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Preface

Big data is characterized by three fundamental dimensions: Volume,
Velocity, and Variety, The Three V’s of Big Data. The Volume
expresses the amount of data, Velocity describes the speed at which data
is arriving and being processed, and Variety refers to the number of
types of data.

The data could come from anywhere, including social media, various
sensors, financial transactions, etc. IBM has stated1 that people create
2.5 quintillion bytes of data every day, this number is growing
constantly and most of it cannot be stored and is usually wasted
without being processed. Today, it is not uncommon to process terabyte-
or petabyte-sized corpora and gigabit-rate streams.

On the other hand, nowadays every company wants to fully
understand the data it has, in order to find value and act on it. This led
to the rapid growth in the Big Data Software market. However,
the traditional technologies which include data structures and
algorithms, become ineffective when dealing with Big Data. Therefore,

1What Is Big Data? https://www.ibm.com/software/data/bigdata/what-is-big-data.html

https://www.ibm.com/software/data/bigdata/what-is-big-data.html


viii Preface

many software practitioners, again and again, refer to computer science
for the most appropriate solutions and one option is to use probabilistic
data structures and algorithms.

Probabilistic data structures is a common name for data structures
based mostly on different hashing techniques. Unlike regular (or
deterministic) data structures, they always provide approximated
answers but with reliable ways to estimate possible errors. Fortunately,
the potential losses and errors are fully compensated for by extremely
low memory requirements, constant query time, and scaling, the factors
that become essential in Big Data applications.

About this book
The purpose of this book is to introduce technology practitioners which
includes software architects and developers, as well as technology
decision makers to probabilistic data structures and algorithms. Reading
this book, you will get a theoretical and practical understanding of
probabilistic data structures and learn about their common uses.

This is not a book for scientists, but to gain the most out of it you
will need to have basic mathematical knowledge and an understanding
of the general theory of data structures and algorithms. If you do not
have any “computer science” experience, it is highly recommended you
read Introduction to Algorithms by Thomas H. Cormen, Charles E.
Leiserson, Ronald L. Rivest, and Clifford Stein (MIT), which provides
a comprehensive introduction to the modern study of computer
algorithms.

While it is impossible to cover all the existing amazing solutions,
this book is to highlight their common ideas and important areas of
application, including membership querying, counting, stream mining,
and similarity estimation.



ix

Organization of the book
This book consists of six chapters, each preceded by an introduction
and followed by a brief summary and bibliography for further reading
relating to that chapter. Every chapter is dedicated to one particular
problem in Big Data applications, it starts with an in-depth explanation
of the problem and follows by introducing data structures and algorithms
that can be used to solve it efficiently.

The first chapter gives a brief overview of popular hash functions
and hash tables that are widely used in probabilistic data structures.
Chapter 2 is devoted to approximate membership queries, the most
well-known use case of such structures. In chapter 3 data structures that
help to estimate the number of unique elements are discussed. Chapters
4 and 5 are dedicated to important frequency- and rank-related metrics
computations in streaming applications. Chapter 6 consists of data
structures and algorithms to solve similarity problems, particularly —
the nearest neighbor search.

This book on the Web
You can find errata, examples, and additional information at
https://pdsa.gakhov.com. If you have a comment, technical question
about the book, would like to report an error you found, or any other
issue, send email to pdsa@gakhov.com.

In case you are also interested in Cython implementation that includes
many of the data structures and algorithms from this book, please
check out our free and open-source Python library called PDSA at
https://github.com/gakhov/pdsa. Everybody is welcome to contribute
at any time.

https://pdsa.gakhov.com
mailto:pdsa@gakhov.com
https://github.com/gakhov/pdsa
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1
Hashing

Hashing plays the central role in probabilistic data structures as they
use it for randomization and compact representation of the data.
A hash function compresses blocks of input data of an arbitrary size by
generating an identifier of a smaller (and in most cases fixed) size, called
the hash value or simply the hash.

The choice of hash functions is crucial to avoid bias. Although
the selection decision is mostly based on the input and particular
use cases, there are certain common properties that a hash function
should fulfill in order to be applicable for hash-based selection.
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Hash functions compress the input, therefore, cases where they generate
the same hash values for two different blocks of data are unavoidable and
known as hash collisions.

In 1979 J. Lawrence Carter and Mark Wegman proposed the universal
hash functions whose mathematical properties can guarantee a low
expected number of collisions, even if the input data are chosen
randomly from the universe.

The universal hash functions family H maps elements of the universe
to the range {0, 1, . . . ,m – 1} and guarantees that by randomly picking
a hash function from the family the probability of collisions is limited:

Pr
(
h(x ) = h(y)

)
≤ 1

m
, for any x , y : x 6= y . (1.1)

Thus, the random choice of a hash function from the family with
property (1.1) is precisely the same as choosing an element uniformly
at random.

An important universal hash functions family, designed to hash integers,
can be defined as

h{k ,q}(x ) = ((k · x + q) mod p) mod m, (1.2)

where k and q are randomly chosen integers modulo p with k 6= 0.
The value of p should be selected as a prime p ≥ m, and the common
choice is to take one of the known Mersenne prime numbers, e.g., for
m = 109 we choose p = M31 = 231 – 1 ≈ 2 · 109.

Many applications can use the simpler version of the family (1.2):

h{k}(x ) = (k · x mod p) mod m, (1.3)

this is only approximately universal, but still provides a good probability
of collisions smaller than 2

m in expectation.

However, the above families of hash functions are limited to integers,
that is not enough for most practical applications which require to
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hash variable-sized vectors and are in demand of fast and reliable hash
functions with certain guaranteed properties.

There are many classes of hash functions used in practice and the choice
mainly depends on their design and particular use. In the current
chapter we provide an overview of popular hash functions and simple
data structures that are prevalent in various probabilistic data structures.

1.1 Cryptographic hash functions
Practically, cryptographic hash functions are defined as fixed mappings
from variable input bit strings to fixed length output bit strings.

As stated previously, hash collisions are unavoidable, but a secure hash
function is required to be collision resistant, meaning that it should be
hard to find collisions. Of course, a collision can be found accidentally
or computed in advance. This is why such a class of functions always
requires mathematical proofs.

Cryptographic hash functions are very important in cryptography and
are used in many applications such as digital signatures, authentication
schemas, and message integrity.

There are three main requirements that cryptographic hashes are
expected to satisfy:

• Work factor — to make brute force inversion hard, a cryptographic
hash should be computationally expensive.

• Sticky state — cryptographic hash should not have a state in
which it can stick for a plausible input pattern.

• Diffusion — every output bit of a cryptographic hash should be
an equally complex function of every input bit.

Theoretically, cryptographic functions can be further divided into
keyed hash functions, that use a secret key, and unkeyed hash functions,
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which do not. Probabilistic data structures use only unkeyed hash
functions, which include One–Way hash functions, Collision Resistant
hash functions, and Universal One–Way hash functions. These functions
differ only in some additional properties.

One–Way hash functions satisfy the following requirements:

• They can be applied to blocks of data of any length (of course,
in practice, it’s bounded by some huge constant).

• They produce a fixed-length output.

• They should have preimage resistance (one-way property) — it
should be computationally infeasible to find an input which hashes
to the specified output.

Additionally, for Collision Resistant hash functions it should be
extremely unlikely for two different inputs to generate the same hash
value.

If not collision resistant, Universal One–Way hash functions need to
be target collision resistant or second-preimage collision resistant — it
should be computationally infeasible to find a second distinct input that
hashes to the same output as the specified input.

Note, that being collision resistant implies that the function is
second-preimage resistant, but the generic complexity of finding
a second-preimage resistance function is much higher than finding
a colliding pair.

Because of their design (particularly, the work factor requirement),
cryptographic hash functions are much slower than non-cryptographic
ones. For instance, the function SHA–1, discussed below, is in the order of
540 MiB/second1, but the popular non-cryptographic functions are in
the order of 2500 MiB/second and more.

1Crypto++ 6.0.0 Benchmarks https://www.cryptopp.com/benchmarks.html

https://www.cryptopp.com/benchmarks.html
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Message–Digest Algorithms

The popular Message–Digest Algorithm, MD5, was invented by Ron
Rivest in 1991 to replace the old MD4 standard. It is a cryptographic
hash algorithm, defined in IETF RFC 1321, that takes a message of
an arbitrary length and produces as an output the unique 128-bit hash
of the input.

The MD5 algorithm is based on the Merkle–Damgård schema. At
the first stage, it converts the input of an arbitrary size to a number of
blocks of a fixed size (512-bit blocks or sixteen 32-bit words) using anMD–
compliant padding function. Afterwards, such blocks are processed one
by one using a special compression function and every next block uses
the result of the previous output. To make the compression secure,
the algorithm applies Merkle–Damgård strengthening, then the padding
uses the encoded length of the original message. The final MD5 hash
digest is the 128-bit value generated after the processing of the last block.

The MD5 algorithm is often used to verify the integrity of a file —
instead of confirming that the file is unchanged by examining its raw
data, it is enough to compare the MD5 hashes.

As stated in Vulnerability Note VU#8360682, the MD5 algorithm is
vulnerable to collision attacks. The discovered weaknesses in the algorithm
allow for the construction of different messages with the same MD5 hash.
As a result, attackers can generate cryptographic tokens or other data that
illegitimately appears authentic. It is not advisable to use it as a secure
cryptographic algorithm anymore, however, such vulnerability doesn’t
have a big impact for probabilistic data structures and can still be used.

Secure Hash Algorithms

Secure Hash Algorithms were developed by the US National Security
Agency (NSA) and published by the National Institute of Standards and

2VU#836068 http://www.kb.cert.org/vuls/id/836068

http://www.kb.cert.org/vuls/id/836068
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Technology (NIST). The first algorithm from the family, called SHA–0,
was published in 1993 and quickly replaced by its successor SHA–1,
which became widely accepted globally. SHA–1 produces a longer 160-bit
(20-byte) hash value, while its security has been increased by fixing
the weaknesses of SHA–0.

SHA–1 was widely used for years in various applications, and most
websites were signed using algorithms based on it. However, in 2005
a weakness in SHA–1 was discovered, so in 2010 NIST deprecated it for
government use and it also got deprecated on the Internet since 2011.
Same as with MD5, the found weaknesses didn’t impinge on its usage as
a hash function for probabilistic data structures.

SHA–2 was published in 2001 and included six hash functions with
varying digest sizes: SHA–224, SHA–256, SHA–384, SHA–512, and
others. SHA–2 is stronger than SHA–1 and attacks made against SHA–2
are unlikely to happen with current computing power.

RadioGatún

The cryptographic hash function family called RadioGatún was presented
at the Second Cryptographic Hash Workshop in 2006 [Be06]. The design
of RadioGatún improved the known Panama hash function.

Similar to other popular hash functions, the input is split into
a sequence of blocks which are injected into the algorithm’s internal
state using a special function, that is followed by an iterative application
of a single non-cryptographic round function (called the belt-and-mill
round function). At every round, the state is represented as two parts,
the belt and the mill, that are treated differently by the round function.
The application of the round function consists of four operations in
parallel: 1) non-linear function applied to the mill, 2) simple linear
function applied to the belt, 3) feedforward some bits of the mill to
the belt in a linear way, 4) feedforward some bits of the belt to the mill
in a linear way. After injection of all input blocks, the algorithm
performs a number of rounds without input or output (blank rounds)
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after which a part of the state is returned as the final hash value.

Among the family, RadioGatún64, with 64-bit words, is the default
choice and is optimal for 64-bit platforms. For best performance on
32-bit platforms, RadioGatún32, with 32-bit words, can also be used.

For the same clock frequency, RadioGatún32 is claimed to be 12 times faster
than SHA–256 for long inputs, and 3.2 times faster for short inputs,while
having fewer gates. RadioGatún64 is even 24 times faster than SHA–256
for long inputs but has about 50% more logic gates.

1.2 Non-Cryptographic hash functions
In contrast to cryptographic hash functions, non-cryptographic functions
are not designed to fend off attacks aimed at finding a collision, hence
don’t require security and high collision resistance.

Such functions simply have to be fast and guarantee a low probability
of collisions, allowing a lot of data to be quickly hashed with a reasonable
error probability.

Fowler/Noll/Vo

The basis of the Fowler/Noll/Vo (FNV or FNV1) non-cryptographic
hash algorithm was taken from an idea sent, as a reviewer comment, to
the IEEE POSIX P1003.2 committee by Glenn Fowler and Phong Vo
back in 1991 and afterward improved on by Landon Curt Noll [Fo18].

The FNV algorithm maintains an internal state that is initialized
to a special offset basis. After that, it iterates over the input blocks
of 8 bits and performs the multiplication of the state on some large
numerical constant, called the FNV Prime, followed by applying logical
exclusive OR (XOR) to the input block. After the last input is processed,
the resulting value of the state is reported as the hash.
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The FNV Prime and the offset basis constants are design parameters
and depend on the bit length of the produced hash values. As mentioned
by Landon Curt Noll, the selection of the primes is the part of the magic
of the FNV algorithm, and some primes do hash better than others for
the same hash size.

The FNV1a alternate algorithm, that currently has to be preferred, is
a minor variation of the FNV algorithm that differs only in the order of
the internal XOR and multiplication operations. Although FNV1a uses
the same parameters and the FNV Prime as the FNV1, its XOR–folding
provides slightly better dispersion without interfering with the CPU
performance.

Currently, the FNV family includes algorithms for 32-, 64-, 128-, 256-,
512-, and 1024-bit hash values.

The FNV is very simple to implement, but its high dispersion of
the hash values makes them well suited for hashing nearly identical
strings. It is widely used in DNS servers, Twitter, database indexing
hashes, web search engines, and many other places. Some years ago,
the 32-bit version of the FNV1a was recommended as the hash algorithm
for IPv6 flow label generation [An12].

MurmurHash

Another well-known family of hash functions, called MurmurHash, was
published by Austin Appleby in 2008 and finalized as the MurmurHash3
algorithm in 2011 [Ap11].

The MurmurHash algorithms use a special probabilistic technique for
approximating the global optimum to find a hash function that mixes
the bits of the input value in the best way to produce the bits of the output
hash. The various generations of the algorithm differ mainly in their
mixing functions.

The algorithm is claimed to be twice as fast as the speed-optimized
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lookup3 hash function3. MurmurHash3 includes 32- and 64-bit versions
for x86 and x64 platforms.

Currently, MurmurHash3 is one of the most popular algorithms and is
used in Apache Hadoop, Apache Cassandra, Elasticsearch, libstdc++,
nginx, and others.

CityHash and FarmHash

In 2011, Google published a new family of hash functions for strings,
called CityHash, developed by Geoff Pike and Jyrki Alakuijala [Pi11].
CityHash functions are simple non-cryptographic hash functions that are
based on the MurmurHash2 algorithm.

The CityHash family were developed with the focus on short strings
(e.g., up to 64 bytes) that have the most interest in probabilistic data
structures and hash tables. It includes 32-, 64-, 128- and 256-bit versions.
For such short strings, the 64-bit version CityHash64 is faster than
MurmurHash and outperforms the 128-bit CityHash128. However, while
for long strings with at least a few hundred bytes the CityHash128 is
preferred over other hash functions of the CityHash family, in practice,
it is better to use MurmurHash3 instead.

One of the downsides of the CityHash is that it is fairly complex and
leads to non-optimal behavior on different compilers that can significantly
degrade its speed.

In 2014 Google published a successor to CityHash called
the FarmHash, developed by Geoff Pike [Pi14]. The new algorithm
included most of the techniques used in CityHash (and, unfortunately,
inherited its complexity) and the new generation of MurmurHash.
FarmHash functions mix the input bits thoroughly, but it is not enough
to be used in cryptography.

The FarmHash uses CPU specific optimizations and still requires tuning
of the compiler to get the best performance and is platform dependent.

3Hash Functions and Block Ciphers https://burtleburtle.net/bob/hash/

https://burtleburtle.net/bob/hash/
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Notably, the computed hash values also differ across platforms.

The FarmHash functions come in many versions, and the 64-bit version
Farm64 outperforms algorithms such as CityHash, MurmurHash3, and
FNV in tests on many platforms, including mobile phones.

1.3 Hash tables
A hash table is a dictionary data structure that is comprised of unordered
associative array of length m whose entries are called buckets and are
indexed by a key in the range {0, 1, . . . ,m – 1}. To insert an element
into the hash table, a hash function is used to compute the key that is
utilized to select the appropriate bucket to store the value.

Typically, the universe from which we draw the input elements is much
bigger than the capacity m of the hash table, hence collisions in keys
are unavoidable. Additionally, when the number of elements in the hash
table grows, the number of collisions rises as well.

The critical concept of hash tables is the load factor α, the ratio of
the number of used keys n to the table’s total length m:

α :=
n

m
.

The load factor is a measure of how full the hash table is and since n

cannot exceed the capacity of the hash table it is upper bounded by
one. When α approaches its maximal value, the probability of collision
increases significantly which can necessitate an increase in capacity.

All hash table implementations need to address the problem of collisions
and provide a strategy on how to handle them. There are two main
techniques:

• Closed addressing — to store collided elements under the same
keys in a secondary data structure.
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• Open addressing — to store collided elements in positions other
than their preferred positions and provide a way to address them.

The closed addressing technique is the most obvious way to resolve
collisions. There are many different implementations, for instance,
separate chaining that stores collided elements in a linked list, perfect
hashing that uses special hash functions and secondary hash tables of
different lengths.

Instead of creating a secondary data structure in either form, it is
possible to resolve collisions by storing the collided elements elsewhere in
the primary table and providing an algorithm on how to address them.
Since the address of the element is not known from the beginning, this
technique is known as open addressing.

Now we will cover two open addressing implementations that are useful
in the probabilistic data structures listed in this book.

Linear probing

One of the most straightforward hash table implementations that uses
open addressing is the Linear probing algorithm, invented by Gene
Amdahl, Elaine M. McGraw, and Arthur Samuel in 1954 and analyzed
by Donald Knuth in 1963. The idea of the algorithm is to place collided
elements into the next empty bucket. Its name originates from the fact
that the final position of the element will be linearly shifted from
the preferable bucket since we probe one bucket after another.

A LinearProbing hash table can be seen as a circular array that
stores indexed values in buckets. To insert a new element x , we compute
its key k = h(x ) using a single hash function h. If the bucket that
corresponds to that key is non-empty and contains a different value,
meaning a collision, we keep looking clockwise at the next buckets until
we find a free space where we can index the element x . Monitoring of
the load factor of the hash table can guarantee that we will definitely
find a free space at some point.
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Similarly, when we want to lookup for some element x , we compute
its key k using the same hash function h and start checking the buckets
clockwise, starting at the preferable bucket with the key k = h(x ),
until we found the wanted element x or the first empty bucket appears,
resulting in the decision that the element is not in the table.

Example 1.1: Linear probing
Consider a LinearProbing hash table of length m = 12 and a hash
function based on 32-bit MurmurHash3 that maps the universe to the range
{0, 1, . . . ,m – 1}:

h(x ) := MurmurHash3(x ) mod m.

Suppose that we want to store different names of colors in the hash table,
starting from red. The value of the hash function for the element is

h = h(red) = 2352586584 mod 12 = 0.

Since the LinearProbing hash table is empty at the beginning, the bucket
with the key k = 0 contains no elements, therefore we just index the element
there:

0
1

2

3
4

56
7

8

9
10

11

red

Next, we take the element green, whose hash value is

h = h(green) = 150831125 mod 12 = 5.

The key is k = 5, as this bucket is empty we again freely store the element.
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0
1

2

3
4

56
7

8

9
10

11

red

green

Now, consider the element white. Its hash value is

h = h(white) = 16728905 mod 12 = 5.

The preferable bucket for that element is the one with the key k = 5.
However, the bucket is already occupied by a different element, meaning
a collision has appeared. In this case, we apply the Linear probing
algorithm and try to find the next empty bucket going clockwise from
the preferable bucket position. Fortunately, the next bucket, under key
k = 6 is free and we store the element white there.

0
1

2

3
4

56
7

8

9
10

11

red

greenwhite

white

When we lookup for the element white in the LinearProbing hash table,
we first check its preferable bucket, with the key k = 5. Since that bucket
contains a value that differs from the element, we start checking buckets
in a clockwise direction, starting from the key k + 1 = 6. Fortunately,
the next bucket with the key k = 6 contains the wanted value and we can
conclude that the element is present in the hash table.

The algorithm requires O(1) time for each operation, as long as
the LinearProbing hash table is not full (the load factor is strictly
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less than one). The longest probe sequence in Linear probing is of
expected length O(log n).

The Linear probing algorithm is very sensitive to the choice of the hash
function h because it must provide ideal uniform distribution.
Unfortunately, in practice, it is not possible, and the performance of
the algorithm degrades rapidly as the actual distribution diverges. To
address this problem, a variety of techniques for additional randomization
are widely used.

Cuckoo hashing

Another implementation of open addressing is Cuckoo hashing, introduced
by Rasmus Pagh and Flemming Friche Rodler in 2001 and published
in 2004 [Pa04]. The main idea of the algorithm is to use two hash
functions instead of one.

The Cuckoo hash table is an array of buckets, where instead of one
preferable bucket as in Linear probing and many other algorithms, each
element has two candidate buckets determined by two different hash
functions.

To index a new element x into the Cuckoo table, we compute keys
for two candidate buckets with the hash functions h1 and h2. If at least
one of those buckets is empty, we insert the element into that bucket.
Otherwise, we randomly choose one of those buckets and store element x
there, while moving the element from that bucket to its alternative
candidate bucket. We repeat this procedure until an empty bucket is
found, or until a maximum number of displacements is reached. If there
are no empty buckets, the hash table is considered full.

Although Cuckoo hashing may execute a sequence of displacements, it
keeps the constant time O(1) to be finished.

The lookup procedure is straightforward and can be done in constant
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time. We simply need to determine the candidate buckets for the input
element by computing its hashes h1 and h2 and check if such an element is
present in one of those buckets. The deletion procedure can be performed
in a similar way.

Example 1.2: Cuckoo hashing
Consider a Cuckoo hash table of length m = 12 with two 32-bit
hash functions MurmurHash3 and FNV1a that produce values in
the range {0, 1, . . . ,m – 1}:

h1(x ) := MurmurHash3(x ) mod m,

h2(x ) := FNV1a(x ) mod m.

Like in Example 1.1, we index color names in the hash table starting
with red. The keys of the candidate bucket we obtain by applying those
hash functions:

h1(red) = 2352586584 mod 12 = 0,

h2(red) = 1089765596 mod 12 = 8.

The Cuckoo hash table is empty, so we use one of the candidate buckets,
for instance, the bucket with the key k = h1(red) = 0 and index
the element.

0 1 2 3 4 5 6 7 8 9 10 11

red

Next, we index element black whose candidate buckets are h1(black) = 6

and h2(black) = 0. Since the bucket with the key k = 0 is occupied by
another element, we can only index it into the alternative bucket k = 6,
which is free.

0 1 2 3 4 5 6 7 8 9 10 11

red black

There is a similar situation with the element silver with h1(silver) = 5

and h2(silver) = 0. We store this element in the bucket with the key
k = 5 since 0 is occupied.

0 1 2 3 4 5 6 7 8 9 10 11

red silver black
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Now consider the element white. The hash values of this element are

h1(white) = 16728905 mod 12 = 5,

h2(white) = 3724674918 mod 12 = 6.

