, neither 
does better by unilaterally deviating to a bid that is less than 15,000 because 
this leads to a payoff of zero.
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9. For L, voting for McClintock is dominated by voting for Bustamante. 
Knowing that L will not vote for McClintock, M strictly prefers voting for 
Schwarzenegger to voting for McClintock. So neither L nor M will vote for 
McClintock. We then see that L fares strictly better by voting for Busta-
mante than voting for Schwarzenegger (assuming M does not vote for  
McClintock). Knowing this, M will vote for Schwarzenegger. Thus, C will 
vote for Schwarzenegger as well.

CHAPTER 11: MIXED-STRATEGY NASH EQUILIBRIUM

1. (a)  R = {X, Y} × {Q, Z}.
(b)  The mixed-strategy Nash equilibrium is ((1>2, 1>2), (3>4, 0, 1>4)). To 

calculate this, we put zero probability on W because it is not rationaliz-
able. Player 1 mixes over X and Y so as to make player 2 indifferent 
between Q and Z. This requires

7p + 3(1 − p) = 4p + 6(1 − p).

  Collecting terms yields p = 1>2. Similarly, player 2 mixes over Q and 
Z so as to make player 1 indifferent between X and Y, which requires

1q + 3(1 − q) = 2q + 0(1 − q).

 Collecting terms yields q = 3>4.

3. (a) (N, L)  and (L, N).
(b)  Firm Y chooses q so that firm X is indifferent between L and N. This 

yields −5q + (x − 15)(1 − q) = 10 − 10q. Rearranging yields

q =
25 − x

20 − x
.

  Firm X chooses p so that firm Y is indifferent between L and N. This 
yields −5p + 15 − 15p = 10 − 10p. Rearranging yields p = 1>2.

(c) The probability of (L, N) is

p (1 − q ) =
1

2
c 20 − x − 25 + x

20 − x
d = 1

2
c 5

x − 20
d .
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(d)  As x increases, the probability of (L, N) decreases. However, as x 
becomes larger, (L, N) is a “better” outcome.

5. For any x < 1, ((0, 1>2, 1>2), (0, 1>2, 1>2)) is a mixed-strategy Nash equi-
librium. For 0 < x < 1, (U, L) is an equilibrium and ((1 − x, x>2, x>2), 
(1 − x, x>2, x>2)) is a mixed-strategy Nash equilibrium. If x > 1, the unique 
Nash equilibrium is (U, L).

9. (a) If the game has a pure-strategy Nash equilibrium, we are done.
(b)  Assume the game has no pure-strategy Nash equilibrium, and proceed 

as follows. That (U, L) is not a Nash equilibrium implies e > a and/or 
d > b. That (U, R) is not a Nash equilibrium implies g > c and/or b > d. 
That (D, R) is not a Nash equilibrium implies c > g and/or f > h. 
That (D, L) is not a Nash equilibrium implies a > e and/or h > f . It 
is easy to see that if there is no pure strategy Nash equilibrium, then 
only one of each of these pairs of conditions can hold. This implies 
that each pure strategy of each player is a best response to some other 
pure strategy of the other. Further, it must be that there is a mixture for 
each player i such that the other player j is indifferent between his two 
strategies.

Consider player 1. It must be that either e > a and c > g or 
a > e and g > c. It is easy to show that there exists a q ∈ [0, 1] 
such that aq + c (1 − q) = eq + g(1 − q). Rearranging yields 
(a − e) = (g − c)(1 − q)>q. It is the case that (a − e) and (g − c) 
have the same sign. The analogous argument can be made with respect 
to player 2.

CHAPTER 12: STRICTLY COMPETITIVE GAMES AND SECURITY 
STRATEGIES

1. (a) No. Note that u1 (A, Z) = u1 (C, Z), but u2 (A, Z) > u2 (C, Z).
(b) Yes.
(c) Yes.
(d)  No. Note that u1 (D, X) > u1 (D, Y), but u2 (D, X) > u2 (D, Y).

3. Examples include chess, checkers, tic-tac-toe, and Othello.
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5. Consider the following game.

1
2

A

B

C

10, 5

10, 40, 3

0, 5

1, 51, 5

X Y

 Player 1’s security strategy is C, and her security level is 1. However, C is 
dominated by s1 = (1>2, 1>2, 0). Further, player 1 attains a maxmin value 
of 5 from this mixed strategy.

CHAPTER 13: CONTRACT, LAW, AND ENFORCEMENT IN STATIC  
SETTINGS

1. (a)

  (I, I) can be enforced by setting a between −4 and −2.

 (b) 

  No, reliance does not sufficiently punish player 1 for deviating.

3. (a)  Ten. With limited verifiability, (I, I) cannot be induced by a contract so 
the players receive payoffs of (0, 0) by playing (N, N). However, with 
full verifiability, (I, I) can be induced by a contract that specifies a trans-
fer of at least 3 from player 1 to player 2 following play of (N, I), and a 

I

I

1
2

N

N

5, 5

7 + a, -1 - a

a - 1, 1 - a

a, -a

I

I

1
2

N

N

5, 5 0, 2

6, 0 0, 0
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transfer of at least 1 from player 2 to player 1 following play of (I, N). 
The players would then achieve a joint payoff of 5 + 5. So the players 
get 10 under full verifiability and 0 under limited verifiability, and thus 
they would be willing to pay up to 10 to transform a setting of limited 
verifiability to one of full verifiability.

(b)  Zero. There is no gain to the players of transforming the limited verifi-
ability to full verifiability because (I, I) can be induced in both settings.

5. Verifiability is more important. It must be possible to convey information to 
the court in order to have a contingent transfer imposed.

9. (a)  S1 = [0,  ), S2 = [0,  ). If y > x, then the payoffs are (0, 0). If x Ú y, 
the payoffs are (y − Y, X − y).

(b)  There are multiple equilibria in which the players report x = y = a, 
where a ∈ [Y, X]. There is another set of multiple equilibria in which 
the players report x and y such that x … Y < X … y.

(c)  There are multiple equilibria; all satisfy x < y, y Ú X, and x … Y .
(d)  It is efficient if an equilibrium in the first set of multiple equilibria of 

part (b) is selected. This is because the plant is shut down if and only if 
it is efficient to do so.

CHAPTER 14: DETAILS OF THE EXTENSIVE FORM

1. There is no general rule because the normal form does not display the infor-
mation that the players have while in the course of play. However, recall that 
the normal form is typically interpreted as the players’ ex ante situation, in 
which they simultaneously and independently select their strategies. For this 
interpretation, it is appropriate to say that the game has imperfect information 
because players cannot condition their strategies on the strategies of others.

3. 
x y1 y2

1 21

0

5. (a)  When player 1 selects p = 50 and player 2 selects p
–
= 50, each obtains 

a payoff of 50. Consider player 1 unilaterally deviating to select p9 . If 
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p9 < 50, then player 1 would obtain p9. If p9 > 50, then player 2 does 
not purchase and so player 1 would obtain 0. In both cases, player 1 
loses with the deviation. If player 2 unilaterally deviates, then her pay-
off changes only if she switches to a strategy that rejects the offer of 50, 
in which case her payoff is zero. So player 2 has no incentive to deviate.

(b)  For any p ∈  [0, 100], define p
–
K p. Let player 1’s strategy be to offer 

this price, and let player 2 use a cutoff-rule strategy with cutoff value 
p
–

. It is easy to check that, as with the strategy profile described in part 
(a) of this exercise, this profile is a Nash equilibrium.

CHAPTER 15: SEQUENTIAL RATIONALITY AND SUBGAME  
PERFECTION

1. (a) (AF, C)
(b) (BHJKN, CE)
(c) (I, C, X)

3. (a) (AHILN, CE)
(b) 6

5. (a)

1, 1

S

1          C         2          C          1         C             2       C            1       C

S S S S

0, 0

0, 3 2, 2 1, 4 3, 3

(b)  Working backward, it is easy to see that in round 5, player 1 will choose 
S. Thus, in round 4, player 2 will choose S. Continuing in this fashion, 
we find that in equilibrium, each player will choose S any time he is on 
the move.

(c)  For any finite k, the backward induction outcome is that player 1 chooses 
S in the first round and each player receives one dollar.

9. Consider the subgame following player 1’s selection x. Player 2’s optimal 
choice of y2 solves the first-order condition 0u2>0y2 = −2(y1 − y2 ) K 0, 
which implies the following best-response function in the  subgame: 
BR2 (y1 ) = y1 . For player 1, the first-order condition is 0u1>0y1 = 
y2 + x − 2y1 K 0, implying BR1 (y2 ) = (x + y2 )>2. Putting these together, 
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we see that the Nash equilibrium of the subgame is y1 = y2 = x, which 
yields payoffs of u1 = x2 − x3>3 and u2 = 0. Player 1 optimally chooses 
x to maximize x2 − x3>3. Solving the first-order condition 2x − x2 K 0 
yields x* = 2. So the subgame-perfect Nash equilibrium is given by 
y1 (x) = x, y2 (x) = x, and x* = 2.

CHAPTER 16: TOPICS IN INDUSTRIAL ORGANIzATION

1. As shown in the text, the firm’s joint profit (the sum of their continuation 
payoffs) following the choice of a is 2a2>9 − 2a3>81. If the firms could 
form a contract that commits them to a particular value of a, they would 
choose a to maximize their joint profit and divide the profit with a transfer. 
The first-order condition is 4a>9 − 6a2>81 K 0, which means a* = 6.

3. The following table gives the continuation payoffs for the players as a func-
tion of their capacity choices (incorporating the Nash equilibrium of the 
quantity-selection subgames):

1
2

H

H

L

N

−85, −85 −15, −10

−10, −15

0, 27.5

27.5, 0 

0, 30

20, 20

0, 0

30, 0

NL

 In a subgame perfect Nash equilibrium, the players must select a Nash 
equilibrium from the beginning of the game, which implies that the play-
ers do not want to deviate from their specified capacity choices (recall 
the one-deviation property). This is equivalent to saying that their capac-
ity choices are a Nash equilibrium of the table above. The equilibrium 
is (L, L). Thus, in the subgame perfect equilibrium, both players invest 
50,000 for the low-production plant, and their quantity choices are as 
described in the text.

5. (a)  If no one purchases the monitor in period 1, then Tony’s optimal choice 
in period 2 is p2 = 500 because Hal will purchase at this price. (Tony 
could sell two units if he lowered the price to p2 = 200, but this  produces 
a profit of only 400.) Tony’s optimal pricing scheme is as follows. Set 
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p1 = 1700 (or just below to make Hal strictly want to buy). If one unit is 
sold in the first period (that is, Hal purchased), then set p2 = 200 to sell 
to Laurie. However, if there are no first-period sales (Hal deviated), then 
set p2 = 500 to sell to Hal in the second period. With Hal buying in the 
first period and Laurie in the second, total revenue is 1900. Tony would 
not benefit from being able to commit to not sell monitors in period 2.

(b)  The optimal prices are p1 = 1400 and p2 = 200. Hal buys in period 1, 
and Laurie buys in period 2. Here, Tony would not benefit from being 
able to commit to not sell monitors in period 2, because the gain in 
extracting surplus from Hal is more than offset by the loss of not selling 
to Laurie.

9. (a)  The government chooses p
#
 to maximize 30 + p

#
− W

#
− p

# >2 − 30 =
p
# >2 − W

#
. Clearly, it wants to set p

#
 as high as possible, regardless of the 

level of W
#
. So p

#
* = 10. Knowing how the government will behave, the 

ASE chooses W
#
 to maximize − (W

#
− 10)2. The ASE therefore selects 

W
#
* = p

#
* = 10. In equilibrium, y = 30.

(b)  If the government could commit, it would choose p
#
 to maximize its 

payoff of p
# >2 − W

#
, anticipating that the ASE will respond by setting 

W
#
= p

#
. Thus, the government chooses p

#
 to maximize p

# >2 − p
#
, which 

implies that it commits to p
# = 0. In part (a), the equilibrium payoffs 

are u = 0 and v = −5. When commitment is possible, the payoffs are 
u = 0 and v = 0.

(c)  One way is to have an independent central bank.

CHAPTER 17: PARLOR GAMES

1. (a)  Use backward induction to solve this. To win the game, a player must 
not be forced to enter the top-left cell Z; thus, a player would lose if, 
when it is his turn to move, the rock is in either cell 1 or cell 2 as shown 
in the diagram that follows. A player who is able to move the rock into 
cell 1 or cell 2 will win the game. This allows us to label some cells as 
“winning positions.” Further, if a player is forced to move the rock into 
a winning position, then this player is in a losing position. Using this 
logic and backward induction allows us to determine which cells are 
winning positions and which are losing positions. A cell marked with 
an X in the following picture is a winning position; the rest are losing 
positions. Cell Y, where the game begins, is a losing position, so player 
2 has a strategy that guarantees victory in this game.
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Z

2

X

X X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Y

1

(b)  In general, player 2 has a winning strategy when m, n > 1 and both are 
odd or when m or n equals 1 and the other is even. Otherwise, player 1 
has a winning strategy.

3.  This can be solved by backward induction. Let (x, y) denote the “state of 
the game” in which the red basket contains x balls and the blue basket con-
tains y balls. To win this game, a player must leave her opponent with either 
(0, 1) or (1, 0). Thus, in order to win, a player must not leave her opponent 
in any of the following positions: (0, z) or (z, 0) for z > 1, or (1, z) or (z, 1) 
for z > 0. Note as well that a player wins if she leaves her opponent in the 
state (2, 2). Thus, a player must not leave her opponent with either (w, 2) 
or (2, w) for w > 2. Continuing with this logic and assuming m, n > 0, we 
see that player 2 has a winning strategy when m = n, and player 1 has a 
winning strategy when m  n.

5. Player 1 has a strategy that guarantees victory. This is easily proved using a 
contradiction argument. Suppose player 1 does not have a strategy guaran-
teeing victory. Then player 2 must have such a strategy. This means that for 
every opening move by player 1, player 2 can guarantee victory from this 
point. Let X be the set of matrix configurations that player 1 can create in 
his first move, which player 2 would then face. A configuration refers to the 
set of cells that are filled in.