As we can see, both candidate buckets for this element are occupied, and we
have to perform the displacements according to the Cuckoo hashing schema.
First, randomly select one of the candidate buckets, let’s say the bucket
with the key k = 5 and put the element white into it. The element silver
from the bucket 5 has to be relocated to its alternative bucket, which
is 0. As we can see, the bucket with the key 0 is not empty; therefore,
we store element silver and move element red from that bucket to its
other candidate bucket. Fortunately, the alternative bucket with the key
8 for element red is free and after storing it in that bucket, we finish
the insertion procedure.

0 1 2 3 4 5 6 7 8 9 10 11

silver white black red

white

silver

red

For instance, when we want to lookup the element silver , we check only
its candidate buckets, which are 5 and 0, as we computed earlier. Since this
element is present in one of them, in the bucket with the key 0 in this case,
we conclude that the element silver is present in the Cuckoo hash table.

Cuckoo hashing ensures high space occupancy but requires the length
of the hash table to be slightly larger than the space needed to keep
all elements. A modification of the Cuckoo hash schema is used in
a probabilistic data structure called the Cuckoo filter, which we will
describe in detail in the next chapter.

Conclusion
In this chapter we covered an overview of hashing, its problems and
importance in data structures. We discussed cryptographic versus non-
cryptographic hash functions, reviewed a list of the functions that are



1.3 Hash tables 17

most used in practice, and learned about universal hashing which is
very important theoretically. As an application of the hash functions we
have considered hash tables, which are simple data structures that map
keys to values and answer membership queries. We studied examples
of open addressing hash tables that we will use in the next chapters for
probabilistic data structures.

If you are interested in more information about the material covered
here, please take a look at the list of references that follows this chapter.

In the next chapter we will be discussing first probabilistic data
structures and studying extensions of hash tables, called filters, that are
used to answer membership queries under requirements that are
common for Big Data applications, such as when storage is at
a premium and the speed of lookups must be as fast as possible.
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2
Membership

A membership problem for a dataset is a task to decide whether some
element belongs to the dataset or not. For small sets, it could be
solved by direct lookup and subsequent comparison of the given element
to each element in the set. However, such a naive approach depends
on the number of elements in the set and takes on average O(log n)
comparisons (on pre-sorted data), where n is the total number of elements.
It is obvious that for huge sets of elements, which are operated by Big
Data applications, this approach is not efficient and requires too much
time and O(n) memory to store the elements.

Possible workaround solutions like chunking such sets and running
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comparisons in parallel can help in the reduction of computation time.
However, it is not always applicable because for big data processing to
store such huge sets of elements is almost an unachievable task.

On the other hand, in many cases, it isn’t necessary to know exactly
which element from the set has been matched, only that a match has been
made and, therefore, it is possible to store only signatures of the elements
rather than the whole value.

Example 2.1: Safe-browsing problem
Imagine, we develop a web-browser and notice that some URLs are known
to contain malware, thus we want to alert users (or even prevent them from
visiting) if they try to navigate to those pages. An immediate solution, that
minimizes the network traffic, is to store all such URLs in the application
and after the user enters the URL just check if it’s not known as malware
and can be safely navigated to.

Such a naive implementation will work quite well while the number of
bad URLs is small. That is unfortunately not the case for real-world
applications. After some time, we will need a special structure that can
store bad URLs (or, ideally, only some information about them) without
growing linearly in size when a new URL is introduced. Other requirements
include that it should support the check of whether a URL is listed and it
should be as fast as possible since we don’t want users to wait for a long
time.

Applications of the membership problem are not specific to pure
computer science and play an essential role in various branches.

Example 2.2: DNA sequences (Stranneheim et al., 2010)
One important issue in metagenomic studies is the classification of
sequences either as “novel” or belonging to a known genome, i.e., filtering
out data that has been seen before.

A preprocessing step that executes membership queries, if performed
efficiently, can reduce the complexity of the data before more careful
analysis is performed.
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The problem of fast lookup can be solved using hashing, which is also
the simplest way to do that. With a hash function, every element of
the dataset can be hashed into a hash table that maintains a (sorted)
list of hash values. However, such an approach yields a small probability
of errors (caused by possible hash collisions) and requires about O(log n)
bits per each hashed element, which can still be unfeasible in practice
for huge datasets.

In this chapter, we consider popular alternatives to regular hash tables
that require less space, make faster lookups, and maintain smaller error
probabilities. Such space-efficient data structures help to handle a big
volume of data and allow for the execution of membership queries with
good performance.

We start on the famous Bloom filter, then learn about its extensions
and modifications, and finally, study its modern alternatives.

2.1 Bloom filter
The simplest and most well-known data structure that solves
the membership problem is the Bloom filter which was proposed by
Burton Howard Bloom in 1970. It is a space-efficient probabilistic data
structure for representing a dataset D = {x1, x2, . . . , xn} of n elements
that supports only two operations:

• Adding an element into the set, and

• Testing whether an element is or is not a member of the set.

The Bloom filter can store a large set very efficiently by discarding
the identity of the elements; it stores only an (almost) unique set of
bits corresponding to some number of hash functions that are applied to
the element by the algorithm.

Practically, the Bloom filter is represented by a bit array and can be
described by its length m and number of different hash functions {hi}ki=1.
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It is assumed that m is proportional to the number of expected elements
n, while k is much smaller than m.

Hash functions hi should be independent and uniformly distributed.
In this way, we randomize the hash values uniformly (you can think of it
as using hash functions as some kind of random-number generator) in
the filter and decrease the probability of hash collisions.

Such an approach drastically reduces the storage space and, regardless
of the number of elements in the data structure and their size, requires a
constant number of bits by reserving a few bits per element.

The BloomFilter data structure is a bit array of length m where at
the beginning all bits are equal to zero, meaning the filter is empty. To
insert an element x into the filter, for every hash function hk we compute
its value j = hk (x ) on the element x and set the corresponding bit j in
the filter to one. Note, it is possible that some bits can be set multiple
times due to hash collisions.

Algorithm 2.1: Adding element to the Bloom filter
Input: Element x ∈ D
Input: Bloom filter with k hash functions {hi}ki=1

for i ← 1 to k do
j ← hi(x )

BloomFilter[j ]← 1

Example 2.3: Add elements to the filter
Consider a Bloom filter with length m = 10 and two 32-bit hash functions
MurmurHash3 and FNV1a to produce values in the range {0, 1, . . . ,m – 1}:

h1(x ) := MurmurHash3(x ) mod m,

h2(x ) := FNV1a(x ) mod m.

The empty filter has the following form:

0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0
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As an example, we insert the names of capital cities into the filter. Let’s
start with Copenhagen and in order to find the corresponding bits in
the filter we compute its hash values:

h1(Copenhagen) = MurmurHash3(Copenhagen) mod 10 = 7,

h2(Copenhagen) = FNV1a(Copenhagen) mod 10 = 3.

Hence, we need to set bits 3 and 7 in the filter:

0 1 2 3 4 5 6 7 8 9

0 0 0 1 0 0 0 1 0 0

It is possible that different elements can share corresponding bits, for
instance let’s add another element, Dublin, to the filter:

h1(Dublin) = MurmurHash3(Dublin) mod 10 = 1,

h2(Dublin) = FNV1a(Dublin) mod 10 = 3.

As you can see, its corresponding bit-positions in the filter are 1 and
3, where only bit 1 hasn’t been set yet (meaning that some element in
the filter that is not Dublin has 3 as one of its corresponding bits):

0 1 2 3 4 5 6 7 8 9

0 1 0 1 0 0 0 1 0 0

When we need to test if the given element x is in the filter, we
compute all k hash functions hi = {hi(x )}ki=1 and check bits in
the corresponding positions. If all bits are set to one, then the element
x may exist in the filter. Otherwise, the element x is definitely not
in the filter. The uncertainty about the element’s existence originates
from the possibility of situations when some bits are set by different
previously added elements (as we saw in Example 2.3) or, due to hard
collisions, when all hash functions collide accidentally.
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Algorithm 2.2: Testing element in the Bloom filter
Input: Element x ∈ D
Input: Bloom filter with k hash functions {hi}ki=1

Output: False if element not found and True if element may exist
for i ← 1 to k do

j ← hi(x )

if BloomFilter[j ] 6= 1 then
return False

return True

Example 2.4: Test elements in the filter
Consider the Bloom filter from Example 2.3 with two indexed elements,
Copenhagen and Dublin:

0 1 2 3 4 5 6 7 8 9

0 1 0 1 0 0 0 1 0 0

To test if the element Copenhagen is in the filter, we again need to
compute its hash values h1(Copenhagen) = 7 and h2(Copenhagen) = 3.
After that, we check the corresponding bits in the filter and see that both
of them are set to one, therefore we claim that Copenhagen may exist
in the filter.

Now we will consider an element Rome and compute its hashes in order
to find the corresponding bits in the filter:

h1(Rome) = MurmurHash3(Rome) mod 10 = 5,

h2(Rome) = FNV1a(Rome) mod 10 = 6.

Thus, checking the bits 5 and 6, we see that bit 5 isn’t set, therefore
the element Rome is definitely not in the filter and we don’t even need
to check bit 6.

However, the filter can also result in a false positive answer. Consider
element Berlin, whose hash values are

h1(Berlin) = MurmurHash3(Berlin) mod 10 = 1,

h2(Berlin) = FNV1a(Berlin) mod 10 = 7.
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The corresponding bits 1 and 7 are both set in the filter, hence the result of
the test function is that the element may exist in the filter. At the same
time, we know that we have not added that element and this is an example
of a hash collision. Note, in this particular case bit 1 was set by h1(Dublin)

and bit 7 by h1(Copenhagen).

If each hash function {hi}ki=1 can be computed in a constant time (which
is true for all the most popular hash functions), the time to add a new
element or test an element is a fixed constant O(k) and independent from
the filter’s length m and the number of elements in the filter.

The performance of the Bloom filter is highly dependent on the chosen hash
functions. A hash function with a good uniformity will reduce the practically
observed false positive rate. On the other hand, the faster the computation
of each hash function, the smaller the overall time of each operation, and
it is therefore recommended to avoid cryptographic hash functions.

Example 2.5: Prevent compromised passwords (Spafford, 1991)
Consider a web service registration page where we want to prevent users
from choosing weak and compromised passwords. Note, that in the Dark
Web it is possible to find hundreds of millions1 hacked passwords that can
be used in a dictionary attack, a brute force attack that makes repetitive
attempts to defeat an authentication by trying all values from a pre-
arranged listing. Thus; every time the user types a new password, we
would like to ensure it is not in such a list. However, along with the lack
of security related to storing raw passwords, we don’t want to maintain
a huge dataset that grows linearly with every newly added password which
will slow down our lookups (as in traditional databases).

Therefore, the usage of a space-efficient Bloom filter is essential. The false
positive event, in this case, is a situation where we mistakenly think that
the entered password is unsuitable. In such rare cases, we need to ask
the user to type another password and that usually doesn’t hurt.

11.4 Billion Clear Text Credentials Discovered https://medium.com/4iqdelvedeep/3131d0a1ae14

https://medium.com/4iqdelvedeep/3131d0a1ae14
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Count unique elements in the filter

A method to estimate the number of unique elements indexed into
the filter was proposed by S. Joshua Swamidass and Pierre Baldi and, in
fact, is an extension of the Linear Counting algorithm that is discussed
in the next chapter. Using the information about the number of set bits
in the filter and the probability of each bit to be set, it provides a simple
formula to approximate the number of elements in the filter. Since two
identical elements added into the filter won’t change the number of set
bits, such approximation gives an estimation for the number of unique
elements (known as cardinality).

Algorithm 2.3: Counting unique elements in the Bloom filter
Input: Bloom filter of length m with k hash functions
Output: Number of unique elements in the filter
N← count

j=1...m
(BloomFilter[j ] = 1)

if N < k then
return 0

if N = k then
return 1

if N = m then
return m

k

return –m
k · ln

(
1 – N

m

)

Properties

False positives are possible. As has already been mentioned,
the Bloom filter doesn’t store elements and hardly relies on
the calculated hashes which are stored all together in a bit array. Such
space-efficient representation can lead to situations where some element
is not a member (wasn’t added to the filter), but the algorithm returns
like it is. Such an event is called a false positive and can occur because
of hash collisions or due to mess in stored bits — in the test operation
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there is no prior knowledge of whether the particular bit has been set by
the same hash function as the one we compare with.

The Bloom filter principle [Br04]: Wherever a list or set is used, and
space is at a premium, consider using a Bloom filter if the effect of false
positives can be mitigated.

Fortunately, such false positive situations rarely happen and their
probability Pfp can be easily estimated (actually, this is a lower bound):

Pfp ≈ (1 – e–
kn
m )k . (2.1)

As we can see from (2.1), under the fixed number of expected elements n,
the probability of false positives depends on the choice of k and m. It
is a clear trade-off between the length of the filter, the number of hash
functions, and the probability of such events.

In the extreme case, when the filter is full (meaning all bits are set),
every lookup will yield a (false) positive response. It means that the choice
of m depends on the (estimated) number of elements n that are expected
to be added, and m should be quite large compared to n.

In practice, the length of the filter m, under given false positive
probability Pfp and the expected number of elements n, can be determined
by the formula:

m = –
n lnPfp
(ln 2)2

. (2.2)

Thus, a filter must grow linearly with the number of elements to keep
the fixed false positive probability.

For the given ratio of m
n , meaning the number of allocated bits per

element, the false positive probability can be tuned by choosing
the number of hash functions k . The optimal choice of k is computed by
minimizing the probability of false positives in (2.1):

k =
m

n
ln 2. (2.3)
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In other words, the optimal number of hash functions k is about 0.7 times
the number of bits per element. Since k must be an integer, the smaller
sub-optimal values are preferred.

Some widely used near-optimal solutions can be found below.

Table 2.1: Near-optimal choices of parameters

k m
n Pfp

4 6 0.0561
6 8 0.0215
8 12 0.00314
11 16 0.000458

Example 2.6: Parameters estimation
According to (2.2), to support the false positive probability Pfp = 1%

the filter has to be 10 times longer than the expected number of elements
n and use 6 hash functions. However, the length of the filter doesn’t
depend on the size of elements themselves and stays the same for elements
of different natures.

Bloom filters can be seen as a generalization of hash tables. In fact,
a filter with only one hash function is equivalent to a hash table. However,
using many hash functions, Bloom filters can maintain the constant false
positive probability even for a fixed number of bits per element, while
hash tables cannot.

False negatives are not possible. In contrast to the situation above,
if the Bloom filter returns that a particular element isn’t a member, then
it’s definitely not a member of the set:

Pfn = 0. (2.4)

Works well while it fits in memory. As already mentioned above,
the probability of false positives can be decreased by allocating more
memory, this is why people tend to create bigger filters (with larger m).
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However, such classical Bloom filters work well while they fit in the main
memory. As soon as they grow too big and have to be moved on disk,
they immediately hit the problem induced by the design — uniformly
distributed hash functions produce random corresponding indices which
need to be randomly accessed every time — very unpleasant for disks
with rotating platters and moving heads (for solid-state storage devices
it is much better, but still not perfect).

Example 2.7: Required memory
According to (2.2), to handle 1 billion elements and keep the probability
of false positive events at about 2% using the optimal number of hash
functions, we need to choose a filter of m = –109 · ln (0.02)/(ln 2)2 ≈
8.14 · 109 bits long that is roughly 1 GB of memory.

Two different Bloom filters of the same length can be merged only if
they also have the same hash functions. In this case, the merge is just
a bitwise OR operation and the result is a full equivalent to the Bloom
filter built for the union of those two sets of elements. The intersection
of those two Bloom filters is also possible and can be done by bitwise
XOR, however, the result can have a higher probability of collisions.

Unfortunately, it is not possible to adjust the size of a Bloom filter when
it runs out of space without recomputing all the hashes that are already
in the filter, that is unlikely to be feasible in Big Data applications.

Example 2.8: Cache sharing (Fan, 2000)
Consider a list of distributed caching proxies P1, P2, . . . , Pn in a network
that shares their caches. If the content of the requested URL is stored on
a proxy Pi , then the proxy returns it without an actual call to the remote
server, otherwise, the content will be retrieved, stored locally, and sent to
the client.

With the goal of minimizing the network traffic and distributing the storage,
we can set up a routing in that proxy network and attempt forward
to a proxy that already has the content stored, if any, otherwise, call
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the remote server. Since requests from the client can come to any proxy,
there is a problem sharing the routing list on each proxy and when it’s
changed exchanging it within the network or merging, if necessary.

The Bloom filter is a natural choice to store such routing lists and perform
fast membership queries. It is also easily transferable in the network due
to its small size.

The false positive event, in this case, is that some proxy Pi assumes that
another proxy Pj may have the content for the requested URL, but in fact,
it doesn’t. Pi routes traffic to Pj and asks it to return the content, therefore
Pj has to call the remote server. As a result, it produces some additional
network traffic and stores redundant local copies for such content, which
is completely acceptable.

Deletion is not possible. To delete a particular element from
the Bloom filter it would need to unset its corresponding k bits in
the bit array. Unfortunately, a single bit could correspond to multiple
elements due to hash collisions and shared bits between elements.

A number of extensions have been developed that support deletion of
elements, but they always cost through space and speed. This is why
the classical Bloom filter is so fast and space-efficient.

Fortunately, missing deletion support is not a problem for many
real-world applications, but if you really need it you have to go for
modifications of the Bloom filter, for example the Counting Bloom filter.

2.2 Counting Bloom filter
The most popular extension of the classical Bloom filter that supports
deletion is the Counting Bloom filter , proposed by Li Fan, Pei Cao,
Jussara Almeida, and Andrei Z. Broder in 2000 [Fa00]. Building on
the classical Bloom filter algorithm, it introduces an array of m

counters {Cj }mj=1 corresponding to each bit in the filter’s array.

The Counting Bloom filter allows approximating the number of times
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each element has been seen in the filter by incrementing
the corresponding counter every time the element is added.
The associated CountingBloomFilter data structure contains a bit
array and the array of counters of length m, all initialized to zeros.

When we insert a new element into CountingBloomFilter, we
first compute its corresponding bit-positions, then for each position we
increment the associated counter and, only if it changes from zero to one,
set the bit in the filter, similar to the step of the classical Algorithm 2.1.

Algorithm 2.4: Adding element to the Counting Bloom filter
Input: Element x ∈ D
Input: Counting Bloom filter with m counters {Cj }mj=1 and k hash

functions {hi}ki=1

for i ← 1 to k do
j ← hi(x )

Cj ← Cj + 1

if Cj = 1 then
CountingBloomFilter[j ]← 1

The test operation looks exactly the same as for the classical Bloom
filter Algorithm 2.2 since we don’t need to check counters at all.
The amount of time required to test an element is comparable to
the classical algorithm because the filters’ bit arrays are the same.

Algorithm 2.5: Testing element in the Counting Bloom filter
Input: Element x ∈ D
Input: Counting Bloom filter with k hash functions {hi}ki=1

Output: False if element not found and True if element may exist
for i ← 1 to k do

j ← hi(x )

if CountingBloomFilter[j ] 6= 1 then
return False

return True
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The deletion is quite similar to the insertion but in reverse. To delete
an element x , we compute all k hash values hi = {hi(x )}ki=1 and decrease
the corresponding counters. If the counter changes its value from one to
zero, the corresponding bit in the bit-array has to be unset.

Algorithm 2.6: Deleting element from the Counting Bloom filter
Input: Element x ∈ D
Input: Counting Bloom filter with m counters {Cj }mj=1 and k hash

functions {hi}ki=1

for i ← 1 to k do
j ← hi(x )

Cj ← Cj – 1

if Cj = 0 then
CountingBloomFilter[j ]← 0

Algorithm 2.6 presupposes that element x exists (or may exist) in
the filter, therefore it might be necessary to test elements before
decreasing the corresponding counters.

Properties

The Counting Bloom filter inherits all the properties of the classical Bloom
filter, including false positive error estimation and recommendations for
the optimal choice of m and k given by the dependencies (2.2) and (2.3).

Naturally, Counting Bloom filters are much bigger than classical Bloom
filters because additional memory has to be allocated for the counters
even if most of them are zeros. Therefore, it is important to estimate how
large such counters can become and how their size depends on the filter’s
length m and the number of hash functions k .

Assuming that every counter C has a capacity level N, the probability
that the value goes over that capacity level (known as overflow probability)
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in a Counting Bloom filter of length m with the optimal choice of k from
the relation (2.3) is

Pr
(

max (C) ≥ N
)
≤ m ·

(
e ln 2

N

)N

. (2.5)

For instance, for 4-bit counters (N = 16) the overflow probability given by
formula (2.5) becomes

Pr
(

max (C) ≥ 16
)
≤ m · 1.37 · 10–15.

In other words, if we allocate 4 bits per counter, the probability of overflow
for practical values of m (e.g., a few billion bit-positions) during the initial
insertion into the filter is extremely small. After many deletions and
insertions, the probability can become a bit bigger, but is still small enough
for the practical usage.

To prevent arithmetic overflow (i.e., incrementing a counter that already
has the maximum possible value), each counter in the array must be
sufficiently large in order to retain the properties of the Bloom filters. In
practice, the counter consists of 4 or more bits and a Counting Bloom
filter, therefore, requires four times more space than a classical Bloom
filter.

It depends on the application, but if a 4-bit counter ever exceeds the value
of 15 we can simply “freeze” it and let it stay at 15. After many deletions,
this might lead to a situation where the Counting Bloom filter produces
a false negative response (the counter becomes zero when it shouldn’t be),
but the probability of such a chain of events is so low that it is much more
likely that our application will be rebooted and the filter re-created.

However, it is possible to design a more complex version of the Counting
Bloom filter with smaller counters (e.g., 2-bit) that uses less space and
is still practically useful by adopting an approach similar to closed
addressing in hash tables and introducing a secondary hash table to
manage overflowing counters.
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Therefore, the Counting Bloom filter supports only probabilistically
correct deletions because there is a non-zero probability of error as soon
as some counter goes above its maximal size.

Despite the noted peculiarities, Counting Bloom filters are extensively
used by Apache Hadoop and Apache Spark in MapReduce applications
to speed up the processing of huge datasets on big clusters by helping to
reduce their volume.

2.3 Quotient filter
When the classical Bloom filter and its modifications do not fit into
the main memory they are entirely unfriendly to storage due to
the requirements of multiple random accesses for any operation. One of
the data structures that supports the basic operations of Bloom filters,
but with better data locality and requiring only a small number of
contiguous disk accesses, is the Quotient filter , presented by Michael
Bender et al. in 2011 [Be11].

The filter achieves comparable performance regarding space and time,
but additionally supports deletions and can be dynamically resized or
merged. The name of this data structure originates from an arithmetic
quotient which is a result of the division operation.

The Quotient filter represents a dataset D = {x1, x2, . . . , xn} by
storing a p-bit fingerprint for each of them and requires only one hash
function to generate such fingerprints. In order to support enough
randomness, the hash function should generate uniformly and
independently distributed fingerprints.

Each fingerprint f in the algorithm is partitioned into q most significant
bits (the quotient) and r least significant bits (the remainder) using
the quotienting technique, suggested by Donald Knuth2.

2D. Knuth, The Art of Computer Programming, Vol. 3: Sorting and Searching, 1973
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Algorithm 2.7: Quotienting technique
Input: Fingerprint f
Output: Quotient fq and remainder fr
fr ← f mod 2r

fq ←
⌊

f
2r

⌋
return fq , fr

Practically, to improve spatial locality, the QuotientFilter data
structure is represented by a compact open addressing hash table with
m = 2q buckets where the remainder fr is stored in a bucket indexed by
the quotient fq . Possible collisions are resolved by Linear probing.

Given a remainder fr in bucket fq , the full fingerprint can be uniquely
reconstructed as

f = fq · 2r + fr .