We have that, starting from each of the configurations in X, the next 
player to move can guarantee victory for himself. Note, however, that 
if player 1 selects cell (m, n) in his first move, then, whatever player 2’s 
following choice is, the configuration of the matrix induced by player 
2’s selection will be in X (it is a configuration that player 1 could have 
created in his first move). Thus, whatever player 2 selects in response 
to his choice of cell (m, n), player 1 can guarantee a victory following 
player 2’s move. This means that player 1 has a strategy that guaran-
tees him a win, which contradicts what we assumed at the beginning. 
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458 Appendix E: Solutions to Selected Exercises

Thus, player 1 actually does have a strategy that guarantees him victory, 
regardless of what player 2 does.
  This game is interesting because player 1’s winning strategy in arbitrary 
m × n Chomp games is not known. A winning strategy is known for the 
special case in which m = n. This strategy selects cell (2, 2) in the first 
round.

CHAPTER 18: BARGAINING PROBLEMS

1. (a)  Graphs are not presented here. v* = 50,000; uJ* = uR* = 25,000;
t = 15,000. To see that v* = 50,000 (and that x = 0 is  optimal), 
note that x = 1 yields joint value v = 48,000, whereas x = 0 
yields joint value 50,000. The surplus is vJ + vR − dJ − dR = 
40,000 + 10,000 − 0 − 0 = 50,000. The standard  bargaining solution 
with equal bargaining weights implies payoffs of ui = 0 + (1>2)
[50,000] = 25,000 for each player i. Using Jerry’s value function, we 
thus have that uJ = vj  (0) + t = 25,000, implying t = 15,000.

(b)  Solving maxx   60,000 − x2 + 800x yields x* = 400. This implies 
v* = 220,000, uJ* = uR* = 110,000, vJ = −100,000, and 
vR = 320,000. Thus, t = 210,000.

(c)  x* = 400 and v* = 220,000. uJ* = 40,000 + (220,000 − 40,000 −
20,000)>4 = 80,000 and uR* = 20,000 + (3>4)(220,000 − 60,000) =
140,000. This implies t = 180,000.

3. (a)  x = 15, t = 0, and u1 = u2 = 15.

30

30

u1

u2

d
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(b)  x = 15, t = −1, u1 = 14, 
and u2 = 16.

30

30

u1

u2

d

d1 = 2

d
2 
= 4

(c)  x = 15, t = −7, u1 = 8, 
and u2 = 22.

30

30

u1

u2

d

d1  
= 2

d
2 
= 4

(d)  x = 10, t = −175, u1 = 25, 
and u2 = 75.

100

100

u1

u2

d

(e)  x = 12, t = 144p1 − 336,
u1 = 144p1 ,
and u2 = 144p2 .

144

144

u1

u2

d
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5. You should raise the maximum joint value if your bargaining weight ex-
ceeds 1>2; otherwise, you should raise your disagreement payoff. In the 
latter case, your decision is not efficient.

CHAPTER 19: ANALYSIS OF SIMPLE BARGAINING GAMES

1. (a) The superintendent offers x = 0, and the president accepts any x.
(b) The president accepts x if x Ú min {z, y}.
(c) The superintendent offers x = min {z, y}, and the president accepts.
(d) The president should promise z = y.

3. In the case of T = 1, player 1 offers 0 to player 2 (1 for himself) and player 2 
accepts. If T = 2, player 1 offers d to player 2 (1 − d for himself) in the first 
period and player 2 accepts, yielding the payoff vector (1 − d, d). For T = 3, 
the SPE payoff vector is (1 − d(1 − d ), d(1 − d )). The SPE payoff vec-
tor is (1 − d + d2

 (1 − d ), d − d2
 (1 − d )) in the case of T = 4. For T = 5

, it is (1 − d + d2
 (1 − d + d2 ), d − d2

 (1 − d + d2 )). As T  approaches 
infinity, the SPE payoff vector converges to (1>(1 + d ), d>(1 + d )), which 
is the subgame perfect equilibrium payoff vector of the infinite-period  
game.

5. (a) 

1 1

1
0 0

00

d u1 u1

u2u2

1

9. (a)  Consider any subgame beginning after player C makes an offer to player 
LD. If xLD > 0, then player LD must accept the offer, as it will get 0 
by rejecting, so there is a unique Nash equilibrium in the accept/reject 
subgame. If xLD = 0, then there are two pure strategy Nash equilibria in 
the accept/reject subgame, as player LD is indifferent between accept-
ing and rejecting. Thus, player LD’s SPE strategy is either to accept 
if and only if xLD  Ú 0 or to accept if and only if xLD > 0. If player LD 
were to play the former strategy, then player C’s best response is to offer 

(b)
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xLD = 0 and xC = 1; this specification constitutes the subgame perfect 
equilibrium described in the statement. However, if player LD were 
to play the latter strategy, then player C has no best response. That is, 
player C would like to minimize xLD subject to xLD > 0, but no solution 
to this problem exists.

(b)  Applying the argument from part (a) to every subgame that starts with 
player C’s offer in the last stage of bargaining, we observe that in the 
unique subgame perfect equilibrium, player LD obtains a payoff of zero. 
Moving back to the second-to-last stage of bargaining, by the same 
reasoning as in part (a) player LD must accept any offer with xLD  Ú 0, 
and player L must offer xLD = 0. Continuing by backward induction, we 
conclude that player LD obtains a payoff of zero in every subgame that 
starts with an offer in any period, including the first period. Player C makes 
the offer (xC , xLD  ) = (1, 0) in the first period, and player LD accepts.

(c)  We can conjecture that similar strategies constitute an SPE in the infi-
nite horizon game—that is, the proposer always offers xLD = 0, and 
player LD always accepts any offer with xLD Ú 0. Because player LD 
earns a payoff of zero in every subgame that starts with an offer, it 
is always sequentially rational to accept any offer with xLD Ú 0. Simi-
larly, because player LD will always accept any offer with xLD Ú 0, it 
is always sequentially rational for the proposer to offer xLD = 0. This 
validates the conjecture.

CHAPTER 20: GAMES WITH JOINT DECISIONS; NEGOTIATION 
 EQUILIBRIUM

1. (a)

M, W
W

0, 0

Default
H

L
x, b, t

(b) When b Ú x2.
(c)  v* = 16, the surplus is 16, uM = 8, uW = 8, x* = 4, b* = 16, and 

t* = 8.
(d) This assumes that the worker’s effort is verifiable.

Watson_Appendix_407-476hr1.indd   461 4/15/13   2:12 PM



462 Appendix E: Solutions to Selected Exercises

3. (a) x* = 10p and y* = 5(1 − p).
(b) p* = 0.8, t* = −19.5, x* = 8, and y* = 1.

5. The game is represented below. Note that m ∈ [0, (100 − q1 − q2 )(q1 + q2 )].

2

Default

1, 2
1

q1 q2 m

CHAPTER 21: UNVERIFIABLE INVESTMENT, HOLD UP, OPTIONS,  
AND OWNERSHIP

1. (a)  The efficient outcome is high investment and acceptance (regardless of 
the prices).

(b)  If p0 Ú p1 − 5, then the buyer always accepts. The seller will not 
choose H.

(c)  In the case that L occurs, the buyer will not accept if p1 Ú 5 + p0. In 
the case that H occurs, the buyer will accept if p1 … 20 + p0. Thus, it 
must be that 20 + p0 Ú p1 Ú 5 + p0 . Because the seller invests high 
if p1 Ú 10 + p0 , there are values of p0 and p1 that induce the efficient 
outcome.

(d)  The surplus is 10. Each gets 5. Thus, p1 = 15 and p0 ∈ [−5, 5]. The 
seller chooses H. The buyer chooses A if H, and he chooses R if L.

3. If the worker’s bargaining weight is less than 1, then he gets a greater payoff 
increase by raising his outside option than from increasing his productivity 
with the single employer, assuming the two alternatives are for the same 
amount. Thus, he does better to increase his general human capital.

5. (a)  The union demands w = (R − M)>n, which is accepted. This implies 
that the railroad will not be built, as the entrepreneur can foresee that it 
will lose F. To see that the offer of w = (R − M)>n is accepted, recall 
that F has already been sunk by the entrepreneur. The offer gives all of 
the surplus to the union.

(b)  The surplus is R − M. The entrepreneur gets pE (R − M) and the union 
gets nw + pU   (R − M). The railroad is built if pE (R − M) > F.
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(c)  The entrepreneur’s investment is sunk when negotiation occurs, so 
generally he does not obtain all of the returns from his investment. 
When he has all of the bargaining power, he does extract the full return. 
To avoid the hold-up problem, the entrepreneur may try to negotiate a 
contract with the union before making his investment.

9. (a)  Investment yields v = 20, the surplus to allocate through bargaining is 
20 − (−10) = 30, and so uw = −10 + (1>2)(30) = 5. No investment 
yields v = 16, the surplus 16, and so uw = 0 + (1>2)(16) = 8. Thus, 
W will not invest.

(b)  This is not efficient because a higher joint value is attained with invest-
ment by the worker.

CHAPTER 22: REPEATED GAMES AND REPUTATION

1. (U, L) can be supported as follows. If player 2 defects by choosing M or R 
in the first period, then the players coordinate on (C, R) in the second pe-
riod. If player 1 defects by choosing C or D in the first period, then the play-
ers select (D, M) in the second period. Otherwise, the players coordinate on 
(D, R) in the second period.

3. (a)  The Nash equilibria are (B, X) and (B, Y).
(b)  Yes. Prescribe that the players select (A, X) in period 1. In period 2, player 

1 should select B. Player 2 should select X in period 2 if player 1 chose A 
in period 1, and player 2 should select Y if player 1 chose B in period 1.

5. Alternating between (C, C) and (C, D) requires that neither player has the 
incentive to deviate. Clearly, however, player 1 can guarantee himself at 
least 2 per period, yet he would get less than this starting in period 2 if the 
players alternated as described. Thus, alternating between (C, C) and (C, D) 
cannot be supported.

In contrast, alternating between (C, C) and (D, D) can be supported. 
Note first that, using the stage Nash punishment, player 2 has no incentive 
to deviate in odd or even periods. Player 1 has no incentive to deviate in 
even periods, when (D, D) is supposed to be played. Furthermore, player 1 
prefers not to deviate in an odd period if

7 +
2d

1 − d
… 3 + 2d + 3d2 + 2d3 + 3d4 +c,
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which simplifies to

7 +
2d

1 − d
…

3 + 2d

1 − d2 .

Solving for d yields d Ú 24
5 .

9. (a)  Because x < 10, there is no gain from continuing. Thus, neither player 
wishes to deviate.

(b)  If a player selects S, then the game stops and this player obtains 0. 
Because the players randomize in each period, their continuation values 
from the start of a given period are both 0. If a player chooses C in a 
period, he thus gets an expected payoff of 10a − (1 − a). Setting this 
equal to 0 (which must be the case in order for the players to be indif-
ferent between S and C) yields a = 1>11.

(c)  In this case, the continuation value from the beginning of each period is 
ax. When a player selects S, he expects to get ax; when he chooses C, 
he expects 10a + (1 − a)(−1 + dax). The equality that defines a is 
thus ax = 10a + (1 − a)(−1 + dax).

CHAPTER 23: COLLUSION, TRADE AGREEMENTS, AND GOODWILL

1. (a)  Consider the strategy that, in a given period, selects pi = p = 60 if all 
players selected this price in the past; otherwise choose pi = p = 10.

(b)  The quantity of each firm when they collude is qc = (110 − 60)>n =
50>n. The profit of each firm under collusion is (50>n)60 − 
10(50>n) = 2500>n. The profit in the Nash equilibrium of the stage 
game is 0. If player i defects, she does so by setting pi = 60 − â, where 
â is arbitrarily small. Thus, the stage game payoff of defecting can be 
made arbitrarily close to 2500. To support collusion, it must be that

2500
n

# 1

1 − d
Ú 2500 + 0,

  which simplifies to d Ú (n − 1)>n.
(c)  Collusion is “easier’’ with fewer firms.

3. The Nash equilibria are (A, Z) and (B, Y). Obviously, there is an equilib-
rium in which (A, Z) is played in both periods and player 21 sells the right to 
player 22 for 8a. There is also a “goodwill” equilibrium that is like the one 
constructed in the text, although here it may seem undesirable from player 
21’s point of view. Players coordinate on (A, X) in the first period and (A, Z) 

Watson_Appendix_407-476hr1.indd   464 4/15/13   2:13 PM
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in the second period, unless player 21 deviated from X in the first period, in 
which case (B, Y) is played in the second period. Player 21 sells the right to 
player 22 for 8a if he did not deviate in the first period, whereas he sells the 
right for 4a if he deviated. This is an SPE (player 21 prefers not to deviate) 
if a > 3>4.

5. (a) The Nash equilibria are (x, x), (x, z), (z, x), and (y, y).
(b) They would agree to play (y, y).
(c)  In the first round, they play (z, z). If no one defected in the first period, 

then they are supposed to play (y, y) in the second period. If player 1 
defected in the first period, then they coordinate on (z, x) in the second 
period. If player 2 defected in the first period, then they coordinate on 
(x, z) in the second period. It is easy to verify that this strategy is a 
subgame perfect equilibrium.

(d)  The answer depends on whether one believes that the players’ bargain-
ing powers would be affected by the history of play. If deviation by a 
player causes his bargaining weight suddenly to drop to, say, 0, then 
the equilibrium described in part (c) seems consistent with the oppor-
tunity to renegotiate before the second-period stage game. Another 
way of interpreting the equilibrium is that the prescribed play for 
period 2 is the disagreement point for renegotiation, in which case 
there is no surplus of renegotiation. However, perhaps a more reason-
able theory of renegotiation would posit that each player’s bargain-
ing weight is independent of the history (it is related to institutional 
features) and that each player could insist on some neutral stage Nash 
equilibrium, such as (x, x) or (y, y). In this case, as long as bargain-
ing weights are positive, it would not be possible to sustain (x, z) or  
(z, x) in period 2. As a result, the equilibrium of part (c) would not 
withstand renegotiation.

9. (a)  ui = (24 − 2pi + pj )pi . To maximize this, player i selects pi to satisfy 
the first-order condition 0ui>0pi = 24 − 4pi + pj K 0, which yields 
pi = 6 + pj>4. So BR1 (p2 ) = 6 + p2>4 and BR2 (p1 ) = 6 + p1>4. 
Solving this system of equations yields the equilibrium prices 
p*

1 = p*
2 = 8 and payoffs uN

1 = uN
2 = 128.