Each bucket contains three metadata bits, all unset at the beginning:
is_occupied, is_continuation, and is_shifted — these play
an important role in navigating the data structure.

• is_occupied is set when the bucket j is the canonical bucket
(fq = j ) for some fingerprint f stored somewhere in the filter.

• is_continuation is set when the bucket is occupied, but not by
the first of the remainders that belong to the same bucket.

• is_shifted is set when the remainder in the bucket is not in its
canonical bucket.

Figure 2.1: Bucket in the Quotient filter

bucket fq

is_occupied is_continuation is_shifted

fr

When two different fingerprints f and f ′ have the same quotient
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(meaning fq = f ′q), it is a soft collision that can be resolved by the Linear
probing strategy that we discussed early. In Quotient filter it is
implemented by storing all the remainders of fingerprints with the same
quotient contiguously in a run. If necessary, a remainder can be shifted
forward from its original location and stored in a subsequent bucket,
wrapping around at the end of the array.

Algorithm 2.8: Using right shift to empty buckets
Input: Bucket index k

Input: Quotient filter of length m

prev ← QuotientFilter[k ]
i ← k + 1

while True do
if QF[i ] = NULL then

QF[i ]← prev [i ]

QF[i ].is_continuation← 1

QF[i ].is_shifted← 1

return QF

else
curr ← QF[i ]

QF[i ]← prev

QF[i ].is_continuation← prev .is_continuation
QF[i ].is_shifted← prev .is_shifted
prev ← curr

prev .is_continuation← curr .is_continuation
prev .is_shifted← curr .is_shifted

i ← i + 1

if i > m then
i ← 0

The sequence of one or more consecutive runs with no empty buckets
in between is called a cluster. All clusters are immediately preceded by
an empty bucket and the is_shifted bit of its first value is never set.
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The internal hash table is compactly stored in an array to reduce
the required memory and achieve better data locality; however, this
makes the navigation through it quite complex.

Consider a scan function that is designed to find the run. It starts by
walking backward from the canonical bucket for f to find the beginning
of the cluster. As soon as the cluster’s start is found, it goes forward
again to find the location of the first remainder for the bucket fq , that is
the actual start of the run rstart.

Algorithm 2.9: Scanning the Quotient filter to find the run
Input: Canonical bucket index fq , Quotient filter
j ← fq
while QF[j ].is_shifted = 1 do

j ← j – 1

rstart ← j

while j 6= fq do
/* skip all elements in the current run and find the next occupied bucket */

repeat
rstart ← rstart + 1

until QF[rstart].is_continuation 6= 1

repeat
j ← j + 1

until QF[j ].is_occupied = 1

rend ← rstart
repeat

rend ← rend + 1

until QF[rend].is_continuation 6= 1

return rstart, rend

When we want to insert a new element into QuotientFilter, we
first calculate its quotient and remainder. If the canonical bucket for
the element isn’t occupied, it can immediately be inserted using
the insertion procedure given by Algorithm 2.10. Otherwise, before
insertion, it is necessary to find an appropriate bucket with the scan
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function from Algorithm 2.9. Once the correct bucket is found, actual
insertion still requires the appropriate merging of the fr to the sequence
of already stored elements, that may need shifting right of subsequent
elements and updating the corresponding metadata bits respectively.

With the mentioned selection strategy for the appropriate bucket
and the right shift function given by Algorithm 2.8, we can formulate
the complete insertion procedure below.

Algorithm 2.10: Adding element to the Quotient filter
Input: Element x ∈ D
Input: Quotient filter with hash function h

f ← h(x )

fq , fr ← f

if QF[fq ].is_occupied 6= 1 and QF[fq ] is empty then
QF[fq ]← fr
QF[fq ].is_occupied← 1

return True

QF[fq ].is_occupied← 1

rstart, rend ← Scan(QF, fq)

for i ← rstart to rend do
if QF[i ] = fr then

/* fr already exists */

return True

else if QF[i ] > fr then
/* insert fr in the bucket i and shift others */

QF← ShiftRight(QF, i)

QF[i ]← fr
return True

/* the run should be extended with the new element */

QF← ShiftRight(QF, rend + 1)

QF[rend + 1]← fr
return True
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According to the Linear probing schema, the length of most runs is O(1)

and, the authors of the filter noted, it is highly likely that all runs have
length O(logm).

Example 2.9: Add elements to the filter
Consider a Quotient filter with 16-bit fingerprints produced by the 32-bit
version of the MurmurHash3 hash function:

h(x ) := MurmurHash3(x ) mod 16.

For the bucketing we reserve q = 3 most significant bits, hence the size of
the QuotientFilter is m = 23 = 8, and the rest p = 13 bits we store
into the chosen buckets.

Like in Example 2.3 we start indexing names of capitals and the first
element to add into the filter is Copenhagen. We need to compute its
fingerprint using the hash function h:

f = h(Copenhagen) = 4248224207.

According to Algorithm 2.7, the quotient and remainder are

fq =

⌊
f

213

⌋
= 7,

fr = f mod 213 = 490127823.

The canonical bucket for the element Copenhagen is j = fq = 7 where
we want to index its remainder fr . Insertion at this point is
straightforward since all buckets are not occupied and we insert
fr = 490127823 in the bucket with index 7 and set the is_occupied bit:

0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
490127823

In the same way, we index the elements Lisbon, that has the fingerprint
f = 629555247 and the canonical bucket 1, and Paris with the fingerprint
f = 2673248856 and the canonical bucket 4. Since those canonical buckets
are free, we insert remainders accordingly and set the is_occupied bits:
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0 1 2 3 4 5 6 7

0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
92684335 525765208 490127823

Next, we add element Stockholm with fingerprint f = 775943400, getting
its canonical bucket j = fq = 1 and the remainder fr = 239072488.
However, the canonical bucket 1 already has its is_occupied bit set,
meaning that it is already occupied by the remainder of another element
(element Lisbon in this case).

Since the is_shifted and is_continuation bits are not set, we are at
the beginning of the cluster that is also the start of the run. The remainder
fq is bigger than the already indexed value 92684335, therefore it should be
stored into the next available bucket, being bucket 2 and those is_shifted
and is_continuation bits have to be set. However, the is_occupied bit
for bucket 2 remains unchanged, because there is no stored remainder that
has it as a canonical bucket.

0 1 2 3 4 5 6 7

0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
92684335 239072488 525765208 490127823

run run run

cluster cluster cluster

The next element is Zagreb whose fingerprint f = 1474643542, canonical
bucket j = 2 and remainder fr = 400901718. Unfortunately, bucket 2 is
already in use by some shifted value as is shown by the set is_shifted
bit, however the is_occupied bit is not set. Thus, the value fr has to be
shifted right as well, into the next available bucket, which is bucket 3 in
this case.

0 1 2 3 4 5 6 7

0 0 0 1 0 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0
92684335 239072488 400901718 525765208 490127823

run run run run

cluster cluster cluster

We set the is_shifted bit to indicate that the bucket contains a value
shifted from its canonical position, but keep the is_continuation bit
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unset since it is the first element associated with that canonical bucket.
Additionally, we set the is_occupied bit for bucket 2 to remember that
there is at least one stored remainder that has it as its canonical bucket.

Finally, let’s add element Warsaw with fingerprint f = 567538184, whose
quotient and remainder are

fq =

⌊
f

213

⌋
= 1,

fr = f mod 213 = 30667272.

The canonical bucket j = fq = 1 is already occupied according to the set
is_occupied bit. However, other bits are not set, meaning that we are at
the beginning of the cluster, that is also the start of the run. The remainder
fq is smaller than the indexed value 92684335; thus it should be indexed
into the canonical bucket, and all other remainders have to be shifted
and marked as a continuation. In this case, the shifting also affects
the remainders from other runs, forcing us to shift them as well, set shifted
bits and mirror the continuation bits if they were set for their current
positions.

0 1 2 3 4 5 6 7

0 0 0 1 0 0 1 1 1 0 1 1 1 0 1 0 0 1 0 0 0 1 0 0
30667272 92684335 239072488 400901718 525765208 490127823

run run run run

cluster cluster

Testing for elements can be completed in the same way as insertion.
We check if the canonical bucket for the tested element has at least one
associated remainder somewhere in the filter by observing
the is_occupied bit. If the bit is not set, we can conclude that element
is definitely not in the filter. Otherwise, we scan the filter using
the scan procedure given by Algorithm 2.9 to find the appropriate run
for the bucket. Next, within that run, we compare stored remainders
with the remainder of the tested element taking into account that they
are all sorted. If such a remainder is found, we can report that
the element may exist in the filter.
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Algorithm 2.11: Testing element in the Quotient filter
Input: Element x ∈ D
Input: Quotient filter with hash function h

Output: False if element not found and True if element may exist
f ← h(x )

fq , fr ← f

if QF[fq ].is_occupied 6= 1 then
return False

else
rstart, rend ← Scan(QF, fq)

/* search for fr within the run */

for i ← rstart to rend do
if QF[i ] = fr then

return True

return False

Example 2.10: Test elements in the filter
Consider the QuotientFilter data structure that we built in
Example 2.9:

0 1 2 3 4 5 6 7

0 0 0 1 0 0 1 1 1 0 1 1 1 0 1 0 0 1 0 0 0 1 0 0
30667272 92684335 239072488 400901718 525765208 490127823

run run run run

cluster cluster

Let’s test the element Paris, with quotient fq = 4 and remainder fq =

525765208 as calculated earlier. Bucket 4 is already occupied, meaning
there is at least one remainder somewhere in the filter that has it as
the canonical bucket. We cannot at this point compare the value from
the bucket with the fr because the is_shifted bit is set and we need to
find a run that corresponds to canonical bucket 4 in the current cluster.

Thus, we scan from bucket 4 to the left and count buckets with set
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is_occupied bits until we reach the start of the cluster. In our example,
the cluster starts at bucket 1, and there are two occupied buckets (buckets 1
and 2) located left of bucket 4. Therefore, our run is the third in the cluster
and we need to scan right from the beginning of the cluster (bucket 1) until
we reach that run by counting buckets with unset is_continuation bits.
Finally, we find that the run starts within bucket 5, and start comparing
stored remainders, taking into account that they are sorted in ascending
order.

The value in bucket 5 exactly matches the remainder fq = 525765208, thus
we can conclude that element Paris may exist in the filter.

Deletions in a Quotient filter are handled in a very similar way to
the addition of a new element. However, since all remainders of
fingerprints with the same quotient are stored contiguously according to
their numerical order, removal of a remainder from the cluster must
shift all fingerprints to fill the “empty” entry after deletion and modify
the metadata bits respectively.

Algorithm 2.12: Using left shift to fill empty buckets
Input: Bucket index k

Input: Quotient filter of length m

i ← k + 1

while QF[i ] 6= NULL do
QF[i – 1]← QF[i ]

QF[i – 1].is_continuation← QF[i ].is_continuation
QF[i – 1].is_shifted← QF[i ].is_shifted
QF[i ]← NULL

QF[i ].is_continuation← 0

QF[i ].is_shifted← 0

i ← i + 1

if i > m then
i ← 0

Firstly, it is necessary to check if the canonical bucket is already
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occupied, otherwise the element is definitely not in the filter and we can
stop here. Afterward we use the scan procedure to find the appropriate
bucket and delete the requested element (if it exists) and shift
the subsequent elements and update the corresponding metadata bits.
Note, that if the deleted remainder was the last for its canonical bucket,
we also unset the is_occupied bit.

Algorithm 2.13: Deleting element from the Quotient filter
Input: Element x ∈ D
Input: Quotient filter with hash function h

Output: False if element not found and True otherwise
f ← h(x )

fq , fr ← f

if QF[fq ].is_occupied 6= 1 then
return True

rstart, rend ← Scan(QF, fq)

for i ← rstart to rend do
if QF[i ] = fr then

/* element found and can be deleted */

QF[i ]← NULL

if rstart = rend then
QF[i ].is_occupied← 0

else if i < rend then
QF← ShiftLeft(QF, i + 1)

return True

return False

Properties

False positives are possible. The Quotient filter data structure is
a compact representation of a multi-set of fingerprints, and its false
positive rate is a function of the hash function h and the number of
elements n added into the filter.
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Moreover, two different elements could have the same values for both
the remainder and quotient, that is called a hard collision. Due to such
extremely rare events, it is possible that false positive responses can
occur and their probability Pfp is upper bounded by

Pfp ≈ 1 – e–
n
2p ≤ n

2p
. (2.6)

The formula (2.6) shows that, under the fixed number of expected
elements n, there is a trade-off between the probability of false positives
Pfp and the length of the fingerprint p.

Practical implementations of Quotient filters use 32- and 64-bit fingerprints.

Similar to other hash tables, the load factor is very important in
the Quotient filter and we want to allocate at least as many buckets as
we expect elements, meaning we choose the number of buckets m as

m := 2q > n, (2.7)

and the length of the remainder r can be calculated from (2.6) as

r =

⌈
log

(
–
n

2q
· 1

ln (1 – Pfp)

)⌉
. (2.8)

False negatives are not possible. Same as with other data
structures in this chapter, if the Quotient filter finds an element is not
a member, then it is definitely not a member of the set:

Pfn = 0. (2.9)

The Quotient filter is about 20% bigger than the Bloom filter, but
faster because each access requires evaluating only a single hash function
and all data are stored in contiguous blocks. Tests in a Quotient filter
incur a single cache miss, as opposed to at least two in expectation for
the Bloom filter algorithm.
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Results of in-RAM performance comparisons in [Be12] show that Quotient
filters can handle 2.4 million inserts per second while Bloom filters are
limited to about 0.69 million. However, with tests for elements, they are
almost at the same level of about 2 million per second.

Example 2.11: Required memory
As stated in (2.7), to handle 1 billion elements, the Quotient filter has to
contain at least 230 buckets, meaning we cannot use fingerprints shorter
than 31 bits. If we want to keep the probability of false positive events
at about 2%, the number of bits for the remainder can be found from
the formula (2.8) as

r =

⌈
log
(
–
109

230
· 1

ln (1 – 0.02)

)⌉
= 6.

Therefore, the required length of the fingerprint is p = q + r = 36 bits,
where the first 30 bits are used for the bucketing and the rest 6 bits are
stored in the appropriate bucket. Since every bucket additionally contains
three metadata bits, the total size of the Quotient filter is 9 · 230 bits that
is roughly 1.2 GB of memory.

The Quotient filter can restore fingerprints from the stored data,
therefore, support deletion, merging, and resizing. The merge doesn’t
affect the false positive rates of the filters and deletion in a Quotient filter
is always correct in contrast to the Counting Bloom filter that supports
only probabilistically correct deletions.

Resizing of the Quotient filter (both, shrunk and expanded) can be
done by iterating over the filter and copying each fingerprint into
a newly allocated data structure without the need to re-hash. Two or
more Quotient filters can be merged using an algorithm similar to
the merge sort, the divide-and-conquer sorting algorithm invented by
John von Neumann. Thus, all input filters can be scanned in parallel
and the merged result is written to the output filter.

The time required to perform a test, addition or deletion in a Quotient
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filter is dominated by the time to scan backward and forward.

However, the Quotient filter is designed with a focus on big data (e.g.,
1 billion elements for 64-bit hash function) and for small- or medium-sized
datasets its complexity can diminish the benefits.

2.4 Cuckoo filter
Most modifications of the classical Bloom filter that support deletions
degrade either in space or performance. In order to handle this problem
Bin Fan, David Anderson, Michael Kaminsky, and Michael Mitzenmacher
in 2014 [Fa14] proposed the Cuckoo filter which was a compact variant
of the Cuckoo hash table that we discussed earlier, but adjusted to store
only fingerprints of some length p for each inserted element, instead of
key-value pairs.

Cuckoo filters are easier to implement, they support dynamic
additions and deletions, while using less space and achieving even higher
performance than other Bloom filter modifications in many practical
applications.

The CuckooFilter data structure is represented as a multi-way
associative Cuckoo hash table with m buckets each of which can store
up to b values. However, with the standard Cuckoo hashing, to insert
a new element, it is necessary to access the original existing elements in
order to determine where to relocate stored values if space is needed for
new ones. However, the Cuckoo filter only stores fingerprints and there
is no way to restore the original elements and re-hash them to find their
new bucket in the hash table.

With the purpose of overcoming this limitation and still employing
the Cuckoo hashing, the Cuckoo filter algorithm uses the Partial–Key
Cuckoo hashing, which allows the new bucket of the existing element to
be derived by its fingerprint without knowing the original element itself.

According to that schema, for each element x to be inserted,
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the algorithm computes a p-bit fingerprint f and the indexes of two
candidate buckets as follows:

i = h(x ) mod m,

j = (i ⊕ (h(f ) mod m)) mod m.
(2.10)

In order to distribute elements uniformly in the hash table,
the fingerprint f is additionally hashed with a hash function h before
the XOR calculation in formula (2.10).

When the fingerprints length p is small compared to the filter length m,
the XOR operation alters only that small number of lower bits, but most
of the higher order bits stay the same. This simply implies that elements
shifted from their primary buckets tend to be found close to each other in
their alternate buckets and distribution in the hash table is going to be
skewed which influences the efficiency of the filter.

Hashing the fingerprints ensures that these elements are relocated to buckets
in entirely different parts of the hash table, hence reducing hash collisions
and improving the table utilization.

The exclusive disjunction (XOR) operation ⊕ in the formula (2.10)
ensures an important property, that by knowing the current element’s
buckets k it is possible to compute its alternate bucket k∗ without
restoring the original element:

k∗ = (k ⊕ h(f )) mod m. (2.11)

To add a new element x into the Cuckoo filter, we compute indices
for two candidate buckets with (2.10). If at least one of those buckets is
empty, we insert the element into that bucket. Otherwise, we randomly
choose one of those buckets and store element x there, while moving the
element from that bucket to its alternative candidate bucket using (2.11).
We repeat this procedure until an empty bucket is found, or until a
maximum number of displacements is reached. If there are no empty
buckets, the filter is considered full.
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Algorithm 2.14: Adding element to the Cuckoo filter
Input: Element x ∈ D
Input: Cuckoo filter with fingerprinting and hash function h

Output: True if element has been added and False otherwise
f ← fingerprint(x )

i ← h(x )

j ← i ⊕ h(f )

if CuckooFilter[i ] has empty space then
CuckooFilter[i ].add(f )
return True

else if CuckooFilter[j ] has empty space then
CuckooFilter[j ].add(f )
return True

k ← sample({i , j})
for n ← 0 to MaxIter do

x ← sample(CuckooFilter[k ])
swap f and the fingerprint stored in entry x

k = k ⊕ h(f )

if CuckooFilter[k ] has empty space then
CuckooFilter[k ].add(f )
return True

return False

Example 2.12: Add elements to the filter
Consider a CuckooFilter data structure of length m = 8 that, for
simplicity, stores only one p = 16-bit fingerprint per bucket. We use
a single 32-bit MurmurHash3 hash function to compute the fingerprints
and the bucket indices.

Similar to other examples, we insert the names of capital cities, starting
with element Copenhagen, whose p-bit fingerprint is

f = MurmurHash3(Copenhagen) mod 2p = 49615.
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When its primary bucket i according to the formula (2.10) is

i = MurmurHash3(Copenhagen) mod m = 7,

and the alternate bucket j can be derived from i and the fingerprint f as
follows:

j = (i ⊕MurmurHash3(f )) mod m = (1⊕ 34475545) mod 10 = 0.

Thus, we can index the fingerprint f into either bucket 7 or 0, and, since
the filter is empty, we use the primary bucket:

0 1 2 3 4 5 6 7 8 9

49615

Similarly, we index the element Athens with fingerprint f = 27356 and
the candidate buckets 0 and 7. The primary bucket 0 isn’t occupied and
allows the storing of the fingerprint freely:

0 1 2 3 4 5 6 7 8 9

27356 49615

Consider element Lisbon, whose fingerprint is f = 16431 and the candidate
buckets are 7 and 9. We start with the primary bucket 7, but it is already
occupied in the CuckooFilter and it is at its maximum capacity of
one, hence we check the alternate bucket 9, which is empty, and we store
the fingerprint there:

0 1 2 3 4 5 6 7 8 9

27356 49615 16431

Next, consider the element Helsinki. It has fingerprint f = 15377 and
both bucket indices equal to 7. Note, that such an index collision is more
likely for small filters, as we have in this example, then for real ones.
Bucket 7 is occupied and cannot accept more than one element, therefore
we need to start the relocation procedure in the filter. First, we start with
the bucket k and swap the value 49615 from bucket 7 with the value f ,
then, relocate that value to a new bucket k that is derived from it by
formula (2.11):

k = (7⊕MurmurHash3(49615)) mod 10 = 0.
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0 1 2 3 4 5 6 7 8 9

27356 15377 16431

49615

Unfortunately, bucket 0 already contains value 27356 and we swap it with
the 49615, and need to compute the new bucket index for it:

k = (0⊕MurmurHash3(27356)) mod 10 = 7.

0 1 2 3 4 5 6 7 8 9

49615 15377 16431

27356

We are back to bucket 7 which isn’t empty and we are required to repeat
the relocation procedure once again. First, we store value 27356 in
the bucket, and then compute a new bucket for the value 15377:

k = (7⊕MurmurHash3(15377)) mod 10 = 7.

0 1 2 3 4 5 6 7 8 9

49615 27356 16431

15377

Due to the index collision that we mentioned earlier for that fingerprint,
we return to bucket 7 again and store value 15377 in it while relocating
the value 27356 to a new bucket k :

k = (7⊕MurmurHash3(27356)) mod 10 = 2.

0 1 2 3 4 5 6 7 8 9

49615 15377 16431

27356

Fortunately, bucket 2 is empty, so we can store value 27356 and finish
the insertion procedure.

0 1 2 3 4 5 6 7 8 9

49615 27356 15377 16431

The testing of element existence in the filter is straightforward. First,
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for the tested element, we compute the fingerprint and its candidate
buckets. If the fingerprint is present in either bucket, we conclude that
the element may exist. Otherwise, it is definitely not in the filter.

Algorithm 2.15: Testing element in the Cuckoo filter
Input: Element x ∈ D
Input: Cuckoo filter with fingerprinting and hash function h

Output: False if element not found and True if element may exist
f ← fingerprint(x )

i ← h(x )

j ← i ⊕ h(f )

if f ∈ CuckooFilter[i ] or f ∈ CuckooFilter[j ] then
return True

return False

Example 2.13: Test elements in the filter
Consider the CuckooFilter data structure that we built in Example 2.12:

0 1 2 3 4 5 6 7 8 9

49615 27356 15377 16431

Let’s test the element Lisbon whose candidate buckets are 7 and 9 and
fingerprint is f = 16431 as we computed above. We can find value 16431

in bucket 9 and conclude that the element Lisbon may exist in the filter.

In contrast, consider the element Oslo, that has fingerprint f = 53104

and candidate buckets 0 and 6. As we can see, there is no such value in
these buckets, therefore element Oslo is definitely not in the filter.

In order to delete an element, we build the fingerprint, then compute
the indices of the candidate buckets and lookup for the fingerprint
there. If it matches any existing values in either bucket, one copy of
the fingerprint is removed from that bucket.
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Algorithm 2.16: Deleting element from the Cuckoo filter
Input: Element x ∈ D
Input: Cuckoo filter with fingerprinting and hash function h

Output: True if element has been deleted and False otherwise
f ← fingerprint(x )

i ← h(x )

j ← i ⊕ h(f )

if f ∈ CuckooFilter[i ] then
CuckooFilter[i ].drop(f )
return True

else if f ∈ CuckooFilter[j ] then
CuckooFilter[j ].drop(f )
return True

return False

Properties

When the Cuckoo filter needs to support deletion, it must store multiple
copies of the same value or arrange counters for each stored value.
However, both approaches induce probabilistically correct, one – due to
limited bucket capacity (we cannot store more than 2b same values in
the table), and another because the counters overflow, as it was explained
in Counting Bloom filter. However, a non-deletable Cuckoo filter doesn’t
have this problem and much more space efficient because it doesn’t need
to remember identical values that were added multiple times.