(b)  To maximize joint revenues by coordinating on the same price p, the 
players solve  maxp (24 − 2p + p)p =  maxp (24 − p)p. The first-
order condition is 24 − 2p K 0, which implies p = 12 and each player 
obtains a payoff of uC

i = 144.
(c)  No. Cooperation cannot be sustained in the fifth year because subgame 
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perfection requires that a Nash equilibrium of the stage game be played 
then. Working backward, the same is true in previous periods.

(d)  The grim-trigger strategy specifies: select (12, 12) as long as this was 
played in the past; otherwise select (8, 8). Using the stage-game best-
response function derived above, we see that the optimal way to deviate 
from (12, 12) in a given period is to set a price of pD

i = 6 + 12>4 = 9. 
This yields a payoff of uD

i = 162. To sustain cooperation, it must be 
that the value of cooperating forever exceeds the one-shot payoff from 
deviating plus the discounted future punishment (reversion to the stage-
game Nash equilibrium):

144

1 − d
Ú 162 +

128d

1 − d
,

  which simplifies to d Ú 9>17.

CHAPTER 24: RANDOM EVENTS AND INCOMPLETE INFORMATION

1. 

1

1>2, 1>2

−3>2, 3>2

−1, 1 −1, 1

1, −1

2

Bb

Bf

Fb

Ff

0, 0 

0, 0

0, 0

B F

1>2

1>2

−1, 1

−1, 1

B

A

K

F

1, −1

2, −2B

F

b

f

1

1

−1, 1

−2, 2B

F2
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3. 
1

1, 0

1, 2

0, 2

2

LL�

LR�

RL�

RR�

2, 0

3, 1

3, 0

4, 1

2, 0

U D

5. (a) (b)

IEIF

IESF

SGIF

SESF

M
C

7, 5

3.5, 0.5

0, 1.5

0, 3.5

3.5, 0

3.5, 2

8.5, 4

5, -0.5

R H SRBR

FSES

FSEB

FBES

FBEB

M
C

10, -4 10, -4 2.5, -1 2.5, -1

5, -3.510, -4

10, 3 2, 1 10, 3 2, 1

-5, 0

5, 05, 3.5

7, -6.5 7.5, 5.515, -1

SRBH SHBR SHBH

CHAPTER 25: RISK AND INCENTIVES IN CONTRACTING

1. Examples include stock brokers, commodities traders, and salespeople.

3. (a)  The wage offer must be at least 100 − y, so the firm’s payoff is 
180 − (100 − y) = 80 + y.

(b)  In this case, the worker accepts the job if and only if w + 100q Ú 100, 
which means the wage must be at least 100(1 − q). The firm obtains 
200 − 100(1 − q) = 100(1 + q).

(c)  When q = 1>2, it is optimal to offer the risky job at a wage of 50 if 
y … 70; otherwise it is optimal to offer the safe job at a wage of 100 − y.

5. (a)  The nine integers are equally likely to be the correct/winning price. 
Each player wants to maximize the number of integers that his guess is 
closest to without being above.

(b) n2 = 6.
(c) n2 = 1 or 6.
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(d)  It is possible to rationalize n1 = 2, 4, 6, or 7. For instance, suppose that 
you select n1 = 2. Player 2 could rationally pick n2 = 6, thinking that 
player 3 will follow with n3 = 3. But player 3 would be indifferent 
between n3 = 3 and n3 = 7, so player 3 might as well choose the latter. 
If you expect these things (which are consistent with the rationality 
of the others), then you can justify playing n1 = 2. You cannot ensure 
yourself more than an expected payoff of (1>3) # 1000, and this belief 
and strategy gives you exactly this amount. The other strategies noted 
here can be similarly justified. It is important to note that this is not an 
equilibrium construction.

CHAPTER 26: BAYESIAN NASH EQUILIBRIUM AND  
RATIONALIzABILITY

1. (a) The Bayesian normal form is
1

2
V

X

Y

Z

W

3, 0 2, 1

2, 13, 0

5, 1 3, 0

 (Z, V) is the only rationalizable strategy profile.
(b)  The Bayesian normal form is

1
2

3, 0 

6, 0

2, 1 

4, 1

5.5, 0.5

5.5, 0.5

2.5, 0.5 1.5, 0.5

1.5, 0.5

3.5, 0.5

2.5, 0.5

3.5, 0.5

0, 0 0, 1

3, 0

5, 1 3, 0

2, 1

XAXB

XAYB

XAZB

YAXB

YAYB

YAZB

ZAXB

ZAYB

ZAZB

V W
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  XAYB is a dominant strategy for player 1. Thus, the rationalizable set is 
the singleton {(XAYB, W)}.

(c) False.

3. (a) The extensive form and normal form representations are

L

R

L

R

L

R

L

R

2, 2

0, 0

2, 0

0, 0

4, 0

4, 4

0, 4

0, 2

U

u

d

DA

B

N

1

1

(1>2)

(1>2)

2

L R

Uu

Ud

Du

Dd

1, 2 1, 0

3, 1 0, 2

0, 1 3, 2

2, 0 2, 4

2
1

  The set of rationalizable strategies is the singleton {(Du, R)}, and (Du, 
R) is the single Bayesian Nash equilibrium.

(b) The extensive form and normal form representations in this case are

L

R

L

R

L

R

L

R

2, 0, 2

0, 0, 0

0, 2, 0

0, 0, 0

0, 4, 0

4, 0, 4

0, 0, 4

0, 0, 2

U

u

d

DA

B

N

1A

1B

(1/2)

(1/2)

2
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  The equilibrium is (D, u, R). The set of rationalizable strategies is the 
entire strategy space, S.

(c)  Regarding rationalizability, the difference between the settings of parts (a) 
and (b) is that in part (b), the beliefs of players 1A and 1B do not have to 
coincide. In equilibrium, the beliefs of player 1A and 1B must be the same.

5. (a)  u1 (p1, p2) = 42p1 + p1 p2 − 2p2
1 − 220 − 10p2 and 

u2 (p1 , p2) = (22 + 2c)p2 + p1 p2 − 2p2
2 − 22c − cp1.

(b)  BR1 (p2 ) = (42 + p2 )>4 and BR2 ( p1 ) = (22 + 2c + p1 )>4.
(c)  p*

1 = 14 and p*
2 = 14.

(d)  p*
1 = 14, p*

2,c=14 = 16, and p*
2,c=6 = 12.

9. The unique Nash equilibrium is (Bf, B). That is, player 1 bids when he has 
the Ace and folds when he has the King, and player 2 always bids.

CHAPTER 27: LEMONS, AUCTIONS, AND INFORMATION  
AGGREGATION

1. There is always an equilibrium in this game. Note that, regardless of p, 
there is an equilibrium in which neither the lemon nor the peach is traded  
(Jerry does not trade and Freddie trades neither car). When either 
1000 < p … 2000 or p > 1000 + 2000q, the only equilibrium involves no 
trade whatsoever.

3. To show that bidding vi is weakly preferred to bidding any x < vi , con-
sider three cases, which exhaust the possible relations between x, vi , and the 
other player’s bid bj . In the first case, x < bj < vi . Here, bidding x causes 
player i to lose, but by bidding vi player i would win and receive a payoff of 
vi − bj , which is positive. Next consider the case in which x < vi < bj . In 

1, 0, 2 1, 2, 1

0, 2, 40, 0, 1

u

U

1A
1B

D

d

L R

2

0, 1,  0 0, 0, 2

2, 0, 42, 1, 2

u

U

1A
1B

D

d
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this case, it does not matter whether player i bids x or vi; he loses either way 
and receives a payoff of 0. Finally, consider the case in which bj < x < vi . 
Here, bidding either x or vi ensures that player i wins and receives the payoff 
vi − bj . In summary, in the second and third cases, bidding vi and x yield the 
same payoff for player i, but in the first case bidding vi yields a strictly higher 
payoff. This means that bidding one’s valuation is weakly preferred.

5. As discussed in the text, without a reserve price, the expected revenue of the 
auction is 300. With a reserve price r, player i will bid at least r if vi > r. 
The probability that vi < r is r>900. Thus, the probability that both players 
have a valuation that is less than r is (r>900)2. Consider, for example, set-
ting a reserve price of 450. The probability that at least one of the players’ 
valuations is above 450 is 1 − (1>2)2 = 3>4. Thus, the expected revenue of 
setting r = 450 is at least 450(3>4) = 337.5, which exceeds 300.

9. (a) Player 1’s best-response bidding strategy is b1 (y1) = y1.
(b)  This part is very tricky; it is likely too difficult even for a graduate student! 

Note that if player i bids more than yi + 10 then, conditional on winning, 
this player’s payoff must be negative. Therefore, player i will not bid 
more than yi + 10, for i = 1, 2. Suppose that the implication of common 
knowledge is that, for each player i and this player’s type yi, the player 
will not bid more than g(yi). We have to determine the function g. We 
can argue that it must be non-decreasing. Furthermore, where it is strictly 
increasing, player i knows that by bidding bi = g(z) for some z ∈ [0,10], 
she will win against all types of the opponent satisfying yj < z. It turns out 
that the highest expected payoff that player i could get is then:

ayi +
z

2
− g(z)b  

z

10
+

ayi +
10 + max{g(z) − yi , z}

2
− g(z)b  

10 − max{g(z) − yi , z}

10
.

The first term is the expected payoff conditional on yj < z times the 
probability of this event. The second term is the expected payoff condi-
tional on yj > max{g(z) − yi , z} times the probability of this event. Left 
out is the event that yj ∈ [z, max{g(z) − yi , z}], where player i would 
lose money if she wins the auction; these types can rationally bid more 
than g(z), so player i can believe that she will not beat them.
 Wherever g is strictly increasing, the highest-expected-payoff expres-
sion above should equal zero for z =  yi . That is, this equation should 
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define g. Solving this, we find that g can be strictly increasing only 
above yi =  5 and that it must equal yi + 5 in this interval. Thus, 

g(z) = e 10 if z … 5

z + 5 if z > 5
.

(c)  Against the bidding strategy bj (yj) = yj + z of player j, the strategy 
bi (yi) = yi + z is not a best response for player i. In fact, bi (yi) = yi is 
the best response.

CHAPTER 28: PERFECT BAYESIAN EQUILIBRIUM

1. Let w = Prob(H  p ) and let r = Prob(H  p
–

 ).
(a)  The separating equilibrium is (pp

–
9 , NE9) with beliefs w = 1 and r = 0.

(b)  For q … 1>2, there is a pooling equilibrium with strategy profile (pp9, 
NN9) and beliefs w = q and any r … 1>2. There are also similar pooling 
equilibria in which the entrant chooses E and has any belief r Ú 1>2. For 
q > 1>2, there is a pooling equilibrium in which the strategy profile is 
(p
–

 p
–

9, EE9) and the beliefs are w = q and any r … 1>2. There are also 
pooling equilibria in which the incumbent plays p

– p–9 .

3. (a) Yes, it is (RL9, U) with q = 1.
(b)  Yes, it is (LL9, D) with q … 1>3.

5. (a)  The perfect Bayesian equilibrium is given by E0N1, y = 1, y
–
= 0, q = 1, 

and y = 1.
(b)  The innocent type provides evidence, whereas the guilty type does not. 

The judge is able to deduce the defendant’s type perfectly in equilibrium.
(c)  In the perfect Bayesian equilibrium, each type x ∈ {0, 1, c, K − 1} 

provides evidence, and the judge believes that he faces type K when no 
evidence is provided.

9. (a)

1
2

XX�

XY�

YX�

YY�

2, 0

3, 0

2, 0

3, 2

0, 4 4, 0

1, 4 5, 2

L M

(b)  Player 1, 12  XY9, 12  YY9; and player 2, 12  L, 12  M.
(c) Yes, with q = 1

2 .
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CHAPTER 29: JOB-MARKET SIGNALING AND REPUTATION

1. Education would not be a useful signal in this setting. If high types and low 
types have the same cost of education, then they would have the same incentive 
to become educated, and there would typically not be a separating equilibrium.

3. (a)  There is no separating equilibrium. The low type always wants to mimic 
the high type.

(b)  Yes, there is such an equilibrium provided that p is such that the worker 
accepts. This requires 2p − (1 − p) Ú 0, which simplifies to p Ú 1>3. 
The equilibrium is given by (OHOL, A) with belief q = p.

(c)  Yes, there is such an equilibrium regardless of p. The equilibrium is 
given by (NHNL, R) with belief q … 1>3.

5. As before, player 1 always plays S, I9, and B9. Also, player 2 random-
izes so that player 1 is indifferent between I and N, which implies that 
s = 1>4. Player 1 randomizes so that player 2 is indifferent between I 
and N. This requires 2q − 2(1 − q) = 0, which simplifies to q = 1>2. 
However, q = p>(p + r − pr). Substituting and solving for r, we get 
r = p>(1 − p). Thus, in equilibrium, player 1 selects action I with prob-
ability r = p>(1 − p), and player 2 has belief q = 1>2 and plays I with 
probability 1>4. If p > 1>2, then player 2 always plays I when her informa-
tion set is reached. This is because 2p − 2(1 − p) = 4p − 2 > 0. Thus, 
equilibrium requires that player 1’s strategy is II9SB9, that player 2 has 
belief q = p, and that player 2 selects I.

9. (a)  The manager’s optimal contract solves max en, xn  en − xn subject to 
xn − aen2 Ú 0 (which is necessary for the worker to accept).  Clearly, 
the manager will pick xn and en so that the constraint binds. Using 
the constraint to substitute for xn yields the unconstrained problem 
maxen  nen − aen2. Solving the first-order condition, we get en = 1>(2a) 
and xn = 1>(4a).

(b)  Using the solution of part (a), we obtain e– = 4, x– = 2,  e = 4>3, and 
x = 2>3.

(c)  The worker will choose the contract that maximizes xn − aen2. The high 
type of worker would get a payoff of −4 if he chooses contract (e

–
, x
–

) , 
whereas he would obtain 0 by choosing contract ( e, x ). Thus, he would 
choose the contract that is meant for him. In contrast, the low type 
prefers to select contract ( e, x ), which gives him a payoff of 4>9, rather 
than getting 0 under the contract designed for him.

(d)  The incentive compatibility conditions for the low and high types, 
respectively, are
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xL −
1

8
 e2

L Ú xH −
1

8
 e2

H

 and

xH −
3

8
 e2

H Ú xL −
3

8
 e2

L .

 The participation constraints are

xL −
1

8
 e2

L Ú 0

 and

xH −
3

8
 e2

H Ú 0.