False positives are possible. It is possible that different elements
could share the same fingerprint, but in most cases they have different
candidate buckets, thus can still be differentiated. However, when
the candidate buckets are also the same for those elements, a hard
collision occurs. Due to such extremely rare events, the filter can end up
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in false positive responses and their probability Pfp is

Pfp = 1 –

(
1 –

1

2p

)2b

≈ 2b

2p
. (2.12)

The formula (2.12) shows that, under the fixed number of expected
elements n, there is a trade-off between the probability of false positives
Pfp and the bucket size b, that can be compensated by the length of
the fingerprints p. Intuitively, if the fingerprints are sufficiently long,
Partial–Key Cuckoo hashing is a good approximation to standard Cuckoo
hashing, but longer fingerprints affect the required space.

Thus, the recommended fingerprint length p can be estimated as

p ≥
⌈

log 2b

Pfp

⌉
, (2.13)

and if we want to store in m buckets of size b at least as many values as
the number of input elements, the length of the filter is lower bounded
by

m ≥
⌈
n

b

⌉
. (2.14)

False negatives are not possible. Similar to others, if the Cuckoo
filter finds that an element is not a member, then it is definitely not
a member of the set:

Pfn = 0. (2.15)

Cuckoo filters ensure high space occupancy because they refine earlier
element-placement decisions when adding new elements. However, they
have a maximum capacity, which is expressed as a load factor α. After
reaching the maximum feasible load factor, insertions are non-trivially
and increasingly likely to fail, hence the hash table must expand to store
more elements.
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The average number of bits per element β can be defined as the ratio
between the length of the fingerprints and the load factor α that, under
the fixed false positive probability Pfp, can be estimated as

β ≤ 1

α
·
⌈

log 2b

Pfp

⌉
. (2.16)

Since Cuckoo hashing schema uses two hash functions, the load factor with
buckets of size b = 1 is 50% as the hash table is directly mapped. However,
increasing the bucket size allows to improve table occupancy, for instance,
for b = 2 and b = 4 the load factors are 84% and 95%, correspondingly.

The experimental study [Fa14] showed that buckets of size b ∈ {1, 2, 3, 4}
are enough for practically important cases.

Example 2.14: Required memory
For instance, we want to handle 1 billion elements with a Cuckoo filter,
keeping the probability of false positive events at about 2% and table
occupancy at 84%. To support such load factor we choose the size of
buckets as b = 2, meaning the length of the filter m = 229, according
to (2.14).

As stated in (2.13), the minimal fingerprint length is

p =

⌈
log 4

0.02

⌉
= 8.

Therefore, the required length of the fingerprint is 8 bits and the total size
of the Cuckoo filter is 2 · 8 · 229 bits that is roughly 1.07 GB of memory.

To compare the space requirements with other studied filters, we can use
b = 1 that achieves 50% of table occupancy and requires the filter of length
m = 230. According to (2.13), we need to use 9-bits fingerprints, that
results in about 0.94 GB of memory.

In fact, Cuckoo filters use a similar approach as the d-left Counting
Bloom filter [Bo06], but they achieve better space efficiency and much
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more straightforward to implement. For applications that store many
elements and target moderately low false positive rates (less than 3%),
Cuckoo filters offer lower space overhead than even space-optimized
Bloom filters.

However, when the Cuckoo filter is at its maximum capacity,
the underlying hash table must be extended, until then it is not possible
to add new elements. In contrast, with the Bloom filter it is still
possible to keep inserting new elements at the cost of the increased false
positive rate.

Conclusion
This chapter is dedicated to membership problems and we learned how
traditional hash tables can be replaced or extended to be practically
applicable for big data handling. We have learned the most well-known
probabilistic data structure called the Bloom filter and discussed its
strength and weaknesses, then considered its modifications that are
widely used in practice. Additionally, we studied the modern alternatives
that have better data locality, support more operations, and are tuned
for good performance for large datasets.

If you are interested in more information about the material covered
here or want to read the original papers, please take a look at the list of
references that follows this chapter.

In the next chapter we study the problem of determining the number
of distinct elements in a dataset, that can be challenging for big data
and also requires probabilistic approaches to be efficiently solved.
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3
Cardinality

The cardinality estimation problem is a task to find the number of distinct
elements in a dataset where duplicates are present. Traditionally, to
determine the exact cardinality of a set, classical methods build a list
of all elements, and use sorting and search to avoid listing elements
multiple times. Counting the number of elements in that list gives
the accurate number of the unique elements, but it has a time complexity
of O(N·logN), where N is the number of all elements including duplicates,
and requires auxiliary linear memory, that is unlikely to be feasible for
Big Data applications that operate huge datasets of large cardinalities.
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Example 3.1: Unique visitors
One of the valuable KPIs for any website is the number of unique visitors
that have visited it over a specified period of time. For simplicity, we
assume that unique visitors use different IP addresses, therefore we need
to calculate the number of unique IPs which according to IPv6 Internet
Protocol version are represented by 128-bit strings. Is this an easy task?
Can we just use the classical methods to count the number exactly? That
depends on the popularity of the website.

Consider traffic statistics for March 2017 of the top three most popular
retail websites in the United States: amazon.com, ebay .com and
walmart .com. According to SimilarWeb1, the average number of visits to
those websites was about 1.44 billion and the average number of pages
viewed per visit was 8.24. Therefore, the statistics for March 2017 include
about 12 billion IP addresses at 128-bit each, meaning a total size of
192 GB.

If we assume that every 10th of those visitors was unique, we can expect
cardinality of such a set at about 144 million and the memory required to
store the list of unique elements is 23 GB.

Another example illustrates the challenge of cardinality estimation for
scientific researches.

Example 3.2: DNA analysis (Giroire, 2006)
One of the long-standing tasks in human genome research is to study
correlations in DNA sequences. DNA molecules include two paired strands,
each made up of four chemical DNA-base units, marked A (adenine),
G (guanine), C (cytosine), and T (thymine). The human genome contains
about 3 billion such base pairs. Sequencing means determining the exact
order of the base pairs in a segment of DNA.

From a mathematical point of view, a DNA sequence can be considered
a string of symbols A, G, C, T which can be as long as you want, and we
can consider them as an example of a potentially infinite dataset.

The correlation measuring problem can be formulated as a task of

1Traffic Overview https://www.similarweb.com/website/amazon.com?competitors=ebay.com

https://www.similarweb.com/website/amazon.com?competitors=ebay.com
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determining the number of distinct substrings of some fixed size in a piece
of DNA. The idea is that a sequence with a few distinct substrings is
more correlated than a sequence of the same size but with more distinct
substrings.

Such experiments demand multiple runs on many huge files and to speed
up the research they require only limited or even constant memory and
small execution time, which is unfeasible with exact counting algorithms.

Thus, the possible gains of the accurate cardinality estimation are
neglected by large time processing and memory requirements. Big Data
applications shell use more practical approaches, mostly based on various
probabilistic algorithms, even if they can provide only approximated
answers.

While processing data, it is important to understand the size of the dataset
and the number of possible distinct elements.

Consider the potentially infinite sequence of 1-letter strings a, d , s, . . . ,
which is based on letters from the English alphabet. The cardinality can be
easily estimated and it is upper bounded by the number of letters, which
is 26 in the modern English language. Obviously, in this case, there is
no need to apply any probabilistic approach and a naive dictionary-based
solution of exact cardinality calculation works very well.

To approach the cardinality problem, many of the popular probabilistic
methods are influenced by the ideas of the Bloom filter algorithm, they
operate hash values of elements, then observe common patterns in their
distribution, and make reasoned “guesses” about the number of unique
elements without the need to store all of them.

3.1 Linear Counting
As a first probabilistic approach to the cardinality problem, we consider
the linear-time probabilistic counting algorithm, the Linear Counting
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algorithm. The original ideas were proposed by Morton Astrahan, Mario
Schkolnick, and Kyu-Young Whang in 1987 [As87] and the practical
algorithm was published by Kyu-Young Whang, Brad Vander-Zanden,
and Howard Taylor in 1990 [Wh90].

The immediate improvement to the classical exact methods was to
hash elements with some hash function h, which out-of-the-box can
eliminate duplicates without the need to sort elements with a payout of
introducing some probability of error due to possible hash collisions (we
cannot distinguish duplicates and “accidental duplicates”). Thus, using
such a hash table, only a proper scan procedure is required to implement
a simple algorithm that already outperforms the classical approach.

However, for datasets with huge cardinalities, such hash tables could
be quite large and require memory that grows linearly with the number
of distinct elements in the set. For systems with limited memory, it
will require disk or distributed storage at some point, which drastically
reduces the benefits of hash tables due to slow disk or network access.

Similar to the Bloom filter idea, to work-around such an issue,
the Linear Counting algorithm doesn’t store the hash values themselves,
but instead their corresponding bits, replacing the hash table with a bit
array LinearCounter of length m. It is assumed that m still is
proportional to the expected number of distinct elements n, but requires
only 1 bit per element which is feasible for most cases.

In the beginning, all bits in LinearCounter are equal to zero. To
add a new element x into such a data structure, we compute its hash
value h(x ) and set the corresponding bit to one in the counter.

Algorithm 3.1: Adding element to the Linear counter
Input: Element x ∈ D
Input: Linear counter with hash function h

j ← h(x )

if LinearCounter[j ] = 0 then
LinearCounter[j ]← 1
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Since only one hash function h is used, we can expect many additional
hard collisions when two different hash values set the same bit in the array.
Thus, the exact (or even near-exact) number of distinct elements can no
longer be directly obtained from such a sketch.

The idea of the algorithm leads to distributing elements into buckets
(bits indexed by hash values) and keeps a LinearCounter bit array
indicating which buckets are hit. Observing the number of hits in
the array leads to the estimate of the cardinality.

In the first step of the Linear Counting algorithm, we build our
LinearCounter data structure as is shown in Algorithm 3.1. Having
such a sketch, the cardinality can be estimated using the observed
fraction of empty bits V by the formula:

n ≈ –m · lnV. (3.1)

We see clearly now how collisions impact on the cardinality estimation
in the Linear Counting algorithm — each collision reduces the number
of bits that have to be set, making the observed fraction of unset bits
bigger than the real value. If there were no hash collisions, the final
count of set bits would be the desired cardinality. However, collisions
are unavoidable and the formula (3.1) actually gives an overestimation
of the exact cardinality and, since the cardinality is an integer value, we
prefer to round its result to the nearest smaller integer.

Thus, we can formulate the complete counting algorithm as below.

Algorithm 3.2: Estimating cardinality with Linear Counting
Input: Dataset D
Output: Cardinality estimation
LinearCounter[i ]← 0, i = 0 . . .m – 1

for x ∈ D do
Add(e,LinearCounter)

Z← count
i=0...m–1

(LinearCounter[i ] = 0)

return b–m · ln Z
m c
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Example 3.3: Linear Counting algorithm
Consider a dataset that contains 20 names of capital cities extracted
from recent news articles: Berlin, Berlin, Paris, Berlin, Lisbon, Kiev,
Paris, London, Rome, Athens, Madrid, Vienna, Rome, Rome, Lisbon,
Berlin, Paris, London, Kiev, Washington.

For such small cardinalities (actual cardinality is 10) to have a standard
error about 10% we need to choose the length of the LinearCounter
data structure at least as the expected number of unique elements, thus
let’s choose m = 24. As the hash function h with values in {0, 1, . . . , 24 –1}
we use a function based on 32-bit MurmurHash3 defined as

h(x ) := MurmurHash3(x ) mod m,

and cities hash values can be found in the table below.

City h(City)
Athens 12
Berlin 7
Kiev 13
Lisbon 15
London 14

City h(City)
Madrid 14
Paris 8
Rome 1
Vienna 6

Washington 11

As we can see, the cities London and Madrid share the same value, but
such collisions are expected and completely natural. The LinearCounter
data structure has the following view:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 0 0 0 0 1 1 1 0 0 1 1 1 1 1

According to the Linear Counting algorithm, we calculate the fraction V

of empty bits in the LinearCounter:

V =
9

16
= 0.5625

and the estimated cardinality is

n ≈ –16 · ln 0.5625 ≈ 9.206,

which is pretty close to the exact number 10.
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Properties

If the hash function h can be computed in a constant time (which is true
for the most popular hash functions), the time to process every element is
a fixed constant O(N), where N is the total number of elements, including
duplicates. Thus, the algorithm has O(N) time complexity.

As for any other probabilistic algorithm, there is a number of
parameters that can be tuned to influence its performance.

The expected accuracy of the estimation depends on the bit array
size m and its ratio to the number of distinct elements α = m

n , called
the load factor . Unless α ≥ 1 (m > n is not a practically interesting
case), there is a non-zero probability Pfull that LinearCounter bit
array becomes full, called the fill-up probability, that fatally distorts
the algorithm and blows up the expression (3.1). The probability Pfull

depends on the load factor and, consequently, on the size m that should
be selected big enough to have the fill-up probability negligible.

The standard error δ is a measure of the variability of the estimate
provided by Linear Counting and there is a trade-off between it and
the bit array size m. Decreasing the standard error results in more
precise estimates, but increases the required memory.

Table 3.1: Trade-off between accuracy and bit array size

n
m

δ = 1% δ = 10%

1000 5329 268
10000 7960 1709
100000 26729 12744
1000000 154171 100880
10000000 1096582 831809
100000000 8571013 7061760

The dependency on choosing m is quite complex and has no analytical
solution. However, for a widely acceptable fill-up probability Pfull = 0.7%
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the algorithm authors have provided precomputed values that are given
in Table 3.1 and can be used as references.

Since the fill-up probability is never zero, the bit array very rarely
becomes full and distorts Algorithm 3.2. When working with small
datasets, we can re-index all elements with a different hash function or
increase the size of LinearCounter. Unfortunately, such solutions
won’t work for huge datasets and, together with quite high time
complexity, require a search for alternatives.

However, Linear Counting performs very well when the cardinality
of the dataset being measured is not extremely big and can be used to
improve other algorithms, developed to provide the best possible behavior
for huge cardinalities.

In the Linear Counting algorithm, the estimation of the cardinality
is approximately proportional to the exact value, this is why the term
“linear” is used. In the next section, we consider an alternative algorithm
that could be classified as “logarithmic” counting since it is based on
estimations that are logarithms of the true cardinality.

3.2 Probabilistic Counting
One of the counting algorithms that is based on the idea of observing
common patterns in hashed representations of indexed elements is a class
of Probabilistic Counting algorithms invented by Philippe Flajolet and
G. Nigel Martin in 1985 [Fl85].

As usual, every element is pre-processed by applying a hash function h

that transforms elements into integers sufficiently uniformly distributed
over a scalar range {0, 1, . . . , 2M – 1} or, equivalently, over the set of
binary strings2 of length M:

h(x ) = i =
M–1∑
k=0

ik · 2k := (i0i1 . . . iM–1)2 , ik ∈ {0, 1}.

2We use the “LSB 0” numbering scheme and start at zero for the least significant bit (LSB)
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Flajolet and Martin noticed that patterns:

0k1 :=

k times︷ ︸︸ ︷
00 . . . 0 1

should appear in such binary strings with probability 2–(k+1) and, if
recorded for each indexed element, can play the role of a cardinality
estimator.

Every pattern can be associated with its index, called rank, that is
calculated by the formula:

rank(i) =


min
ik 6=0

k , for i > 0,

M for i = 0
(3.2)

and simply equivalent to the left-most position of 1, known as the least
significant 1-bit position.

Example 3.4: Rank calculation
Consider an 8-bit long integer number 42 that has the following binary
representation using the “LSB 0” numbering scheme:

42 = 0 ·20+1 ·21+0 ·22+1 ·23+0 ·24+1 ·25+0 ·26+0 ·27 = (01010100)2 .

Thus, the ones appear at positions 1, 3, and 5, therefore, according to
the definition (3.2), the rank(42) is equal to:

rank(42) = min(1, 3, 5) = 1.

The occurrences of the 0k1 pattern, or simply rank(·) = k , in binary
representations of hash values of each indexed element, can be compactly
stored in a simple data structure Counter, also known as a FM Sketch,
that is represented as a bit array of length M.

At the start, all bits in Counter are equal to zero. When we need to
add a new element x into the data structure, we compute its hash value
using the hash function h, then calculate rank(x ) and set
the corresponding bit to one in the array, as stated in the algorithm
below.
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Algorithm 3.3: Adding element to simple counter
Input: Element x ∈ D
Input: Simple counter with hash function h

j ← rank(h(x ))

if Counter[j ] = 0 then
Counter[j ]← 1

In this way, the one in the Counter at some position j means that
the pattern 0j 1 has been observed at least once amongst the hashed
values of all indexed elements.

Example 3.5: Build a simple counter
Consider the same dataset as in Example 3.3 that contains 20 names
of capital cities extracted from recent news articles: Berlin, Berlin,
Paris, Berlin, Lisbon, Kiev, Paris, London, Rome, Athens, Madrid,
Vienna, Rome, Rome, Lisbon, Berlin, Paris, London, Kiev, Washington.

As the hash function h we can use 32-bit MurmurHash3, that maps elements
to values from {0, 1, . . . , 232 – 1}, therefore we can use a simple counter
Counter of length M = 32. Using the hash values already computed in
Example 3.3 and the definition (3.2), we calculate ranks for each element:

City h(City) rank
Athens 4161497820 2
Berlin 3680793991 0
Kiev 3491299693 0
Lisbon 629555247 0
London 3450927422 1
Madrid 2970154142 1
Paris 2673248856 3
Rome 50122705 0
Vienna 3271070806 1

Washington 4039747979 0

Thus, the Counter has the following form:
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Let’s stress a very interesting theoretical observation. Based on
the uniform distribution of the values, if n is the exact number of
the distinct elements indexed so far, then we can expect that one in the
first position can appear in about n

2 cases, in the second position in
about n

22
cases, and so on. Thus, if j � log2 n, then the probability of

discovering one in the j -th position is close to zero, hence
the Counter[j ] will almost certainly be zero. Similarly, for j � log2 n
the Counter[j ] will almost certainly be one. If value j is around
the log2 n, then the probability to observe one or zero in that position is
about the same.

Thus, the left-most position R of zero in the Counter after inserting
all elements from the dataset can be used as an indicator of log2 n. In
fact, a correction factor φ is required and the cardinality estimation can
be done by the formula:

n ≈ 1

φ
2R, (3.3)

where φ ≈ 0.77351.

Flajolet and Martin have chosen to use the least significant 0-bit position
(the left-most position of 0) as the estimation of cardinality and built their
algorithm based on it. However, from the observation above we can see,
that the most significant 1-bit position (the right-most position of 1) can
be used for the same purpose; however, it has a flatter distribution that
leads to a bigger standard error.

The algorithm to compute the left-most position of zero in a simple
counter can be formulated as follows.
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Algorithm 3.4: Computing the left-most zero position
Input: Simple counter of length M

Output: The left-most position of zero
for j ← 0 to M – 1 do

if Counter[j ] = 0 then
return j

return M

Example 3.6: Cardinality estimation with simple counter
Consider the Counter from Example 3.5 and compute the estimated
number of distinct elements.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Using Algorithm 3.4, in the Counter the left-most value 0 appears in
position R = 4, therefore, according to the formula (3.3), the cardinality
estimation is

n ≈ 1

0.77351
24 ≈ 20.68.

The exact cardinality of the set is 10, meaning the computed estimation
has a huge error due to the fact that the values of R are integers and for
very close ranks we can obtain results that differ in some binary orders
of magnitude. For instance, in our example, R = 3 would give an almost
perfect estimation of 10.34.

Theoretically, the cardinality estimation based on a single simple counter
can provide very close expected values, but it has quite a high variance that
usually corresponds, as we also observed in Example 3.6, to the unpractical
standard error δ of one binary order of magnitude.

Obviously, the weakness of the one-counter approach is that there is
a lack of highly confident estimations for the cardinality (in fact, it makes
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its prediction based on a single estimation only).

Thereby, the natural extension of the algorithm is to have many simple
counters and, consequently, increase the number of estimations. The final
prediction n can be obtained by averaging the predictions Rk from those
counters {Counterk}m–1

k=0 .

Thus, the modified formula (3.3) of the Probabilistic Counting
algorithm has the form:

n ≈ 1

φ
2R̄ =

1

φ
2

1
m

m–1∑
k=0

Rk

, (3.4)

and the cardinality n will have the same-quality estimated value, but
with a much smaller variance.

The obvious practical disadvantage to building m independent simple
counters is the requirement to compute values of m different hash
functions that, given that a single hash function can be computed in
O(1), has O(m) time complexity and quite high CPU costs.

The solution to optimizing the Probabilistic Counting algorithm is to
apply a special procedure, called stochastic averaging, when m hash
functions are replaced by only one but its value split by quotient and
remainder, which are used to update a single counter per element.
The remainder r is used to choose one out of m counters and quotient q
to calculate the rank and find the appropriate index to be updated in
that counter.

Algorithm 3.5: Using stochastic averaging to update counters
Input: Element x ∈ D
Input: Array of m simple counters with hash function h

r ← h(x ) mod m

q ← h(x ) div m :=
⌊
h(x)
m

⌋
j ← rank(q)

if Counterr [j ] = 0 then
Counterr [j ]← 1
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Applying the stochastic averaging Algorithm 3.5 to the Probabilistic
Counting, under the assumption that quotient-based distribution of
elements is fair enough, we may expect that n

m elements have been indexed
by each simple counter {Counterk}m–1

k=0 , therefore the formula (3.4) is
a good estimation for n

m (not n directly):

n ≈ m

φ
2R̄ =

m

φ
2

1
m

m–1∑
k=0

Rk

. (3.5)

Algorithm 3.6: Flajolet–Martin algorithm (PCSA)
Input: Dataset D
Input: Array of m simple counters with hash function h

Output: Cardinality estimation
for x ∈ D do

r ← h(x ) mod m

q ← h(x ) div m

j ← rank(q)

if Counterr [j ] = 0 then
Counterr [j ]← 1

S← 0

for r ← 0 to m – 1 do
R← LeftMostZero(Counterr )

S← S + R

return m
φ
· 2

1
m
S

The corresponding Algorithm 3.6 is called the Probabilistic Counting
algorithm with stochastic averaging (PCSA) and is also known as
the Flajolet–Martin algorithm. In comparison to its version with m hash
functions, it reduces the time complexity for each element to about
O(1).
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Example 3.7: Cardinality estimation with stochastic averaging
Consider the dataset and the hash values computed in Example 3.5 and
apply a stochastic averaging technique simulating m = 3 hash functions.
We use the remainder r to choose one out of three counters and the quotient
q to calculate the rank.

City h(City) r q rank(q)
Athens 4161497820 0 1387165940 2
Berlin 3680793991 1 1226931330 1
Kiev 3491299693 1 1163766564 2
Lisbon 629555247 0 209851749 0
London 3450927422 2 1150309140 2
Madrid 2970154142 2 990051380 2
Paris 2673248856 0 891082952 3
Rome 50122705 1 16707568 4
Vienna 3271070806 1 1090356935 0

Washington 4039747979 2 1346582659 0

Every counter handles information for about one-third of the cities,
therefore, the distribution is fair enough. After indexing all elements and
setting the appropriate bits in the corresponding counters, our counters
have the following forms.