(e)  Following the hint, we can substitute for xL and xH using the equations

xL = xH −
1

8
 e2

H +
1

8
 e2

L

 and

xH =
3

8
 e2

H .

  Note that combining these gives xL =
1
4 e2

H +
1
8 e2

L . Substituting for xL 
and xH yields the following unconstrained maximization problem:

max 
eL ,eH

 
1

2
ceH −

3

8
 e2

H d + 1

2
ceL −

1

4
 e2

H −
1

8
 eL

2 d .

  Calculating the first-order conditions, we obtain e*
L = 4, x*

L = 54>25, 
e*

H = 4>5, and x*
H = 6>25.

(f)  The high type exerts less effort than is efficient because this helps the 
manager extract more surplus from the low type.

APPENDIX B: THE MATHEMATICS OF RATIONALIzABILITY AND  
ITERATED DOMINANCE

1. (a)  Because the game is finite, best responses exist for every belief. Thus, 
if product set X is nonempty then Bi (X) is nonempty and so B(X) is 
nonempty. Note that R1 = B(S) and Rk = B(Rk−1) for all k. Since S is 
nonempty, by induction every Rk is nonempty.
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(b)  It is easy to see that, like UD, the B operator is monotone. That is, 
for two product sets X and Y  with X ⊂ Y , we have B(X) ⊂ B(Y). To 
see this, note that any belief for player i that puts positive probability 
only on strategies in X− i can also be considered in the context of the 
larger Y− i . Since R1 = B(S) ⊂ S, the monotone property implies that 
R2 = B(R1) ⊂ B(S) = R1. By induction, the same relation holds for Rk 
and Rk−1, for all k.

(c)  Suppose not. Then there are an infinite number of rounds in which at 
least one strategy is removed for at least one player. However, from (b), 
we know strategies that are removed are never “put back,” which means 
an infinite number of strategies are eventually deleted. This contradicts 
that S is finite.

3. For strategy C to be dominated, there would have to be a mixed strategy 
putting positive probability on A and B that yields a strictly higher payoff 
than does C, against all of the other players’ strategies. Consider a mixed 
 strategy that puts probability p on A and probability 1 − p on B. For this 
strategy to dominate C, we need 6p > 5 for the case of the opponents 
playing (U, M) and we need 6(1 − p) > 5 for the case of (D, N). These 
inequalities are incompatible, so C is not dominated.

Next consider beliefs of player 1 that do not exhibit correlation 
between the strategies of players 2 and 3. Let p denote the probability 
that player 2 plays U and let q denote the probability that player 3 plays 
M. Suppose that C is a best response for some belief. Then it must deliver 
a weakly higher expected payoff than do A and B. The expected payoff 
of C is

5pq + 5(1 − p)(1 − q) − 100p(1 − q) − 100q(1 − p) =
5 − 105p − 105q + 210pq.

 Rearranging terms, this is equivalent to q(21 − 42p) … 1 − 21p. Manipu-
lating this inequality reveals that, in order to make the expected payoff of 
C nonnegative (which is necessary for C to be a best response), it must 
be that either pq > (20>21)2 or (1 − p)(1 − q) > (20>21)2. Note that 
(20>21)2 > 9>10, so for beliefs in this range, either A or B will yield a 
strictly higher expected payoff than will strategy C.

To show that strategy C is a best response to a correlated conjecture, 
consider the belief u−1 that (U, M) is played with probability 1>2 and 
(D, N) is played with probability 1>2. We have that u1 (C, u−1) = 5 and 
u1 (B, u−1) = u1 (A, u−1) = 3.

Appendix B: The Mathematics of Rationalizability and Iterated Dominance
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311–13, 318

payoffs and, 297, 302, 305, 322
repeated games and, 292–95, 

297, 298, 302, 305, 307, 308, 
311, 316–20, 323

trigger strategy and, 298
stag hunt game, 71–72
Stahl, L., 247n
Staiger, R. W., 314n
standard bargaining solution

asset ownership and, 282
bargaining problems and,  

236–38, 240–41, 259, 260
definition of, 237
hold-up example and, 276,  

279, 280
joint decisions/actions and, 

259–60, 263, 270–71, 284–86
Nash’s work on, 237n, 434–39
negotiation equilibrium and, 

263–66
procedure for calculating, 238
repeated games and, 316,  

320, 322
simple bargaining games and, 

244, 246, 249, 251, 257, 347
state space, 415-416
static games, See one-shot games
status, 286
Stiglitz, Joseph, 360n
Stokey, N. L., 210n
strategic complementarities, 81–87
strategic form, See normal-form 

games
strategic interaction

definition of, 1
dominance of pure strategy, 

50–51
in game theory, 6, 106, 260

strategic settings
definition of, 1
experimental game theory and, 

106, 107
information and, 325
random events and, 329–30
See also specific setting

Watson_Index_477-496hr1.indd   489 4/10/13   4:31 PM



490 Index

strategic tension, 6, 52–53, 71–72
contracts and, 274n
dominance and, 52–53
efficiency and, 53, 71, 104, 274n
first, 53–54, 104, 161
inefficient coordination  

and, 274n
investments and, 274
negotiation and, 274
in prisoners’ dilemma, 52
second, 71–72, 104, 161
third, 104, 161

strategic voting, 120–23
strategy, 22, 24

in auctions, 364, 377
backward induction and, 184, 

186–88, 213–15
in bargaining, 245
Bayesian Nash equilibrium and, 

350–51
beliefs and, 381–82, 398
best response and, 54–60
definition of, 179
dominance and, 49–51, 54, 57–60
equilibrium and, 184
iterated dominance and, 68–71
market games and, 361–62
maxmin, 149–51
mixed, See mixed strategies
monopoly models and, 210
Nash equilibrium and, 97–101, 

111, 116, 119, 198
in normal-form games, 22–24
in parlor games, 225, 226
perfect Bayesian equilibrium 

and, 379–83, 386, 394, 398
pure, See pure strategy
in repeated games, 295–98
sequential rationality and, 

185–86
trigger, See trigger strategy
uncertainty in, 3, 6, 71–72, 95, 

97, 104, 109, 274n
strategy profiles, 23, 27, 39, 70

in market games, 332, 352
in Nash equilibrium, 99,  

101–2, 105
in one-shot games, 311

perfect Bayesian equilibrium 
and, 379, 382

in repeated games, 295, 296, 
303, 306, 318

in subgame perfect  
equilibrium, 198

in subgames, 213–15
in ultimatum bargaining  

game, 245
strategy space, 23, 27

in location game, 79–80
in partnership games, 82

strict dominance, 61
strictly competitive games,  

148–49, 225
exercises in, 151–53
and Nash equilibrium, 149

subgame, definition of, 188, 189
subgame perfect Nash equilibrium 

(SPE), 45
advertising and, 205–6, 219
backward induction and, 

188–202
bargaining and, 198, 244, 245, 

248, 250–52, 256, 263
in battle-of-the-sexes game, 201
common knowledge and, 188
in Cournot duopoly model, 205
definition of, 189–91, 190
in entry games, 209, 220
exercises in, 198–203, 222, 