COUNTER0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

COUNTER1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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COUNTER2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The left-most positions of zero for each counter (highlighted above) are
R0 = 1, R1 = 3 and R2 = 1. Thus, the estimation of the cardinality
according to formula (3.5) is

n ≈ 3

φ
2

1
3

2∑
k=0

Rk

≈ 3

0.77351
2

1+3+1
3 ≈ 12.31.

The computed estimation is very close to the true cardinality value of
10, and even without using too many counters, it notably outperforms
the estimation from Example 3.6.

Properties

The Flajolet–Martin algorithm works well for datasets with large
cardinalities and produces good approximations when n

m > 20. However,
additional non-linearities can appear in the algorithm for small
cardinalities that usually require special corrections.

One possible correction to the algorithm was proposed by Björn
Scheuermann and Martin Mauve in 2007 [Sc07] which adjusted
the formula (3.5) by adding a term that corrects it for small
cardinalities and quickly converges to zero for large cardinalities:

n ≈ m

φ

(
2R̄ – 2–κ ·R̄

)
, (3.6)

where κ ≈ 1.75.

The standard error δ of the Flajolet–Martin algorithm is inversely
related to the number of used counters and can be approximated as

δ ≈ 0.78√
m

. (3.7)
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The reference values of the standard error for the widely used number
of counters can be found in Table 3.2.

The length M of each counter Counter can be selected in a way that:

M > log2
(
n

m

)
+ 4, (3.8)

thus, practicaly used M = 32 is enough to count cardinalities well beyond
109 using 64 counters.

Table 3.2: Trade-off between accuracy and storage (M = 32)

m Storage δ

64 256 bytes 9.7%

256 1.024 KB 4.8%

1024 4.1 KB 2.4%

The simple counters that have been built for different datasets can be
easily merged together, that results in a Counter for the union of those
datasets. Such merging is trivial and can be done by applying a bitwise
OR operation.

Like the Bloom filter, the Probabilistic Counting algorithms do not
support deletions. But, following the approach used in the Counting
Bloom filter, their inner bit arrays can be extended by counters and they
will support probabilistically correct deletions. However, the increased
storage requirements have to be taken into account.

3.3 LogLog and HyperLogLog
The most popular probabilistic algorithms to estimate cardinality used
in practice are the LogLog family of algorithms that includes the LogLog
algorithm, proposed by Marianne Durand and Philippe Flajolet in
2003 [Du03], and its successors HyperLogLog and HyperLogLog++.
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The algorithms use an approach that is similar to the Probabilistic
Counting algorithm in a way that estimation of the cardinality n is done
by observing the maximum number of leading zeros in the binary
representation of values. They all require an auxiliary memory and
perform a single pass over the data to produce an estimate of
the cardinality.

As usual, every element in the dataset is pre-processed by applying
a hash function h that transforms elements into integers sufficiently
uniformly distributed over a scalar range {0, 1, . . . , 2M–1} or, equivalently,
over the set of binary strings3 of length M:

h(x ) = i =
M–1∑
k=0

ik · 2k := (i0i1 . . . iM–1)2 , ik ∈ {0, 1}.

The steps of the algorithms are similar to PCSA, which we reproduce
here once again. First, it splits the initial dataset or input stream into
some number of subsets, each of these is indexed by one of m simple
counters. Then, according to the stochastic averaging, because there is
a single hash function, we choose the counter for the particular element x
using one part of its hash value h(x ), while another part is used to update
the corresponding counter.

All algorithms discussed here are based on the observation of
the patterns 0k1 that occur at the beginning of the values for
the particular counter, and associate each pattern with its index, called
rank. The rank is equivalent to the least significant 1-bit position in
the binary representation of the hash value of indexed element and can
be calculated by the formula (3.2). Each simple counter builds its own
cardinality observation based on the seen ranks, the final estimation of
the cardinality is produced from such observations using an evaluation
function.

In regards to storage, the counters in the Probabilistic Counting
algorithm are relatively costly to maintain, but the LogLog algorithm

3We use the “LSB 0” numbering scheme and start at zero for the least significant bit (LSB)
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suggests a more storage-efficient solution together with a better
evaluation function and bias correction approach.

LogLog algorithm

The basic idea of the LogLog algorithm starts with the computation of
ranks for each input element based on a single hash function h. Since we
can expect that n

2k
elements can have rank(·) = k , where n is the total

number of elements indexed into a counter, the maximal observed rank
can provide a good indication of the value of log2 n:

R = max
x∈D

(rank(x )) ≈ log2 n. (3.9)

However, such estimation has an error of about ±1.87 binary orders of
magnitude, which is unpractical. To reduce the error, the LogLog
algorithm uses a bucketing technique based on the stochastic averaging
and splits the dataset into m = 2p subsets S0, S1, · · · , Sm–1, where
the precision parameter p defines the number of bits used in navigation.

Thus, for every element x from the dataset, the first p bits of the M-bit
hash value h(x ) can be taken to find out the index j of the appropriate
subset:

j = (i0i1 . . . ip–1)2 ,

and the rest (M – p) bits are indexed into the corresponding counter
Counter[j ] to compute the rank and get the observation Rj according
to formula (3.9).

Under fair distribution, every subset receives n
m elements, therefore

observations Rj from the counters {Counter[j ]}m–1
j=0 can provide

an indication of the value of log2 n
m , and using their arithmetic mean

with some bias correction, we can reduce a single observation variance:

n = αm ·m · 2
1
m

m–1∑
j=0

Rj

, (3.10)

where αm =

(
Γ

(
– 1
m

)
· 1–2

1
m

log 2

)m

, Γ(·) is the gamma function. However,
for most practical cases m ≥ 64 it is enough to just use αm ≈ 0.39701.
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Algorithm 3.7: Estimating cardinality with LogLog
Input: Dataset D
Input: Array of m LogLog counters with hash function h

Output: Cardinality estimation
Counter[j ]← 0, j = 0 . . .m – 1

for x ∈ D do
i ← h(x ) := (i0i1 . . . iM–1)2 , ik ∈ {0, 1}
j ← (i0i1 . . . ip–1)2
r ← rank((ipip+1 . . . iM–1)2)

Counter[j ]← max (Counter[j ], r)

R← 1
m

m–1∑
k=0

Counter[j ]

return αm ·m · 2R

Properties

The standard error δ of the LogLog algorithm is inversely related to
the number of used counters m and can be closely approximated as

δ ≈ 1.3√
m

. (3.11)

Hence, for m = 256 the standard error is about 8% and for m = 1024 it
decreases to about 4%.

The storage requirements of the LogLog algorithm can be estimated as
O(log2 log2 n) bits of storage if counts till n are needed. More precisely,
the total space required by the algorithm in order to count to n is
m · log2 log2 n

m (1 + O(1)).

In comparison to the Probabilistic Counting algorithm where each
counter requires 16 or 32 bits, the LogLog algorithm requires much
smaller counters {Counter[j ]}m–1

j=0 , usually of 5 bits each. However,
while the LogLog algorithm provides better storage-efficiency than
the Probabilistic Counting algorithm, it is slightly less accurate.
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Assume that we need to count cardinalities till 230, that is about 1 billion,
with an accuracy of about 4%. As already mentioned, for such a standard
error, m = 1024 buckets are required, each of which will receive roughly
n
m = 220 elements.

The log2

(
log2 2

20
)
≈ 4.32, therefore, it is enough to allocate about 5 bits

per bucket (i.e., a value less than 32). Hence, to estimate cardinalities up
to about 109 with the standard error of 4%, the algorithm requires 1024
buckets of 5 bits, which is 640 bytes in total.

HyperLogLog algorithm

An improvement of the LogLog algorithm, called HyperLogLog, was
proposed by Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric
Meunier in 2007 [Fl07]. The HyperLogLog algorithm uses 32-bit hash
function, a different evaluation function, and various bias corrections.

Similar to the LogLog algorithm, HyperLogLog uses randomization to
approximate the cardinality of a dataset and has been designed to handle
cardinalities up to 109 with a single 32-bit hash function h splitting
the dataset into m = 2p subsets, with precision p ∈ 4 . . . 16.

Additionally, the evaluation function differentiates the HyperLogLog
algorithm from the standard LogLog. The original LogLog algorithm
uses the geometric mean while the HyperLogLog uses a function that is
based on a normalized version of the harmonic mean:

n̂ ≈ αm ·m2 ·

m–1∑
j=0

2–Counter[j ]

 , (3.12)

where
αm =

(
m

∫ ∞
0

(
log2

(
2 + x

1 + x

))m

dx

)–1

.

The approximate values of αm can be found in Table 3.3.

The intuition behind using the harmonic mean is that it reduces
the variance due to its property to tame skewed probability distributions.
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Table 3.3: αm for most used values of m

m αm

24 0.673

25 0.697

26 0.709

≥ 27 0.7213·m
m+1.079

However, the estimation (3.12), requires a correction for small and large
ranges due to non-linear errors. Flajolet et al. empirically found that for
small cardinalities n < 5

2m to achieve better estimates the HyperLogLog
algorithm can be corrected with Linear Counting using a number of
non-zero Counter[j] counters (if a counter has a zero value, we can say
with certainty that the particular subset is empty).

Thus, for different ranges of cardinality, expressed as intervals on
the estimate n̂ computed by formula (3.12), the algorithm provides
the following corrections:

n =


LinearCounter, n̂ ≤ 5

2m and ∃j : Counter[j ] 6= 0

–232 log
(
1 – n̂

232

)
, n̂ > 1

302
32

n̂, otherwise.

(3.13)

However, for n = 0 the correction it seems is not enough and
the algorithm always returns roughly 0.7m.

Since the HyperLogLog algorithm uses a 32-bit hash function, when
cardinality approaches 232 ≈ 4 · 109 the hash function almost reaches its
limit and the probability of collisions increases. For such large ranges,
the HyperLogLog algorithm estimates the number of different hash values
and uses it to approximate the cardinality. However, in practice, there is
a danger that a higher number just cannot be represented and will be
lost, impacting the accuracy.
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Consider a hash function that maps the universe to values of M bits.
At most such a function can encode 2M different values and if the estimated
cardinality n approaches such a limit, the hash collisions become more and
more probable.

There is no evidence that some popular hash functions (e.g.,
MurmurHash3, MD5, SHA–1, SHA–256) perform significantly better
than others in HyperLogLog algorithms or its modifications.

The complete HyperLogLog algorithm is shown below.

Algorithm 3.8: Estimating cardinality with HyperLogLog
Input: Dataset D
Input: Array of m LogLog counters with hash function h

Output: Cardinality estimation
Counter[j ]← 0, j = 0 . . .m – 1

for x ∈ D do
i ← h(x ) := (i0i1 . . . i31)2 , ik ∈ {0, 1}
j ← (i0i1 . . . ip–1)2
r ← rank((ipip+1 . . . i31)2)

Counter[j ]← max (Counter[j ], r)

R←
m–1∑
k=0

2–Counter[j ]

n̂ = αm ·m2 · 1R
n ← n̂

if n̂ ≤ 5
2m then

Z← count
j=0...m–1

(Counter[j ] = 0)

if Z 6= 0 then
n ← m · log(mZ )

else if n̂ > 1
302

32 then
n ← –232 · log

(
1 – n

232

)
return n
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Properties

Similar to the LogLog algorithm, there is a clear trade-off between
the standard error δ and the number of counters m:

δ ≈ 1.04√
m

.

The memory requirement does not grow linearly with the number of
elements (unlike, e.g., the Linear Counting algorithm), allocating (M – p)

bits for the hash values and having m = 2p counters in total, the required
memory is

dlog2(M + 1 – p)e · 2p bits , (3.14)

moreover, since the algorithm uses only 32-bit hash functions and
the precision p ∈ 4 . . . 16, the memory requirements for
the HyperLogLog data structure is 5 · 2p bits.

Therefore, the HyperLogLog algorithm makes it possible to estimate
cardinalities well beyond 109 with a typical accuracy of 2% while using
a memory of only 1.5 KB.

For instance, the well-known in-memory database Redis maintains4
HyperLogLog data structures of 12 KB that approximate cardinalities
with a standard error of 0.81%.

While HyperLogLog, in comparison to LogLog, improved
the cardinality estimation for small datasets, it still overestimates
the real cardinalities in such cases.

The variants of the HyperLogLog algorithms are implemented in well-
known databases such as Amazon Redshift, Redis, Apache CouchDB,
Riak, and others.

4PFCOUNT in Redis https://redis.io/commands/pfcount

https://redis.io/commands/pfcount
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HyperLogLog++ algorithm

After some time, in 2013 [He13], an improved version of HyperLogLog
was developed, the HyperLogLog++ algorithm, published by Stefan Heule,
Marc Nunkesser, and Alexander Hall and focused on large cardinalities
and better bias correction.

The most noticeable improvement of the HyperLogLog++ algorithm
is the usage of a 64-bit hash function. Clearly, the longer the output
values of the hash function, the more different elements can be encoded.
Such improvement allows to estimate cardinalities far larger than 109

unique elements, but when the cardinality approaches 264 ≈ 1.8 · 1019,
hash collisions become a problem for the HyperLogLog++ as well.

The HyperLogLog++ algorithm uses exactly the same evaluation
function given by (3.12). However, it improves the bias correction.
The authors of the algorithm performed a series of experiments to measure
the bias and found that for n ≤ 5m the bias of the original HyperLogLog
algorithm could be further corrected using empirical data collected over
the experiments.

Additional to the original article, Heule et al. provided5 empirically
determined values to improve the bias correction in the algorithm –
arrays of raw cardinality estimates rawEstimateData and related
biases biasData. Of course, it is not feasible to cover every possible
case, so the rawEstimateData provides an array of 200 interpolation
points, storing the average raw estimate measured at this point over 5000
different datasets. biasData contains about 200 measured biases that
correspond with the rawEstimateData. Both arrays are zero-indexed
and contain precomputed values for all supported precisions p ∈ 4 . . . 18,
where the zero index in the arrays corresponds to the precision value 4.
As an example, for m = 210 and p = 10 the needed data can be found in
rawEstimateData[6] and biasData[6].

The bias correction procedure in the HyperLogLog++ algorithm can
be formalized as follows.

5Appendix to HyperLogLog in Practice http://goo.gl/iU8Ig

http://goo.gl/iU8Ig
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Algorithm 3.9: Correcting bias in HyperLogLog++
Input: Estimate n̂ with precision p

Output: Bias-corrected cardinality estimate
nlow ← 0, nup ← 0, jlow ← 0, jup ← 0

for j ← 0 to length(rawEstimateData[p – 4]) do
if rawEstimateData[p – 4][j ] ≥ n̂ then

jlow ← j – 1, jup ← j

nlow ← rawEstimateData[p – 4][jlow]

nup ← rawEstimateData[p – 4][jup]

break

blow ← biasData[p – 4][jlow]

bup ← biasData[p – 4][jup]

y = interpolate ((nlow,nlow – blow), (nup,nup – bup))

return y(n̂)

Example 3.8: Bias correction using empirical values
As an example, assume that we have computed the cardinality estimation
n̂ = 2018.34 using the formula (3.12) and want to correct it for the precision
p = 10 (m = 210).

First, we check the rawEstimateData[6] array and determine that such
a value n̂ falls in the interval between values with indices 73 and 74 of
that array, where rawEstimateData[6][73] = 2003.1804 and
rawEstimateData[6][74] = 2026.071:

2003.1804 ≤ n̂ ≤ 2026.071.

Thus, we need to retrieve biases from the biasData[6] that are indexed at
the same positions 73 and 74, which are biasData[6][73] = 134.1804 and
biasData[6][74] = 131.071.

The correct estimation is in the interval:

[2003.1804 – 134.1804, 2026.071 – 131.071] = [1869.0, 1895.0]

and to compute the corrected approximation, we can interpolate that
values, e.g., using k-nearest neighbor search or just by a linear interpolation
y(x ) = a · x + b, where y(2003.1804) = 1869.0 and y(2026.071) = 1895.0.
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Thus, using simple calculations, the interpolation line is

y = 1.135837 · x – 406.28725,

and the interpolated value for our cardinality estimation is

n = y(n̂) = y(2018.34) ≈ 1886.218.

According to experiments performed by the authors of
the HyperLogLog++, the estimate nlin built according to the Linear
Counting algorithm is still better for small cardinalities even comparing
to the bias-corrected value n. Therefore, if at least one empty counter
exists, the algorithm additionally computes the linear estimate and uses
a list of empirical thresholds, that can be found in Table 3.4, to choose
which evaluation should be preferred. In such a case, the bias-corrected
value n is used only when the linear estimate nlin falls above
the threshold κm for the current m.

Example 3.9: Bias correction with the threshold
Consider Example 3.8, where for m = 210 we computed the bias-corrected
value n ≈ 1886.218. In order to determine whether or not we should
prefer this value to the estimation by Linear Counting, we need to find
out the number of empty counters Z in HyperLogLog++ data structure.
Because we do not have that value in our example, assume it is Z = 73.

Thus, the linear estimation according to the formula (3.1) is

nlin = 210 · log
(
210

73

)
≈ 2704.

Next, we compare the nlin to the threshold κm = 900 from Table 3.4, which
is far below the computed value, therefore, we prefer the bias-corrected
estimate n to the Linear Counting estimate nlin.
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Table 3.4: Empirical thresholds κm for the supported precision values

p m κm

4 24 10

5 25 20

6 26 40

7 27 80

8 28 220

p m κm

9 29 400

10 210 900

11 211 1800

12 212 3100

13 213 6500

p m κm

14 214 11500

15 215 20000

16 216 50000

17 217 120000

18 218 350000

The complete HyperLogLog++ algorithm is shown below.

Algorithm 3.10: Estimating cardinality with HyperLogLog++
Input: Dataset D
Input: Array of m LogLog counters with hash function h

Output: Cardinality estimation
Counter[j ]← 0, j = 0 . . .m – 1

for x ∈ D do
i ← h(x ) := (i0i1 . . . i63)2 , ik ∈ {0, 1}
j ← (i0i1 . . . ip–1)2
r ← rank((ipip+1 . . . i63)2)

Counter[j ]← max (Counter[j ], r)

R←
m–1∑
k=0

2–Counter[j ]

n̂ = αm ·m2 · 1R
n ← n̂

if n̂ ≤ 5m then
n ← CorrectBias(n̂)

Z← count
j=0...m–1

(Counter[j ] = 0)

if Z 6= 0 then
nlin ← m · log m

Z

if nlin ≤ κm then
n ← nlin

return n
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Properties

The accuracy of HyperLogLog++ is better than HyperLogLog for a large
range of cardinalities and equally good for the rest. For cardinalities
between 12000 and 61000, the bias correction allows for a lower error
and avoids a spike in the error when switching between sub-algorithms.

However, since HyperLogLog++ doesn’t need to store hash values, just
one plus the maximum size of the number of leading zeros, the memory
requirements don’t grow significantly compared to HyperLogLog and,
according to (3.14), it requires only 6 · 2p bits.

The HyperLogLog++ algorithm can be used to estimate cardinalities of
about 7.9 · 109 elements with a typical error rate of 1.625%, using 2.56 KB
of memory6.

As mentioned earlier, the algorithm uses the stochastic averaging
approach and splits the dataset into m = 2p subsets {Sj }m–1

j=0 , each of
which has associated counters {Counter[j ]}m–1

j=0 , every counter handles
information about n

m elements. Heule et al. noticed that for n � m

most counters are never used and don’t need to be stored, therefore
the storage can benefit from a sparse representation. If the cardinality
n is much smaller than m, then HyperLogLog++ requires significantly
less memory than its predecessors.

The HyperLogLog++ algorithm in a sparse version stores only pairs
(j ,Counter[j ]), representing them as a single integer by concatenating
their bit patterns. All such pairs are stored in a single sorted list of
integers. Since we always compute the maximal rank, we don’t need
to store different pairs with the same index, instead only the pair with
the maximal index has to be stored. In practice, to provide a better
experience one can maintain another unsorted list for fast insertions that
have to be periodically sorted and merged into the primary list. If such
a list requires more memory than the dense representation of the counters,
it can be easily converted to the dense form. Additionally, to make

6Micha Gorelick and Ian Ozsvald, High Performance Python, 2014
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the sparse representation even more space friendly, the HyperLogLog++
algorithm proposes different compression techniques using variable length
encoding and difference encoding for the integers, therefore storing only
the first pair and differences from its value.

Currently, the HyperLogLog++ algorithm is widely used in many
popular applications, including Google BigQuery and Elasticsearch.

Conclusion
In this chapter we covered various probabilistic approaches to counting
unique elements in huge datasets. We have discussed the difficulties
that appear in cardinality estimation tasks and learned a simple solution
that could approximate the small cardinalities quite well. Further, we
have studied the family of algorithms based on an observation of certain
patterns in the hashed representations of elements from the dataset which
is followed by many improvements and modifications that have become
industry standard today for estimating cardinalities of almost any range.

If you are interested in more information about the material covered
here or want to read the original papers, please take a look at the list of
references that follows this chapter.

In the next chapter we consider streaming applications and study
the efficient probabilistic algorithms to estimate frequencies of elements,
find heavy hitters and trending elements in data streams.
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4
Frequency

Many important problems with streaming applications that operate large
data streams are related to the estimation of the frequencies of elements,
including determining the most frequent element or detecting the trending
ones over some period of time.

As seen in other problems, when data streams are large enough (they
can be seen as an infinite sequence of elements) and have a big number
of distinct elements, the usual solutions, like sorting or keeping counters
for every element, are not possible anymore. It is also important to note
that in most cases it isn’t feasible to store and re-process such sequences,
therefore one-pass data stream algorithms are required.



94 Chapter 4: Frequency

If the data stream is large but has a low cardinality (contains only a small
number of distinct elements), it is enough to maintain exact frequency
counters using one counter per distinct element, in these cases, there is no
need for special algorithms.

The specificity of Big Data applications that handle large data
streams requests that appropriate data structures and algorithms fulfill
the following requirements:

• Make one pass through the data.

• Have sublinear space (polylogarithmic at most), meaning they don’t
grow as fast as the input stream does.

• Support fast and simple updates with some guarantee of accuracy.

Because of the space restrictions, it is clear that such structures need
to operate data in a compressed form that is some summary of the data
stream (e.g., sketch) and makes it not possible to compute most functions
over the stream precisely, therefore probabilistic approximation is needed.

Let’s start with formal definitions. By data stream D = {x1, x2, . . . , xn}
we mean a sequence of elements of any nature, assuming that the number
of elements n is very large, e.g., billions, and there is an unknown large
number of distinct elements. If the stream is truly infinite, D can be
seen as a substream if viewed in a time window.

With an approach to estimating frequencies of elements in a huge
data stream, we can address the common problem of finding the list of
high-frequency elements in a stream, known as the Frequent problem.

When we look for an element that occurs more than n
2 times in data

stream D, we consider the Majority problem that was formulated as
a research problem by J. Strother Moore in the Journal of Algorithms in
1981 [Bo81]. We can postulate that such an element exists in the stream,
which is not always true, and, by definition, it is clear that it can be
only one element for the given data stream, which is called the majority
element.
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Obviously, this is mostly a toy problem, but it gives us a better
understanding of the frequency problems involved with data streams.

One of the most complex problems that appears in practice while
working with big data is the problem of finding the top k most frequent
elements in the stream that occur more than n

k times, also known as
heavy hitters, where k � n these are usually 10, 100 or 1000.

Searching for heavy hitters presupposes that some elements can occur
significantly more often than others in the data stream, otherwise there is
no sense in solving this problem.

This might be surprising, but it was proven that there is no algorithm
that can solve the Heavy hitters problem in one pass using a sublinear
space.

Many practical applications are connected to the Heavy hitters problem,
including search, log mining, network analysis, traffic engineering, and
anomaly detection. For instance, we might want to determine the heaviest
k users (for a desired value of k � n) for a high-traffic website. However,
some users may have nearly equal load and getting an exact answer to
this question is impossible using limited space.

In practice, we consider the ε–Heavy hitters problem —
an ε-approximation of the Heavy hitters problem, that results in
elements that occur at least n

k time with a guaranteed occurrence at
least n

k – ε · n, where ε > 0 and is small. For instance, for ε = 1
2k > 0

the output of the ε–Heavy hitters problem will be elements with
frequencies at least n

k and a guarantee that they occur at least
n
k – ε · n = n

k – n
2k = n

2k times.

For small data streams (regardless of the number of unique elements) it
is enough to just sort the elements and, using a linear scan, find elements
that occur at least n

k these will be the heavy hitters.

In an arbitrary data stream D, there are from zero to k heavy hitters



96 Chapter 4: Frequency

and, in contrast to the Majority problem, it is much more likely that for
some k at least one heavy hitter exists, while the majority element doesn’t.
Therefore, the Majority problem could be seen as a particular case of
the Heavy hitters problem with the requirement that such a majority
element exists and k ≈ 2 – ε, where ε > 0 and is small.

Example 4.1: DNS DDoS attack detection (Afek et al., 2016)
A distributed denial-of-service (DDoS) attack includes many systems
flooding the resources of the targeted system, typically by sending a large
number of queries from a botnet. One popular target is the Domain
Name System (DNS) that plays the role of a “phonebook” of the Internet,
providing the translation between easy to remember domain names and
IP addresses of websites.

DNS queries are considered a data stream where each element has
an associated domain to resolve. Going further we can group the queries
using their top-level domain and by investigating the heaviest domains in
the query stream we can detect the randomized DNS Flood when queries
for many different non-existent subdomains of the same primary domain
are issued.

Another interesting task in streaming applications, called
the Max–Change problem, is to determine elements whose frequencies
changed the most across different data streams or time windows. This
problem has a practical importance for search engines since the queries
whose frequency changes most between two consecutive time periods can
indicate which topics are increasing or decreasing in popularity at
the fastest rate.

Example 4.2: Trending Twitter hashtags
A hashtag is used to index a topic on Twitter and allows people to easily
follow items they are interested in. Hashtags are usually written with a #
symbol in front.

Every second about 6000 tweets1 are created on Twitter, that is roughly
500 billion items daily. Most of these tweets are linked with one or more



4.1 Majority algorithm 97

hashtags and to keep abreast of all the latest events it is important to
determine the most popular topics of the day.

This can be done by processing the data stream of tweets, estimating
the frequencies of each hashtag, and finding the most frequent values.
Additionally, it might be useful to compare the frequencies of yesterday’s
and today’s values to determine the topics that are trending, e.g., those
that have the most increased frequencies since yesterday.

Here we study various approaches to solve frequency-related problems
in Big Data streams. We start with very simple deterministic algorithms
and afterward learn modern probabilistic alternatives that can efficiently
address real-world problems.

4.1 Majority algorithm
Without any additional investigation, it is possible to suggest a linear-time
solution for the Majority problem because the majority element (of course,
with the assumption that it exists) is the median. The disadvantage is
that it requires multiple passes through the stream and, therefore, is not
suitable for Big Data streams.

The Majority algorithm, also known as the Boyer–Moore Majority
Vote algorithm, was invented by Bob Boyer and J. Strother Moore in
1981 [Bo81] to solve the Majority problem in a single pass through
the data stream. A similar solution was independently proposed by
Michael J. Fischer and Steven L. Salzberg in 1982 [Fi82].

The data structure for the Majority algorithm is fairly simple and is
a pair made up of an integer counter and the so-called monitored element:
S = (c, x ∗). Therefore, it requires a constant amount of memory, but
its size varies and depends on the size of the elements.

Such a data structure supports only one simple update operation,

1Twitter Usage Statistics https://www.internetlivestats.com/twitter-statistics/

https://www.internetlivestats.com/twitter-statistics/


98 Chapter 4: Frequency

which updates the counter and selects the candidate for the monitored
element based on its previous state and current element x .

Algorithm 4.1: Updating the Majority data structure
Input: Element x ∈ D
if c = 0 then

x ∗ ← x

if x = x ∗ then
c ← c + 1

else
c ← c – 1

With this type of data structure, it is simple to describe the algorithm.
For every element x in the stream D the algorithm triggers the update
procedure given by Algorithm 4.1 and, under the requirement that
the majority element exists, it returns the last monitored element as
the majority element. Note, that the value of the counter is not
the frequency of the majority element.

Algorithm 4.2: Majority algorithm
Input: Data stream D

Output: Majority element
c ← 0

x ∗ ← NULL

for x ∈ D do
Update(x)

return x ∗

In the Majority algorithm, every “non-majority” value that follows can
decrease the counter c or even reset it to 0, which forces the re-election of
the monitored element x ∗. From a non-precise view, it might be unclear
how such an algorithm ends up with the correct value and whether there
is a danger that for some cases all majority values could be eliminated.
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The following “non-majority” values can wipe out only one copy of
the previous majority element, but as there has to be more than n

2

majority values in the data stream, there will not be enough “non-
majority” values and at least one copy of the majority value will be left
at the end. This also explains why the returned value of the counter
cannot be used as an approximation of the majority element’s frequency.

When the majority element doesn’t exist, the output of the Majority
algorithm is an arbitrary element of the data stream. Therefore, applying
such an algorithm when we are uncertain about the existence of the majority
element would require another pass through the data stream with a simple
counter to verify that the element given by Algorithm 4.2 is actually
the majority element that occurs more then n

2 times.

Example 4.3: Majority algorithm
Consider a dataset of n = 10 elements: {4, 4, 3, 5, 6, 4, 4, 4, 4, 2}, where
the obvious majority element is x = 4 as it occurs 6 times out of 10.

According to the algorithm, we allocate a pair S = (c, x∗) = (0,NULL)
and start consuming elements from the dataset. The first element is x1 = 4

and, since our counter c is empty, we store it as the monitored element
x∗ = 4 and increase the counter: c = 1. The next element x2 is 4 again,
which is equal to the monitored element, so we just increase the counter:
c = 2. The third input element is x3 = 3 that is different from the x∗ = 4,
thus we decrement our counter: c = 1. Similarly, after processing x4 = 5,
we decrement the counter again and it becomes zero: c = 0.

Next, we process element x5 = 6 and, since the current counter value is
zero, we update the monitored element x∗ = 6 and set its counter: c = 1.
However, it doesn’t stay too long and after handling elements x6 = 4 and
x7 = 4, the monitored element becomes x∗ = 4 again with counter c = 1.
The next element will increment counter c = 2, but the last element is not
equal to 4 and the counter will be decremented again to the value c = 1.

In the end, the correct majority element 4 is left as the monitored element.
However, note that the remaining counter c is not a frequency estimator
and contains a completely different value.
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The Majority algorithm is the most popular algorithm for
undergraduate classes due to its simplicity. In the next section we study
its extention that can already solve the Frequent and Heavy hitters
problems.

4.2 Frequent algorithm
A generalization of the Majority algorithm, known as the Frequent
algorithm, was proposed by Erik D. Demaine, Alejandro López-Ortiz,
and J. Ian Munro in 2002 [De02], years after the original algorithm. At
some point, it was discovered that the algorithm was actually the same
as the algorithm published by Jayadev Misra and David Gries in
1982 [Mi82], known now as the Misra–Gries algorithm.

The Frequent algorithm is designed to address the Heavy hitters
problem and instead of keeping only one counter like in the Majority
algorithm, the Frequent data structure consists of a set of monitored
elements X∗ and an array of p counters C = {ci}pi=1.

Whenever we process a new element from the data stream, we first
check if it is already monitored. However, if the element is new, we add
it into the X∗ only when we have room in the set since we maintain at
most p elements. If the element wasn’t added, we still want to reflect its
presence in the stream by decrementing the counters of all elements in
the set of monitored elements. When the element already exists in the X∗,
we just increment its associated counter. At the end of the procedure,
we go through the list and pop up all elements whose counters hit zero.

In the original article, Misra and Gries used balanced search trees
to represent the Frequent data structure, however, future researchers
preferred to use hash tables and implement it as a dictionary.
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Algorithm 4.3: Updating the Frequent data structure
Input: Element x ∈ D
Input: Frequent data structure with p counters
if x /∈ X∗ then

if ∃m : cm = 0 then
x ∗m ← x

if x ∈ X∗ then
∃m : x ∗m = x

cm ← cm + 1

else
for j ← 1 to p do

if cj > 0 then
cj ← cj – 1

for j ← 1 to p do
if cj = 0 then

X∗ ← X∗ \ {x ∗j }

The Frequent algorithm uses the Frequent data structure of length p

to discover elements that occur at least n
p+1 times in the data stream of

length n. Thus, to determine up to k – 1 heavy hitter elements that occur
at least n

k times in the data stream we need to use p = k – 1 counters.

Algorithm 4.4: Frequent algorithm
Input: Data stream D

Input: Frequent data structure with k – 1 counters
Output: Heavy hitters elements
C := {ci}k–1i=1, ci ← 0

X∗ ← ∅
for x ∈ D do

Update(x )

return X∗

The intuition behind the Frequent algorithm is very similar to
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the Majority algorithm given the requirement that heavy hitter elements
occur more than n

k times.

Example 4.4: Find heavy hitters with the Frequent algorithm
Consider a data stream of n = 18 elements:

{4, 4, 4, 4, 6, 2, 3, 5, 4, 4, 3, 3, 4, 2, 3, 3, 3, 2}.

To identify heavy hitter elements that occur in the data stream at least
n
3 = 6 times, we allocate a Frequent data structure of p = 2 counters
and use Algorithm 4.4 to identify at most two of three possible heavy
hitters.

1 2

X∗

C 0 0

We start with element 4. Since it isn’t in the X∗ and there are no elements
in the data structure, we freely add element 4 in the set of monitored
elements and increment the associated counter c1 = 1.

1 2

X∗ 4
C 1 0

Similarly, we process the next three elements that are also equal to 4.
Because this element is already in the X∗, we simply increment its
counter c1.

1 2

X∗ 4
C 4 0

The next element is 6 which is not monitored yet. Since the set X∗ has
space, we insert element 6 into it and set the counter c2 = 1.

1 2

X∗ 4 6
C 4 1

Next, we take element 2 which is also not in the X∗, however we have no
room in the set and cannot add it. Otherwise, we decrement counters of
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all elements currently in the X∗. According to Algorithm 4.4 we also need
to remove from the monitored set elements whose counters hit zero. In
our example, this is element 6 which is therefore removed from the set.

1 2

X∗ 4
C 3 0

Next, we consume element 3 from the data stream. This element is not
in the X∗ and since the set has enough space, we just add it in and set
the associated counter c2 = 1.

1 2

X∗ 4 3
C 3 1

Continuing in a similar way, we process all remaining elements and the
final data structure becomes:

1 2

X∗ 4 3
C 3 3

Thus, the identified heavy hitters are elements 4 and 3. However,
the counters do not reflect the actual frequencies on the elements in
the data stream, as we also noted for the Majority algorithm.

Properties

The time cost of the algorithm is dominated by the O(1) dictionary
operations per update and the cost of decrementing counts. To optimize
the speed of the algorithm, all counters can be decremented at once, in
constant time by organizing them in a sorted order and using difference
encoding, where the only information stored is about how much larger
the particular counter is compared to the next smallest one. Minimizing
significant movements in the order while incrementing and decrementing
the counter means all equal counters can be grouped. With such
an optimized data structure each counter no longer needs to store
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a value, but rather its group. Thus, the Frequent algorithm can be
augmented to run in O(1) time.

Actually, even without any probabilistic approach, the algorithm
delivers at most k – 1 candidates in the Heavy hitters problem. However,
it is focused on the determining the high-frequency elements without
their correct frequencies approximations. Therefore, if we want to
estimate frequencies of the elements, the second pass through the data
stream is required which is unfeasible in most cases of handling huge
data streams.

Thus, in the next sections we continue studying solutions for frequency-
related problems with very effective probabilistic data structures that
are perfectly suited to Big Data streams.

4.3 Count Sketch
A space-efficient algorithm that is used to solve many frequency-related
data stream problems is the Count Sketch that was proposed by Moses
Charikar, Kevin Chen, and Martin Farach-Colton in 2002 [Ch02]. They
had a practical requirement to create a space-efficient data structure that
could easily maintain approximate counts of high-frequency elements in
a data stream.

In order to better understand the problem that Count Sketch solves
we note that the idea of a Counting Bloom filter could also be used to
compute frequencies of elements in a data stream, however, it is not
enough to build precise frequency estimators.

Consider a data structure with an array C = {ci}mi=1 of m counters and
p hash functions h1, h2, . . . , hp that map from elements to {1, 2, . . . ,m}.
The indexing of element x from the data stream into such a data structure,
like with the Counting Bloom filter, includes computing {hj (x )}pj=1 and
incrementing the corresponding counters chj (x), j = 1 . . . p in the array.

When we need to find a frequency f (x ) of element x , we simply
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compute the values of each hash function for that element and get
values of the corresponding counters c1, c2, . . . , cm that play the role of
frequency estimations.

However, because the counters are never decremented and the hash
functions use the same array, it is clear that such estimations will be
bigger than the real frequency f (x ) of the element:

f (x ) ≤ ci , i = 1 . . .m,

the inequality is the result of possible hash collisions when different
elements update the same counters. In other words, the one-sided error
common to our estimations making them all upper bound estimates.

The idea of Count Sketch is to solve this problem by building lower
bound as well as the upper bound estimations. To prevent situations
when collisions with high-frequency elements spoil most estimates of lower
frequency elements, this requires a random decision when to decrease
the counter and when to increment it. In order to reduce the variance it
additionally takes the median of those estimations.

The CountSketch data structure designed to store the frequencies
of m high frequency elements consists of a p ×m array of counters {cij }
that can be seen as an array of p hash tables, each of m buckets.
Additionally, it uses p hash functions h1, h2, . . . , hp that map from
elements to {1, 2, . . . ,m} and p hash functions s1, s2, . . . , sp that map
from elements to {+1, –1} in order to support both side approximation
to the real frequency value. It is assumed that hash functions hi and si
are pairwise independent and independent of each other.

The data structure allows counters to be updated for each indexed
element and estimates the number of times the element has been seen
in the past, this is used as the frequency estimation for the element.
Every time we index a new element x , the counters c

hj (x)
j for each

row j of the sketch can be either incremented or decremented, based on
the values of sj (x ). Therefore, it is possible that the counters overestimate
the frequency of the element x , as well as underestimate it.
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Algorithm 4.5: Updating the Count sketch
Input: Element x ∈ D
Input: Count sketch with p ×m counters
for j ← 1 to p do

i ← hj (x )

cij ← cij + sj (x ) · 1

Assuming that every hash function {hj }pj=1 and {sj }pj=1 can be
computed in a constant time, the running time for the update procedure
given by Algorithm 4.5 is O(p).

Example 4.5: Build Count sketch
Consider a dataset of n = 18 elements:

{4, 4, 4, 4, 2, 3, 5, 4, 6, 4, 3, 3, 4, 2, 3, 3, 3, 2}

and let’s build a CountSketch data structure of m = 5 counters using
p = 3 hash functions based on MurmurHash3, FNV1a and MD5 to decide
which counter to update:

h1(x ) := MurmurHash3(x ) mod 5 + 1,

h2(x ) := FNV1a(x ) mod 5 + 1,

h3(x ) := MD5(x ) mod 5 + 1,

and three hash functions to determine the direction of the update:

s1(x ) := MurmurHash3(x ) mod 2 ? – 1 : 1,

s2(x ) := FNV1a(x ) mod 2 ? – 1 : 1,

s3(x ) := MD5(x ) mod 2 ? – 1 : 1.

In the beginning, the CountSketch data structure consists of zeros:

1 2 3 4 5

h1 0 0 0 0 0
h2 0 0 0 0 0
h3 0 0 0 0 0
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We start processing elements from the dataset and the first element is 4.
According to Algorithm 4.5, we compute its hash values h1(4), h2(4), and
h3(4) to determine counters that have to be updated:

i1 = h1(4) = 3, i2 = h2(4) = 3, i3 = h2(4) = 1.

In this case, two hash functions deliver the same value, but since we
maintain dedicated lists of counters for each hash function this is not
a problem. To determine the direction of updates we compute hash values
s1(4), s2(4), and s2(4):

s1(4) = 1, s2(4) = 1, s2(4) = –1.

Thus, we increment counters c31 and c32 , while decrementing counter c13 .
The resulting CountSketch data structure becomes as follows.

1 2 3 4 5

h1 0 0 1 0 0
h2 0 0 1 0 0
h3 -1 0 0 0 0

The next three elements are 4 too, hence we increment or decrement
the same counters three more times:

1 2 3 4 5

h1 0 0 4 0 0
h2 0 0 4 0 0
h3 -4 0 0 0 0

Next element in the dataset is 2 and its corresponding indices are i1 = 3,
i2 = 2, and i3 = 3. The values of direction hash functions are s1(2) = 1,
s2(2) = 1, and s3(2) = –1, so we increment counters c31 and c22 , and
decrement c33 . Note, that there is a soft collision and element 2 changes (in
the same direction) the counter used by element 4. This makes the value
in the counter c31 overestimate the real value for both elements.

1 2 3 4 5

h1 0 0 5 0 0
h2 0 1 4 0 0
h3 -4 0 -1 0 0
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In the same way, we process all remaining elements. For element 3 we
decrement counters c11 and c32 , and increment counter c43 ; for element 5

we decrement counters c31 and c42 , and increment c43 ; for element 6 we
decrement counters c41 and c33 , and increment c12 .

The final CountSketch has the following form:

1 2 3 4 5

h1 -6 0 9 -1 0
h2 1 3 1 -1 0
h3 -7 0 -4 7 0

It is known in probability theory that the usual procedure for building
better approximations from a number of randomly distributed trials is
to use the mean and median. The Count Sketch algorithm, to compute
the final estimation of the frequency, uses the median because it is robust
and less sensitive to outliers.

Algorithm 4.6: Estimating frequency with the Count Sketch
Input: Element x ∈ D
Input: Count–Min sketch with p ×m counters
Output: Frequency estimation
f̂ := {f̂j }pi=1

for j ← 1 to p do
i ← hj (x )

f̂j ← sj (x ) · cij
return median(f̂1, f̂2, . . . , f̂p)

The update time for each element is O(p) and to find the median of p
elements we spend some linear time using one of the selection algorithms,
therefore the overall query time is O(p).
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Example 4.6: Frequency estimation with Count Sketch
Consider the data structure that we built in Example 4.5:

1 2 3 4 5

h1 -6 0 9 -1 0
h2 1 3 1 -1 0
h3 -7 0 -4 7 0

Let’s estimate the frequency of element 4 whose corresponding counters are
c31 , c32 , and c13 , the update directions are s1(4) = 1, s2(4) = 1, and s2(4) =

–1, as we determined earlier. Using Algorithm 4.6, as the estimation we
calculate the median of weighted values of those counters:

f̂ = median(s1(4) · c31 , s2(4) · c32 , s3(4) · c13) = median(9, 1, 7) = 7.

Thus, the estimated frequency of element 4 is 7, that is also the correct
count from the dataset.

Now, consider element 2 with the corresponding counters c31 , c22 , and c33
with values of direction hash functions s1(2) = 1, s2(2) = 1, and s3(2) = –1.

Thus, the frequency estimation for element 2 is

f̂ = median(s1(2) · c31 , s2(2) · c22 , s3(2) · c33) = median(9, 3, 4) = 4,

which overestimates the real value 3.

The Count Sketch algorithm can be used to find the top k most
frequent elements, known as the Frequent problem. In a single pass
through the data stream, as well as the regular p ×m array of counters
and the hash functions {hj }pj=1 and {sj }pj=1, we maintain a set X∗ of k
high-frequency elements. We first index every element x from the data
stream to the CountSketch data structure according to Algorithm 4.5.
Then, if the element is not in the set X∗ and there is capacity to add it, we
insert the element. Otherwise, we estimate frequency with Algorithm 4.6
and if it is greater than the smallest frequency in the set, we add element
x to X∗ while removing the element with the smallest frequency.



110 Chapter 4: Frequency

Algorithm 4.7: Getting frequent elements with the Count Sketch
Input: Data stream D

Input: Count–Min sketch with p ×m counters
Output: Top frequent elements
X∗ ← ∅
for x ∈ D do

Update(x )

if x ∈ X∗ then
continue

if |X∗| < k then
X∗ ← X∗ ∪ {x}

else
f̂ ← Frequency(x )

(x ∗min, f̂
∗
min)← min

x∗∈X∗
(Frequency(x ∗))

if f̂ > f̂ ∗min then
X∗ ← X∗ ∪ {x} \ {x ∗min}

return X∗

Example 4.7: Most frequent elements with Count Sketch
Consider the same setup as in Example 4.5 and search for k = 3 most
frequent elements in the dataset:

{4, 4, 4, 4, 2, 3, 5, 4, 6, 4, 3, 3, 4, 2, 3, 3, 3, 2}.

According to Algorithm 4.7, additional to the CountSketch data
structure, we create a set X∗ to store frequent candidates.

We start consuming the dataset and the first element is 4, so, as we
know from Example 4.5, we need to increment counters c31 and c32 , while
decrementing counter c13 .

1 2 3 4 5

h1 0 0 1 0 0
h2 0 0 1 0 0
h3 -1 0 0 0 0
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The set X∗ is empty, thus we freely insert element 4 into it: X∗ = [4].

The next three elements in the data stream are also equal to 4, so we index
them into the data structure without any changes to X∗.

1 2 3 4 5

h1 0 0 4 0 0
h2 0 0 4 0 0
h3 -4 0 0 0 0

The next element is 2 and we increment counters c31 and c22 , and decrement
c33 , as we determined earlier. This element is not in the set of the most
frequent candidates and since X∗ has enough capacity, we add element 2
into the set: X∗ = [4, 2].

1 2 3 4 5

h1 0 0 5 0 0
h2 0 1 4 0 0
h3 -4 0 -1 0 0

The next input element is 3. To index it into the CountSketch data
structure we decrement counters c11 and c32 , and increment counter c43 .
Since the set X∗ contains only two elements out of three possibles, we add
element 3 into the set: X∗ = [4, 2, 3].

1 2 3 4 5

h1 -1 0 5 0 0
h2 0 1 3 0 0
h3 -4 0 -1 1 0

Next, we take element 5 from the dataset and update the sketch by
decrementing the counters c31 and c42 , and incrementing c43 .

1 2 3 4 5

h1 -1 0 4 0 0
h2 0 1 3 -1 0
h3 -4 0 -1 2 0

Element 5 is not in the set X∗ which has reached its maximum capacity of
k = 3 monitored elements. Thus, we need to estimate the frequencies of
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elements in the set and of element 5 using Algorithm 4.6 for the current
CountSketch data structure.

f̂ (5) = median(–c31 , –c42 , c43) = median(–4, 1, 2) = 1,

f̂ (4) = median(c31 , c32 , –c13) = median(4, 3, 4) = 4,

f̂ (2) = median(c31 , c22 , –c33) = median(4, 1, 1) = 1,

f̂ (3) = median(–c11 , –c32 , c43) = median(1, –3, 2) = 1.