228, 283
in extensive-form games, 188–91
individual incentives and,  

184n, 191
in LCD monitor price  

game, 211
in limit-capacity model,  

207–8, 219
Nash equilibrium and, 189, 

190, 200, 201, 202
and perfect Bayesian 

equilibrium, 379
in repeated games, 294–99, 

303, 305, 307, 309, 312, 316, 
318–22

reputation and, 294–96
risk and, 346, 347

sequential rationality in,  
184–89, 198

of Stackelberg duopoly game, 
191–92

strategy profiles and, 190, 198
in tire manufacturer-retailer 

example, 157
successor nodes, 175, 176, 188, 189
surplus, 234

asset ownership and, 282
in auctions, 366–67
bargaining and, 234, 236–37, 

240–41, 244, 245, 248, 251, 
254–57, 265–68, 347

in hold-up example, 277, 279
and standard bargaining 

solution, 236–37, 316
Sutton, J., 250n
symmetric equilibrium, 309

Tadelis, S., 315n
tariff game model, 117–18, 125, 

313, 319
tariffs, 117, 291, 313–14
technology of contractual 

relationship, 156, 159,  
166–68, 269–70

tennis, 73, 73, 135–36, 136, 148
terminal nodes

and backward induction,  
187, 189

definition of, 12
and extensive-form games, 175, 

176, 186–87
and sequential rationality, 

185–86
theory of games, See game theory
third-price auctions, 376
Thomson, W. L., 237n
three-player games, 189, 229, 257, 

286, 355
tic-tac-toe, 224–26
Tirole, J., 6n, 383n
T-period game, 249–50, 

256, 347
trade

agreements and contracts for, 
313–23

Watson_Index_477-496hr1.indd   490 4/10/13   4:31 PM



491Index

exercises in, 374
tariffs and, 117, 313–14
terms of, 231, 244

transfers, 156
bargaining and, 231–36, 263
contracts and, 156–64, 168, 

169, 219, 264, 270, 277,  
286, 341

and negotiation equilibrium, 
264, 265

and preferences, 156n
and repeated games, 314,  

316, 317
transitive precedence relation, 175
transitivity, 43n
trees, 10–15, 176

and backward induction,  
186, 188

definition/function of, 10
and extensive-form games, 

10–15, 175–78, 212, 260, 
261, 267

paths through, 12, 175–76, 178, 
328–33

rules concerning, 175–78, 262
and subgame perfect 

equilibrium, 188, 222
trigger strategy

collusion and, 311–13
grim-, 298–99, 303–7, 311, 

312–13, 321
modified, 304, 308
prisoners’ dilemma and, 302
repeated games and,  

298–99, 305, 311–14
reputation and, 298
trade agreement enforcement 

and, 313–14
Tucker, A. W., 10n, 188n
two-period, alternating-offer 

games, 246–50, 347,  
398–400

two-period repeated games,  
292–96, 315–17

two-player, strictly competitive 
game, 148–49, 149

types, See player types

ultimatum bargaining, See 
bargaining

unbalanced contracts, 172
uncertainty, 3, 6, 17, 71–72, 95, 

97, 104, 109, 274n
unconstrained capacity, 207, 208
underlying games, 156–59,  

161–64, 167, 170, 321
uniform distribution, 418
union of sets, 411
United States v. Alcoa, 207
unverifiable investments, 274–81
upper hemi-continuity, 433n
up-front contracting, 278–81
used car (“lemon”) example, 

360–63
utilities, See payoffs

value, 210–11
auctions and, 350
bargaining and, 230–32,  

235–37, 250, 361, 398
continuation, 192–94, 304
creation and division of, 

230–32
cutoff, 323
expected, 362, 365n
information and, 361
private, 367
reservation, 325
signaling and, 394
See also joint value

value of a function, 412
variables, 410
vectors, 411
verifiability, 155, 268, 288

bargaining and, 224
of contracts, 155, 159,  

274–76, 278, 281, 285,  
321, 404

full, 159–61, 167–69, 321
investments and, 274, 281
limited, 160, 161, 166–68,  

170, 321
VHS-Betamax format war,  

103, 104
Vickrey, William, 364n
von Stackelberg duopoly model, 

35, 181, 184–85, 191–92, 
207, 220

voting, strategic, 120–23
and policy locations, 80, 

118–20
voter game, 122–23

Waldegrave, James, 1–2
Walker, M., 136n
Walker, Paul, 2n
Wallis, K., 107n
Watson, J., 2n, 154n, 195n, 

260n, 262n, 275n, 281n, 
314n, 429n

weak congruity, 97, 105–6,  
158, 191

weak dominance, 60–61, 364, 
365, 427–28

Weber, R., 366n
Weibull, J. W., 106n
Wilkie, S., 203n
Williamson, O., 275n
Wilson, Robert, 383n, 396n
“winner’s curse,” 368
Wooders, J., 136n
“worker status” model,  

346–47, 389
World Trade Organization 

(WTO), 313–14
worst-case scenarios, 149

Zermelo, Ernest, 2, 226n
zero-sum games, 148

Watson_Index_477-496hr1.indd   491 4/10/13   4:31 PM



Watson_Index_477-496hr1.indd   492 4/10/13   4:31 PM



Watson_Index_477-496hr1.indd   493 4/10/13   4:31 PM



Watson_Index_477-496hr1.indd   494 4/10/13   4:31 PM



Watson_Index_477-496hr1.indd   495 4/10/13   4:31 PM



Watson_Index_477-496hr1.indd   496 4/10/13   4:31 PM


	Cover
	Title Page
	Copyright
	Table of Contents
	Preface
	Introduction
	Part I: Representations and Basic Assumptions
	Chapter 2: The Extensive Form
	Chapter 3: Strategies and The Normal Form
	Chapter 4: Beliefs, Mixed Strategies, and Expected Payoffs
	Chapter 5: General Assumptions and Methodology

	Part II: Analyzing Behavior in Static Settings
	Chapter 6: Dominance and Best Response
	Chapter 7: Rationalizability and Iterated Dominance
	Chapter 8: Location, Partnership, and Social Unrest
	Chapter 9: Nash Equilibrium
	Chapter 10: Oligopoly, Tariffs, Crime, and Voting
	Chapter 11: Mixed Strategy Nash Equilibrium
	Chapter 12: Strictly Competitive Games and Security Strategies
	Chapter 13: Contract, Law, and Enforcement in Static Settings

	Part III: Analyzing Behavior in Dynamic Settings
	Chapter 14: Detailes of the Extensive Form
	Chapter 15: Sequential Rationality and Subgame Perfection
	Chapter 16: Topics in Industrial Organization
	Chapter 17: Parlor Games
	Chapter 18: Bargaining Problems
	Chapter 19: Analysis of Simple Bargaining Games
	Chapter 20: Games with Joint Decisions: Negotiation Equilibrium
	Chapter 21: Unverifiable Investment, Hold up, Options, and Ownership
	Chapter 22: Repeated Games and Reputation
	Chapter 23: Collusion, Trade Agreements, and Goodwill

	Part IV: Information
	Chapter 24: Random Events and Incomplete Information
	Chapter 25: Risks and Incentives in Contracting
	Chapter 26: Bayesian Nash Equilibrium and Rationalizability
	Chapter 27: Lemons, Auctions, and Information Aggregation
	Chapter 28: Perfect Bayesian Equilibrium
	Chapter 29: Job-Market Signaling and Reputation

	Appendices
	Index