Therefore, the estimated frequency of the current element 5 doesn’t exceed
the minimum frequency of elements in the set, so we don’t change the set
of monitored elements: X∗ = [4, 2, 3].

In a similar manner we handle all remaining elements from the dataset
and after processing the last one, the CountSketch data structure has
the following form:

1 2 3 4 5

h1 -6 0 9 -1 0
h2 1 3 1 -1 0
h3 -7 0 -4 7 0

and the set of the three most frequent elements is

X∗ = [4, 2, 3].

Note, that the most frequent elements in X∗ are not ordered and to
estimate their frequencies we can use Algorithm 4.6.

In the same way we can address the Heavy hitters problem. To find
k heavy hitters we maintain a counter N of already processed elements,
using which, we calculate the frequency threshold f ∗ = N

k every time a
new element is indexed. If the estimated frequency of the current element
is above the threshold, we insert it into the heap X∗ as a candidate
for heavy hitters. Additionally, on every step we remove elements from
the heap whose stored frequency fall below the actual threshold f ∗.
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Algorithm 4.8: Determining heavy hitters with the Count Sketch
Input: Data stream D

Input: Count sketch with p ×m counters
Output: Heavy hitters
N← 0, X∗ ← ∅
for x ∈ D do

N← N+ 1

Update(x )

f̂ ← Frequency(x )

f ∗ ← N
k

if f̂ ≥ f ∗ then
X∗ ← X∗ ∪ {(x , f )}

for (x ∗, f̂ ) ∈ X∗ do
if f̂ ≤ f ∗ then

X∗ ← X∗ \ {(x ∗, f̂ )}

return X∗

The Count Sketch algorithm can also be applied to finding elements
with the largest frequency change, otherwise known as the Max-Change
Problem. Having data streams of two comparable periods, we can build
a CountSketch data structure for each of them and maintain the heap
X∗ of elements with the largest differences. Every time new elements
are indexed, we estimate their frequencies using Algorithm 4.6 and
update the heap to keep only elements with the most change. Finally,
the algorithm outputs k elements with the largest values of frequency
change.

Properties

The Count Sketch provides the guarantee that the estimation error for
frequencies is not bigger than ε · n with probability at least 1 – δ.
The increasing number of hash functions p decreases the probability of
a bad estimate and for the desired standard error δ the recommendation
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on the number of hash functions, that correspond to the rows in
the CountSketch, is

p =

⌈
ln 1

δ

⌉
. (4.1)

The bigger m, the less likely that collisions will happen, meaning
a lower estimation error ε · n. At the same time, with bigger p more
estimators are used to calculate the final value, which makes it more
reliable. The recommendation on the number of counters m is

m ≈
⌈
2.71828

ε2

⌉
. (4.2)

The overall space required by the Count Sketch data structure is
O(m · p+2p), because we keep a count matrix sized p×m and two hash
functions per row.

If two Count Sketch data structures have the same size m, they can
be easily added to and subtracted from each other, this is useful for
distributed stream processing.

There are implementations of Count Sketch for Apache Hive and
other data warehouse software, but modern applications prefer to use
its successor, the Count–Min Sketch algorithm, due to it requiring less
space and execution time.

4.4 Count–Min Sketch
Count–Min Sketch is a simple space-efficient probabilistic data structure
that is used to estimate frequencies of elements in data streams and can
address the Heavy hitters problem. It was presented in 2003 [Co03] by
Graham Cormode and Shan Muthukrishnan and published in 2005 [Co05].

As we saw in the previous section for Count Sketch, the main obstacle
to the direct application of the Counting Bloom filter in frequency
estimation tasks is that it shares a single array of counters for all hash
functions and, consequently, suffers from hard and soft collisions.
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The quality of the estimation is hardly affected by the probability of
hash collisions even though they lead to overestimations for counters.
However, when the number of elements in the data stream is huge,
collisions with high-frequency elements are almost certain and this
makes such an approximation useless due to the large overestimation of
all counters.

By treating this problem as a lack of highly confident estimates to
compute frequency with sufficient precision, the Count–Min Sketch
algorithm replaces the single array of m counters with a hash table of p
arrays of m counters and, instead of updating each counter by every
element, lets the elements update different subsets of counters, one per
hash table. The purpose of m is to compress the data stream
D = {x1, x2, . . . , xn} and because m � n this is a “lossy” compression
that leads to errors. To reduce these errors, the algorithm introduces
many independent trials by using p hash functions with a dedicated
array of m counters for each.

The CMSketch is a space-efficient data structure that consists of
a p × m array of counters {cij }, where p pairwise independent hash
functions h1, h2, . . . , hp map the universe to the range {1, 2, . . . ,m}.

Such a simple data structure allows for the indexing of elements from
the data stream, results in updating counters, and can provide the number
of times every particular element has been indexed, which can be seen
as the frequency estimation for the element.

Algorithm 4.9: Updating the Count–Min sketch
Input: Element x ∈ D
Input: Count–Min sketch with p ×m counters
for j ← 1 to p do

i ← hj (x )

cij ← cij + 1

Assuming that every hash function {hj }pj=1 can be computed in
a constant time, the running time for the update procedure given by
Algorithm 4.9 is O(p).
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Example 4.8: Build Count–Min sketch
Consider the dataset of n = 18 elements from Example 4.5:

{4, 4, 4, 4, 2, 3, 5, 4, 6, 4, 3, 3, 4, 2, 3, 3, 3, 2}

and let’s build a Count–Min sketch of m = 4 counters using p = 2 hash
functions based on MurmurHash3 and FNV1a:

h1(x ) := MurmurHash3(x ) mod 4 + 1,

h2(x ) := FNV1a(x ) mod 4 + 1.

In the beginning, the CMSketch data structure consists of zeros:

1 2 3 4

h1 0 0 0 0
h2 0 0 0 0

We start consuming elements from the dataset. The first element is 4

and, according to Algorithm 4.9, we compute its hash values to determine
counters that have to be updated:

i1 = h1(4) = 4,

i2 = h2(4) = 4.

Note that both hash functions deliver the same value, but since we maintain
dedicated arrays of counters for each hash function this is not a problem.
Thus, we increment counters c41 and c42 and the CMSketch is as below.

1 2 3 4

h1 0 0 0 1
h2 0 0 0 1

The next three elements are all equal to 4, hence we update the same
counters:

1 2 3 4

h1 0 0 0 4
h2 0 0 0 4

Next element in the dataset is 2 and its corresponding indices are i1 = 4

and i2 = 1, so we increment counters c41 and c12 . Note that there is a soft
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collision and element 2 changes the counter that is also used by element
4. This makes the value in the counter c41 overestimate the real value for
both elements.

1 2 3 4

h1 0 0 0 5
h2 1 0 0 4

In the same way, we process all remaining elements and update counters
c11 and c32 for element 3, counters c11 and c12 for element 5, and c11 and c22
for element 6. Note, that both counters for element 6 collide with other
elements, thus we can expect that its value will be overestimated.

The final CMSketch data structure has the following form:

1 2 3 4

h1 8 0 0 10
h2 1 4 6 7

Every time element x is indexed, the same counters c
hj (x)
j are

incremented for each row j of the sketch and since they are never
decremented, those counters provide the upper bound for
the frequencies:

f (x ) ≤ c
hj (x)
j , j = 1, 2, . . . , p.

While counters cannot underestimate the real frequency f (x ), they
generally overestimate it because m � n and there are a lot of collisions
such that hj (x ) = hj (y) for x 6= y , meaning that when element y is
indexed into CMSketch the counter for element x is also incremented.

As a result, there are p estimations that suffer from a one-sided error
(all of them are overestimations of the real value). The usual procedure
for building a better approximation from a number of estimations is
averaging, but this error can make the estimation even worse. Obviously,
the best estimation in this case is the smallest one.
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Algorithm 4.10: Estimating frequency with Count–Min Sketch
Input: Element x ∈ D
Input: Count–Min sketch with p ×m counters
Output: Frequency estimation
f̂ := {f̂j }pi=1

for j ← 1 to p do
i ← hj (x )

f̂j ← cij

return min(f̂1, f̂2, . . . , f̂p)

The minimum of p elements can be found in linear time, and therefore
the running time of the frequency estimation procedure given by
Algorithm 4.10 is O(p), the same as for an update.

Example 4.9: Frequency estimation with the Count–Min Sketch
Consider the CMSketch data structure that we built in Example 4.9:

1 2 3 4

h1 8 0 0 10
h2 1 4 6 7

Let’s estimate the frequency of element 4 whose corresponding counters
are c41 and c42 , as we determined earlier. Using Algorithm 4.10, as
the estimation we calculate the minimum of those counters:

f̂ = min(c41 , c42) = min(10, 7) = 7.

Thus, the estimated frequency of element 4 is 7, that is also the correct
count from the dataset.

Now, consider element 6 with corresponding counters c11 and c22 . However,
as we already noted in Example 4.9, both of them are also used by other
elements due to collisions. Thus, the frequency estimation for element 6 is

f̂ = min(c11 , c22) = min(8, 4) = 4,

that significantly overestimates the real value of 1. If we want to maintain
better accuracy and make such collisions rare, we need to have more hash
functions and counters that increase the computational time and storage.
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Knowing how to estimate the frequencies of elements, lets the Count–
Min Sketch algorithm determine the most frequent elements. Similar to
the Count Sketch, the simplest approach requires the maintenance of
a set of candidates for the most frequent elements as well as the main
CMSketch data structure. Then, we go over the data stream and
update the sketch with all the elements seen thus far. If the element is
not in the set that still contains less than k elements, we simply add
it. However, if the set is at its maximal capacity, we add the current
element only if its estimated frequency exceeds the minimum frequency in
the set by replacing the element with the smallest frequency. In the end,
elements in the X∗ are considered the most frequent elements in the data
stream.

In a similar way, the CMSketch data structure can address the Heavy
hitters problem, described earlier. In a single pass through the data
stream, additional to the regular p ×m array of counters C and p hash
functions, we allocate a single counter N that stores the number of
elements seen thus far, and maintains a heap X∗ of up to k potential
heavy hitters. We use frequency threshold f ∗ = N

k to decide whether
element is a heavy hitter. For every element x in the data stream, we
execute an update procedure followed by the frequency estimation, and
if f̂ (x ) ≥ f ∗, then element is qualified as a heavy hitter candidate. If
the element is not in the heap yet, we store it and its frequency together,
otherwise we update the stored frequency with the new value.

The counter N increases with every processed element, when this grows,
the estimated frequency for some elements in the heap become less than
f ∗ and these elements must be removed from the heap at every step. At
the end of the processing, all elements in the heap are considered heavy
hitters. According to the definition, there are at most k heavy hitters in
the data stream.
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Algorithm 4.11: Getting heavy hitters with the Count–Min Sketch
Input: Data stream D

Input: Count–Min sketch with p ×m counters
Output: Heavy hitters
N← 0, X∗ ← ∅
for x ∈ D do

N← N+ 1

Update(x )

f̂ ← Frequency(x )

f ∗ ← N
k

if f̂ ≥ f ∗ then
X∗ ← X∗ ∪ {(x , f )}

for (x ∗, f̂ ) ∈ X∗ do
if f̂ ≤ f ∗ then

X∗ ← X∗ \ {(x ∗, f̂ )}

return X∗

Maintaining a heap for the ε–Heavy hitters problem with ε = 1
2k

requires O(log 1
ε
) additional work per element.

Example 4.10: Heavy hitters with Count–Min Sketch
Consider the same setup as in Example 4.9 and search for k = 3 heavy
hitters while processing the dataset.

{4, 4, 4, 4, 2, 3, 5, 4, 6, 4, 3, 3, 4, 2, 3, 3, 3, 2}.

According to Algorithm 4.11, additional to the CMSketch data structure
we create a counter N of processed elements and a heap X∗ that stores
up to k heavy hitters candidates. We will skip the details of updating
counters and frequency estimation because these steps are the same as in
examples above.

We start consuming the dataset and the first element is 4, so we increment
the corresponding counters c41 and c42 .
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1 2 3 4

h1 0 0 0 1
h2 0 0 0 1

At this point, we have processed N = 1 element, so the threshold f ∗ for
the heap X∗ is 1

3 . The frequency estimation for element 4 from CMSketch
is 1 and this is above the threshold, hence we add this element and its
frequency to the heap: X∗ = [(4, 1)].

Next element is 4 again and we increment the same counters.

1 2 3 4

h1 0 0 0 2
h2 0 0 0 2

However, since we already processed N = 2 elements, the threshold f ∗ is
changed to 2

3 . The current frequency estimation for element 4 is 2 which
is still above the threshold and since the element is already in the heap we
just update its frequency: X∗ = [(4, 2)].

In a similar manner we process the next 14 elements (up to N = 16).
There are no changes to the number of elements in the heap and element
4 is the only heavy hitter candidate so far: X∗ = [(4, 7)]. The CMSketch
data structure has the following form:

1 2 3 4

h1 7 0 0 9
h2 1 3 6 7

Next element in the dataset is 3, whose counters c11 and c32 we increment.

1 2 3 4

h1 7 0 0 9
h2 1 3 6 7

At this moment, there are N = 17 processed elements, so the frequency
threshold is f ∗ = 17

3 ≈ 5.33. The estimated frequency of element 3 is
f̂ = min(7, 6) = 6 that is above the threshold, therefore we add it to
the heap: X∗ = [(4, 7), (3, 6)]. All elements in the heap have large enough
frequencies, hence we don’t remove any of them.
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The last element in the dataset is 2 whose frequency is below the threshold
f ∗ = 18

3 = 6. Therefore, there are no changes to the heap at this step and
the final list of heavy hitters is

X∗ = [(4, 7), (3, 6)].

Properties

The Count–Min Sketch is approximate and probabilistic at the same
time, therefore two parameters, the error ε in answering the paricular
query and the error probability δ, affect the space and time requirements.
In fact, it provides the guarantee that the estimation error for frequencies
will not exceed ε · n with probability at least 1 – δ.

Similar to the Count Sketch, the increasing number of hash functions
p decreases the probability of a bad estimate. For the desired standard
error δ, the recommendation for the number of hash functions that
correspond to the rows in the CMSketch data structure is

p =

⌈
ln 1

δ

⌉
. (4.3)

The bigger m, the less likely collisions will happen, thus
the overestimation error ε · n will be lower. At the same time,
with bigger p more estimations are used to calculate the final minimal
value, which makes it more reliable. Thus, the recommendation on
the number of counters m is

m ≈
⌈
2.71828

ε

⌉
, (4.4)

and comparison with (4.2) shows that the Count–Min Sketch is more
space-friendly than the Count Sketch.

Since the CMSketch data structure consists of a two-dimensional
array sized p × m and uses p hash functions, it requires O(m · p + p)

space, assuming that every hash function is stored in O(1) space.
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Example 4.11: Estimate required space
According to condition (4.3), to have the standard error δ around 1%,
at least p =

⌈
ln 1

0.01

⌉
= 5 hash functions are required. For instance, we

expect 10 million (n = 107) elements to be indexed and allow the fixed
overestimate of 10. Thus, we need ε = 10

107 = 10–6 and the recommended
number of counters is

m =
2.71828

10–6
≈ 2718280.

Thus, the CMSketch data structure needs to keep the counter array sized
5× 2718280 and, having 32-bit integer counters, the whole data structure
requires 54.4 MB of memory.

Two Count–Min sketches of the same size can be easily merged together
by simple matrix addition resulting in a data structure for the union of
their datasets. As a result, the Count–Min Sketch is useful in MapReduce
and parallel streaming tasks for Big Data applications.

Big data is characterized by a large amount of data that comes at high speed,
which makes space and update time significant. Fortunately, the practical
implementations of the Count–Min Sketch consume only up to a few
hundreds of megabytes of memory and can handle dozens of millions of
updates per second.

The Count–Min Sketch is widely used for tasks on traffic analysis and
in-stream mining applications running on distributed stream processing
frameworks including Apache Spark, Apache Storm, Apache Flink, and
others. There are also implementations for popular databases such as
Redis and PostgreSQL.

Conclusion
In this chapter we discussed the problem of determining frequencies of
elements in continuous and potentially infinite streams, these often have
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to be processed by Big Data applications. We started with formulating
many important frequency-related problems that can be solved using
the data structures and algorithms from this chapter. Starting with
the very simple problem of the majority element, we moved onto learning
how to solve the very complex problems of finding the most frequent
elements and heavy hitters.

If you are interested in more information about the material covered
here or want to read the original papers, please take a look at the list of
references that follows this chapter.

In the next chapter, we continue working with data streams and
consider probabilistic algorithms that can be employed to compute rank
characteristics such as quantiles and their particular types including
percentiles and quartiles.
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5
Rank

Large volumes of unstructured data easily overwhelm the human ability
to understand it and makes data summarization by computing statistical
quantities one of the most necessary tasks to perform with data. In
this chapter, we investigate algorithms and data structures to calculate
rank-based characteristics of the data using a small amount of memory
and one pass through the data.

The most commonly used rank characteristics are quantiles. Formally,
the q-quantile (0 ≤ q ≤ 1) is an element of the sequence where a q fraction
of elements from the sequence are less or equal to it, and the remaining
(1 – q) are greater or equal. Moreover, if the sequence has n elements, we
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say that a q-quantile element is an element of the sequence those rank is
q · n. Percentiles are just quantiles that divide the sorted sequence into
100 equal parts, hence the 95th percentile is the same as the 0.95-quantile.
The 0- and 1-quantiles are the minimal and the maximal elements in
the sequence, respectively. The 0.5-quantile is known as the median.

As was proven by Ian Munro and Michael Paterson1, to find a particular
quantile exactly in p passes through the data requires O(n

1
p ) memory.

This means that any one-pass algorithm cannot guarantee to produce
the precise value of the quantile in sublinear space. This motivates a search
for algorithms that compute approximate quantiles.

In practice, having an error in a quantile calculation is often tolerable
because they are usually estimated for noisy input data and approximate
the unknown data distributions. Thus, in most cases we are interested
in the ε–approximate q-quantile, meaning an element with its rank in
[(q – ε) · n, (q + ε) · n], where n is the number of elements and 0 < ε < 1

is an error parameter. Note that more than one element could qualify.

Estimation of various rank characteristics like quantile summaries plays
an important role in streaming outlier detection methods. For instance,
if we monitor online e-commerce transactions to detect credit card fraud,
we are interested in unusual payment locations, those that don’t fit in
the 99th percentile of usual location distribution for our customers.

Example 5.1: Fraud detection (Perlich et al., 2007)
Financial fraud remains one of the most critical issues facing the financial
industry. For instance, in 2015, global credit and debit card fraud resulted
in losses amounting to $21.84 billion2.

Many applications have been built to search for and identify the signs
of financial fraud. Such applications frequently use numerous specific
variables whose “degree of outlyingness” is examined for every observation.
For instance, variables such as the total amount spent on a credit card

1Selection and sorting with limited storage, Theoretical Computer Science, Vol.12 (1980)
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and the amount spent per day can be used.

For every observation, the degree of outlyingness can be approximated by
the quantiles of some spending distribution. Thus, the suspected fraudulent
observations can be identified as outliers through comparison to some high
quantiles, e.g., the 0.95-quantile.

Another huge application domain of rank summaries is web traffic
monitoring. Investigating the summaries means problems can be detected
early, without inspecting the actual data.

Example 5.2: Website monitoring (Buragohain & Suri, 2009)
Big websites handle millions of users every single day. For instance, in
September 2017 Wikipedia processed about 500 million hits per day3
across all its languages, that is roughly 5.7 thousands requests per second,
using more than 300 servers around the globe.

One of the most critical issues in a website’s performance is latency,
the delay between when the content was created and the time it was
transferred to the visitor. Since the distribution of the latency values
is typically skewed, the monitoring usually is built by tracking some
particular high-quantities or percentiles. The most common questions are:

• What is the latency for 95% of requests for a single web server?

• What is the latency for 99% of requests for the entire website?

• What was the latency for 95% of requests for the entire website in
the last 15 minutes?

While all these questions can be answered with the quantile computation,
technically they have differences that might require the application of
different methods. For instance, while for the first question, a summary
can be computed per single stream, the second question requires distributed
algorithms that can compute statistics on many streams’ data. In contrast,
the third question requires only a subset of the stream’s data defined by
a time window and such a subset will always change.

2Credit Card & Debit Card Fraud Statistics https://wallethub.com/edu/statistics/25725/

https://wallethub.com/edu/statistics/25725/
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The task to find q-quantile, or, in other words, elements from a sorted
sequence of n elements whose rank is q · n, where q ∈ (0, 1), is called
a Quantile query. The Median query is a special case of the quantile
query with q = 0.5.

The problem of quantile calculation is not new and is already well
developed in classical computation. However, it has new challenges for
unbounded streams, which are common for Big Data applications, when
limited memory is available, and only a single pass through the data is
possible. The Count–Min Sketch algorithm, previously introduced in
Chapter 4, allows for the computation of approximate values of
quantiles but requires much more memory than the algorithms that will
be discussed in this chapter.

Alternatively, we can search for the rank of the given element in
a sorted sequence of n elements, known as an Inverse quantile query.
With rank(x ) and the total number of elements n, it is easy to compute
the corresponding quantile q :

q =
1

n
· rank(x ).

For many applications, it is also important to find the number of
elements from a sorted sequence of n elements that are in some given
range [a, b], often referred to as a Range query. In fact, to calculate such
a number, it is enough to compute the ranks of the range’s boundaries
and return their difference.

In this chapter, we start with a randomized sampling algorithm, then
continue with a simple tree-based q-digest and, finally, study the modern
t-digest algorithm that uses clustering for efficient estimation of rank-
based statistics in unbounded streams.

3Wikipedia Page Views https://stats.wikimedia.org/EN/TablesPageViewsMonthlyCombined.htm

https://stats.wikimedia.org/EN/TablesPageViewsMonthlyCombined.htm
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5.1 Random sampling
The random sampling technique, selecting without replacement
a random subset of the data, can be found in many algorithms in
computer science. For rank problems, this technique can be used to
report quantiles computed on samples, as an approximation to
the quantiles of the whole data stream.

The distinct advantage is that such samples are much smaller, in fact,
often rank quantiles queries can be answered using classical deterministic
algorithms. However, to have some prior guarantees on the error of such
an approximation, the random sample has to be taken in a special way,
which could even be data dependent.

Additional problem that may occur with classical sampling is that
many sampling schemas require prior knowledge of the size of
the dataset, that is problematic for the continuous streams often used in
Big Data applications. One of the possible solutions is the simple
reservoir sampling technique, developed by Jeffrey Vitter in 1985, that
allowed for the generation of a sample without such knowledge, but if
we wanted to apply it directly to the Quantile problem the memory
requirements would be quite significant.

The Random sampling algorithm, often referred to as MRL, was
published by Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce
Lindsay in 1999 [Ma99] and addressed the problem of the correct
sampling and quantile estimation. It consists of a non-uniform sampling
technique and deterministic quantile finding algorithm.

To support continuous data streams processing with little space
requirements, Manku et al. suggested a non-uniform modification of
reservoir sampling where elements that appear earlier in the sequence
are included with higher probability than others. Such a modification
has better space-efficiency and considerably more accurate than
the original reservoir sampling.

The main disadvantages of the MRL algorithm are that its configuration
parameters are determined by solving a complicated optimization problem
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and it uses some complex procedures. In this section, we investigate
a simpler version of the MRL algorithm that was proposed by Ge Luo,
Lu Wang, Ke Yi, and Graham Cormode in 2013 [Wa13], [Lu16], and
denoted in the original articles as Random.

The Random algorithm processes data from the data stream in chunks
of variable sizes and performs a sampling on them that produces the non-
uniform sampling at the end.

In order to store samples of the elements, the algorithm maintains
a data structure SampleBuffers that consists of b simple data units
B1, B2, . . .Bb , called buffers, each of these stores at most k elements and
can be associated with some level L at which it was populated.

The level parameter L reflects the probability that the elements are
drawn and depends on the number of elements n that have been processed
so far and the maximum allowed height h of the tree that represents the
sequence of operations carried out the algorithm:

L = L(n, h) = max
(
0,

⌈
log n

k · 2h–1
⌉)

, (5.1)

where L(0, h) = 0.

To populate an empty buffer BL
i , i ∈ 0 . . . b at level L, we choose k

random elements from k · 2L consequent input elements, one per block
of 2L, and store them in BL

i . At the end of the procedure, the buffer
might have less than k elements because the input sequence did not have
enough elements, but if at least one element is in the buffer, it is labeled
as full.

The probability that a particular element from the incoming data stream
is selected and stored into a buffer directly depends on the level L since it
controls the size of the chunk 2L from which elements are drawn. This is
the practical implementation of the non-uniform sampling used in
the algorithm.
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Algorithm 5.1: Populating empty buffers
Input: Data stream D

Input: Empty buffer BL of size k at level L
Output: Populated buffer BL and its label
for i ← 0 to k – 1 do

S← next(2L,D) // read next 2L elements from D

if S = ∅ then
break

x ← sample({s ∈ S}) // randomly choose one element from S

BL ← BL ∪ {x}

label ← empty
if count(BL) > 0 then

label ← full

return BL, label

Two buffers from the same level L can be collapsed, merged to reclaim
buffer space, which results in a new buffer of the same size at level L+ 1.
To collapse two buffers, we sort the sequence of the elements from both,
and randomly select half of the elements, for example, by choosing all
the elements at either odd or even positions. The collapsed buffers are
marked as empty, and the output buffer as full.

Algorithm 5.2: Collapsing two non-empty buffers
Input: Non-empty bufferts BL

i , BL
j of size k at level L

Output: Populated buffer BL+1 at level L and its label
S← sort(BL

i ∪ BL
j )

free(BL
i )

free(BL
j )

BL+1 ← sample(S, k) // randomly choose k elements from joined buffers

return BL+1, full

The collapse operation requires O(k · log k) for sorting the buffers and
the subsequent buffer population can be performed in O(k) time.

Finally, the process of building the SampleBuffers data structure
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consists of a series of buffer population steps and collapse operations.

We start with every buffer labeled as empty. Processing of the input
stream starts with setting the active level L using the formula (5.1), this
is equal to zero at the beginning since there are no processed elements
yet. If there is an empty buffer B, we populate it using Algorithm 5.1 by
reading k · 2L elements from the stream. When all buffers become full,
we find the lowest level that contains at least two buffers and collapse
two that have been randomly selected.

The total number of collapse operations is O
(
n
k

)
throughout the entire

data stream, which is about O(1) for each update. The sorting takes
O(log k) for each update. Thus, the amortized time is O(log k).

Example 5.3: Build Sample Buffers
Consider a dataset of 25 integers:

{0, 0, 3, 4, 1, 6, 0, 5, 2, 0, 3, 3, 2, 3, 0, 2, 5, 0, 3, 1, 0, 3, 1, 6, 1}.

To illustrate the process of handling a data stream, we use the height
h = 3 and maintain b = 4 buffers: B1, B2, B3, B4 of k = 4 elements each.
Thus, simplifying the formula (5.1), the active level can be calculated as

L = L(n) = max (0, dlog(n) – 4e).

In the beginning, the number of processed elements n = 0, hence we start
from L = 0 and read the first N1 = 4 elements from the input stream
{0, 0, 3, 4}, and populate an empty buffer, say B1. Since the capacity of
the buffer is also 4, we don’t need to draw random elements and all of
them are stored.

B0
1 B2 B3 B4

0 0 3 4

Secondly, we again need to define the active level. The number of processed
elements is n = N1 = 4 and the active level remains zero: L = L(4) =

max(0, 2 – 4) = 0. We read the next N2 = 4 elements {1, 6, 0, 5} and in
the same way, populate buffer B2.
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B0
1 B0

2 B3 B4

0 0 3 4 1 6 0 5

Thus, we have already processed n = N1 +N2 = 8 elements, the current
level L = L(8) = max(0, 3– 4) = 0, and we index the next N3 = 4 elements
{2, 0, 3, 3} to buffer B3.

B0
1 B0

2 B0
3 B4

0 0 3 4 1 6 0 5 2 0 3 3

Likewise, after processing n = N1 + N2 + N3 = 12 elements, the active
level is still zero, we again read the next N4 = 4 elements {2, 3, 0, 2} and
populate the only remaining empty buffer B2.

B0
1 B0

2 B0
3 B0

4

0 0 3 4 1 6 0 5 2 0 3 3 2 3 0 2

At this point we have no empty buffers left, hence we need to perform
the collapse operation. The lowest layer that has at least two buffers is
level 0 from which we randomly select two buffers, for instance, B0

2 and
B0

3. First, we merge all elements from these buffers and sort them:

{1, 6, 0, 5} ∪ {2, 0, 3, 3} = {1, 6, 0, 5, 2, 0, 3, 3} → {0, 0, 1, 2, 3, 3, 5, 6}.

Next, we free buffers B0
2 and B0

3, and populate buffer B3 at level 1 with
50% of their former elements, for simplicity let’s take the odd elements.

B0
1 B2 B1

3 B0
4

0 0 3 4 0 1 3 5 2 3 0 2

Thus, we have already processed n = N1+N2+N3+N4 = 16 elements, but
the active layer remains zero, and we populate B2 with the next N5 = 4

elements from the data stream: {5, 0, 3, 1}.

B0
1 B0

2 B1
3 B0

4

0 0 3 4 5 0 3 1 0 1 3 5 2 3 0 2

Once again there are no empty buffers, thus we need to perform another
collapse.
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Level 0 contains three full buffers and we randomly choose two of them,
e.g., B0

1 and B0
4, then merge and sort all their elements:

{0, 0, 3, 4} ∪ {2, 3, 0, 2} = {0, 0, 3, 4, 2, 3, 0, 2} → {0, 0, 0, 2, 2, 3, 3, 4}.

We label buffers B0
1 and B0

4 as empty and populate buffer B4 at level 1
with 50% of their elements by taking elements in even positions.

B1 B0
2 B1

3 B1
4

5 0 3 1 0 1 3 5 0 2 3 4

At the next step, we have already processed n = N1+N2+N3+N4+N5 =

20, thus the active level L = L(20) = 4.32 – 4 = 1, and we read the next
N6 = 4 · 21 = 8 elements from the data stream. In this case, there are
not enough elements left in the data stream, we read {0, 3, 1, 6, 1} and
populate B1 by sampling one element from each group of two elements.

B1
1 B0

2 B1
3 B1

4

3 1 1 5 0 3 1 0 1 3 5 0 2 3 4

Finally, we have built the resulting data structure SampleBuffers.

With SampleBuffers it is possible to answer the Inverse quantile
query and the rank of the given element x can be estimated as weighted
by the layer sum of counts of elements smaller than x for each non-empty
buffer:

rank(x ) =
k∑

i=1

2L(Bi ) · |{e < x |e ∈ B
L(Bi )
i }|. (5.2)

Example 5.4: Inverse quantile query with Random sampling
Consider the data stream from Example 5.3 and perform the Inverse
quantile query to estimate the rank of element 4.

The data structure SampleBuffers has the following form.

B1
1 B0

2 B1
3 B1

4

3 1 1 5 0 3 1 0 1 3 5 0 2 3 4
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Using the formula (5.2) we calculate the rank:

rank(4) = 21 · 3 + 20 · 3 + 21 · 3 + 21 · 3 = 21.

Thus, for element 4 the estimated rank(4) = 21.

To answer the Quantile query and find the q-quantile from
the SampleBuffers data structure, we simply need to search for
an element whose estimated rank, derived from formula (5.2), is closest
to q · n. In fact, we need to ask a number of Inverse quantile queries for
each of the elements in the data structure, but we can use the binary
search to speed up the process, and stop as soon as we find a value that
is close enough.

Example 5.5: Quantile query with Random sampling
Consider the data stream from Example 5.3 and calculate the 0.65-quantile.

The total number of elements in the data structure SampleBuffers is
n = 25, so our boundary value is q · n = 0.65 · 25 = 16.25.

B1
1 B0

2 B1
3 B1

4

3 1 1 5 0 3 1 0 1 3 5 0 2 3 4

There are elements {0, 1, 2, 3, 4, 5} in the SampleBuffers. We start with
element 0 and estimate its rank that, according to the formula (5.2), equals
to zero: rank(0) = 0. Next, we check element 1 and its rank estimation is
rank(1) = 5. The rank of element 2 is rank(2) = 12, while rank(3) = 14.
And we already know from Example 5.4 rank(4) = 21. Finally, the rank
of element 5 is rank(5) = 23.

Thus, the closest element to the boundary value 16.25 is element 3 with
rank(3) = 14. We report element 3 as an approximation of the 0.65-
quantile.

Note that we could speed up the process by using a binary search over
the sorted number of elements, taking into account that rank is a monotonic
function of its argument.
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Properties

To compute the ε–approximate of q-quantile, the Random requires a
fixed amount of memory that is proportional to b · k and depends only
on ε. With given approximation error, we can have the computation tree
with height h = log 1

ε , and the optimial number of buffers is

b = log 1

ε
+ 1,

while the size of each buffer is

k =
1

ε

√
log 1

ε
.

Being probabilistic, the Random algorithm correctly reports quantile
approximates with constant error probability that is bounded by 1

2ε and
originates from random sampling and random merging steps.

5.2 q-digest
Quantile digest, or q-digest, is a tree-based stream summary algorithm
that was proposed by Nisheeth Shrivastava, Chiranjeeb Buragohain,
Divyakant Agrawal, and Subhash Suri in 2004 [Sh04] for use in the context
of monitoring distributed data from sensors.

The q-digest addresses the quantile computation problem as
a histogram problem when data are summarized by some number of
buckets. The algorithm maintains a set of such buckets in a tree-like
q-digest data structure, merges small buckets, and splits the big ones.
It is a lossy deterministic algorithm, however, we consider it very useful
and important for our narration.

The algorithm works with integer values within some known range.
The binary partition of the integer range [0, N – 1] can be represented as
a virtual full and complete binary tree, whose root element corresponds to
the whole range [0, N – 1], its left and right children have ranges

[
0,
⌊
N–1
2

⌋]
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and
[⌊

N–1
2

⌋
+ 1,N – 1

]
, and, iteratively, the leaf nodes represent single

integer values. The depth of the tree is logN.

Every node ν in such a binary tree is a bucket that has an associated
range [νmin, νmax]. Additionally, we associate counters νcount for each
bucket to represent the number of elements (including duplicates) that
are indexed in it.

Example 5.6: Binary partitioning for q-digest
Consider a dataset of n = 20 integers from range [0, 7] that we investigated
in Example 5.3:

{0, 0, 3, 4, 1, 6, 0, 5, 2, 0, 3, 3, 2, 3, 0, 2, 5, 0, 3, 1}.

By binary partitioning the range we build the following binary tree and
bucket the input data:

[0, 7]

[0, 3]

[0, 1]

06 12

[2, 3]

23 35

[4, 7]0

[4, 5]

41 52

[6, 7]

61 7

The leaf nodes from left to right represent elements from [0, N – 1] and
the index numbers indicate the frequencies of the elements in the dataset.

Thus, the internal representation of the data consists of
the frequencies with which the stored elements were observed. At worst,
storage limitations mean we have to store such data as O(n) or O(N),
whichever is smaller. Note that in practice such binary trees are likely
to be very sparse and imbalanced, therefore storing it in raw form
without compression is quite inefficient.

The q-digest algorithm proposes a way to compress and compactly
store such a binary partition tree. Its data structure q-digest encodes
information about the distribution of elements and represents a version of
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the binary tree that includes only those buckets ν that satisfy the following
digest property:νcount ≤

⌊
n
σ

⌋
, (except leaf buckets)

νcount + ν
p
count + ν

s
count >

⌊
n
σ

⌋
, (except the root)

(5.3)

where νp is the parent and νs is the sibling of ν; n is the total number of
elements, and σ ∈ [1,n] is a design parameter responsible for the level
of compression.

The exception from this property is the root and leaf buckets. The root
bucket can violate the digest property (5.3), however, still be included in
the q-digest data structure. The leaf buckets with counts bigger than
the boundary value

⌊
n
σ

⌋
(frequent elements) are included as well.

In fact, the digest property defines a compromise between including
a few top-level and broad buckets, and many small buckets that contain
information about a few non-frequent elements.

Simplifying, the first constraint in the digest property (5.3) excludes
buckets unless they are leaf nodes which contain counts about high-
frequency elements because for such buckets it is worth storing child
elements and having more precise counters.

On the other hand, according to the second constraint, if two adjacent
buckets, which are siblings, have low counts, then we want to avoid
having two separate counters for each of them and it is better to merge
them into their parent and achieve the required degree of compression.

Thus, the construction of the q-digest requires hierarchical merging
and reduction of the buckets, going through all buckets bottom-up and
checking if any of them violate the digest property. In practice, since we
are only going bottom-up the second constraint to be checked.

Except for the root bucket, for every bucket ν that violates the digest
property, we merge its subtree by compressing counts from it, its parent
ν
p and sibling νs , and promote them to the parent bucket:

ν
p
count = ν

p
count + νcount + ν

s
count,

while excluding the bucket ν and its sibling νs from the q-digest.
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Algorithm 5.3: Compressing q-digest
Input: q-digest data structure of a range [0, N – 1]

Input: Compression factor σ
Output: Compressed q-digest data structure
level ← logN – 1

while level > 0 do
for ν ∈ q-digest[level ] do

if νcount + ν
p
count + ν

s
count ≤

⌊
n
σ

⌋
then

ν
p
count ← ν

p
count + νcount + ν

s
count

q-digest← q-digest \ {ν, νs}

level ← level – 1

return q-digest

The compression takes O(m · logN) time, where m = |q-digest| is
the number of buckets in the data structure; thus, the theoretical update
cost per element is about O(logN). In practice, however, the update
takes more time because every element is inserted into the leaf node first,
and then, during the compress operation, the algorithm needs to find its
appropriate position in the q-digest by moving the element up one step
at a time.

Example 5.7: Compress tree with q-digest
Consider the dataset of n = 20 elements from Example 5.6 where
the frequencies for non-observed buckets default to zero.

[0, 7]0

[0, 3]0

[0, 1]0

06 12

[2, 3]0

23 35

[4, 7]0

[4, 5]0

41 52

[6, 7]0

61 70

Let’s assume we want to achieve a compression with σ = 5, then
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the boundary value is ⌊n
σ

⌋
=

⌊
20

5

⌋
= 4.

Going bottom-up, consider the fourth level first, where only buckets from 0

to 3 satisfy the second condition of the digest property (5.3). According to
Algorithm 5.3, the children of buckets [4, 5] and [6, 7], that together violate
the digest property, have to be merged to their parents and excluded from
the q-digest.

Thus, the q-digest at this stage is (buckets in solid-line boxes are included
in the compressed data structure):

[0, 7]0

[0, 3]0

[0, 1]0

06 12

[2, 3]0

23 35

[4, 7]0

[4, 5]3

4 5

[6, 7]1

6 7

Further, at the third level, all buckets violate the constraints (5.3).
Therefore, we also compress them to their parents and don’t include in
the q-digest:

[0, 7]0

[0, 3]0

[0, 1]

06 12

[2, 3]

23 35

[4, 7]4

[4, 5]

4 5

[6, 7]

6 7

At the second level, we check the digest property for two children of
the root bucket, which again violate the constraints (5.3) since their total
counts do not exceed the boundary value and, consequently, they have to
be merged to the parent.

For the root element, it is not necessary to check the digest property since
it, as we declared earlier, is always included in the compressed q-digest



5.2 q-digest 143

if it has non-zero associated counts.

Hence, the final version of the compressed q-digest data structure is as
follows:

[0, 7]4

[0, 3]

[0, 1]

06 12

[2, 3]

23 35

[4, 7]

[4, 5]

4 5

[6, 7]

6 7

As we can see in this example, the compressed q-digest data structure
requires storing only five buckets with non-zero counts.

Because we always go bottom-up (and never top-down), check the digest
property, and make the decision about merging buckets only once during
the procedure, it is not necessary that all buckets from the compressed
q-digest satisfy the digest property after compression. For instance, changes
(e.g., merging to a parent) in some buckets on the top levels of the tree
could make already included buckets violate the constraints of the digest
property (5.3). However, in practice, this behavior does not decrease
the accuracy of the algorithm and, at worst, produces a less optimal data
structure that consumes more memory than is theoretically expected.

Putting that all together, we can formulate the complete q-digest
algorithm for the arbitrary dataset as below.

Algorithm 5.4: q-digest algorithm
Input: Dataset D with elements from range [0, N – 1]

Input: Compression factor σ
Output: Compressed q-digest data structure
q-digest← BinaryPartitionTree(D, [0, N – 1])

return Compress(q-digest, N,σ)
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To optimize the representation of the q-digest data structure,
the buckets in the associated binary tree can be enumerated in
a right-to-left, top-to-bottom manner:

Figure 5.1: Buckets enumeration

1

2

4

. . . . . .

5

. . . . . .

3

6

. . . . . .

7

. . . . . .

As soon as all buckets ν are enumerated, it is easy to restore
the corresponding range [νmin, νmax] even if we only know its index i .

Algorithm 5.5: Restoring bucket range [νmin, νmax]

Input: Bucket index i

Output: Bucket range
level ← blog(i)c
n ← 2level–1 // number of buckets on the level

m ← i mod n // position of the bucket on the level

return
⌈
N
n ·m

⌉
,
⌊
N
n · (m + 1)

⌋
In this way, we can build a linear representation of the q-digest data

structure — an array of buckets, where each bucket is just a 2-tuple
of its number and the associated counts. For example, the compressed
q-digest from Example 5.7 has the following linear representation:〈
(1, 4), (8, 6), (9, 2), (10, 3), (11, 5)

〉
.

Two q-digests with the same compression factor σ and element ranges
can be easily merged which allows for the processing of Big Data streams
in a distributed fashion. The idea is to take the union of their sets of
stored buckets and add the counts of the buckets with the same range,
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sum the total number of elements, and afterward run the compression
algorithm.

The q-digest algorithm can be used to answer the Quantile query and
find the q-quantile from the q-digest data structure. At first, we obtain
a sorted sequence S by ordering the buckets in increasing order of their
νmax values, breaking ties with smaller values first. After that, we can
scan the sequence S from the beginning and add the counts of buckets as
they are seen. As soon as for some bucket ν∗ this sum, that is the rank
estimation for the bucket, becomes larger than q · n, its ν∗max is reported
as the estimate to the q-quantile.

Algorithm 5.6: Answering Quantile queries with q-digest
Input: q-digest data structure
Input: Value q ∈ [0, 1]

Output: q-quantile
S← sort(q-digest)
rank ← 0

for (ν, count) ∈ S do
rank ← rank + count

if rank ≥ q · n then
return νmax

There are at least q · n buckets whose max values are less than ν∗max,
therefore the rank of bucket ν∗ is at least q · n.

It is possible to have an error in calculation of the ε–approximate of q-
quantile if values less than ν∗max are present in the ancestors of bucket ν∗
because in this case they will not be counted by Algorithm 5.6. Analytically,
such an error is bounded by ε · n and the algorithm reports a rank in
[q · n, (q + ε) · n] interval; thus, it never underestimates the exact value of
the q-quantile.
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Example 5.8: Quantile query with q-digest
We perform the Quantile query to calculate the 0.65-quantile from
the q-digest data structure built in Example 5.7 whose linear
representation has the following form:〈

(1, 4), (8, 6), (9, 2), (10, 3), (11, 5)
〉
.

Thus, the sorted sequence of buckets is

S =
〈
(8, 6), (9, 2), (10, 3), (11, 5), (1, 4)

〉
.

According to the algorithm, going from the beginning, we sum counts
of the buckets until the total becomes larger than 0.65 · n = 13. In
the current q-digest, we exceed that boundary value at the bucket (11, 5)
that corresponds to leaf element 3.

Thus, the q-digest estimation of the 0.65-quantile (or 65th percentile) for
the dataset of Example 5.7 is the element 3.

In a similar manner can be addressed the Inverse quantile query. We
build a sorted sequence S of the buckets and traverse it from the beginning
while maintaining the running sum of counts from seen buckets. The rank
of the given element x can be estimated as the sum of the counts of
the buckets ν for which x > νmax.

Algorithm 5.7: Answering Inverse quantile queries with q-digest
Input: Element x
Input: q-digest data structure
Output: Rank of element
S← sort(q-digest)
rank ← 0

for (ν, count) ∈ S do
if x > νmax then

rank ← rank + count

return rank

As in the Quantile query above, the rank obtained here lies within
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the interval [rank(x ), rank(x ) + ε · n].

As we already mentioned, to answer the Range query it is enough to
perform two Inverse quantile queries to find the ranks and the difference
between the range borders a and b. The maximum error for the Range
query in q-digest can be estimated as 2ε · n.

Algorithm 5.8: Answering Range queries with q-digest
Input: Range [a, b]

Input: q-digest data structure
Output: Number of elements in range
ra ← InverseQuantileQuery(a,q-digest)
rb ← InverseQuantileQuery(b,q-digest)
return rb – ra

Properties

The q-digest algorithm is a lossy algorithm; it compresses information
about low-frequency elements while carefully preserving information
about high-frequency ones. Therefore, it provides a good approximation
schema when there are wide variations in frequencies of different elements.
The q-digest algorithm can provide information about the distribution of
elements values, but not the information concerning where those values
have occurred.

There is a clear trade-off between the accuracy of the algorithm and
the memory required to store the q-digest data structure, that is
controlled by the compression factor σ. Thus, for the given range [0, N],
we can expect at most 3 ·σ stored buckets and the error in ε–approximate
q-quantile computation is upper bounded:

ε ≤ logN
σ

.

The core property of the q-digest is that it is adaptive to the data and
builds buckets of almost equal weights. In contrast to the traditional
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histogram, q-digest allows overlapping buckets which makes it possible
to answer consensus queries (e.g., the frequent values).

The main problems in practical applications of the q-digest algorithm
is that it can handle only integer elements, requires their range being
known in advance, and suffer from significant errors for extreme quantiles.

5.3 t-digest
One of the modern alternatives to the accurate online accumulation of
rank-based statistics is called t-digest and was proposed by Ted Dunning
and Otmar Ertl in 2014 [Du14]. The t-digest algorithm allows estimating
quantiles in unbounded streams with a focus on extreme values such as
0.99-quantile. This is ongoing research and the algorithm periodically
gets improvement updates based on its practical applications [Du18].

The t-digest summarizes the input data stream D in varying-sized
clusters {Ci}mi=1 that allows it to maintain a good accuracy in quantile
computation while processing a large amount of data. Every such cluster
Ci represents a subset of input elements and sized to ensure it is not too
large to be able to estimate quantiles by interpolation, but not too small
to prevent ending up with too many clusters.

Every cluster Ci is defined by the centroid ci , a data point at
the center of the cluster, that is the mean of the input elements that
contribute to this cluster, and the number of such elements ccounti .
The t-digest data structure is an array of such weighted centroids
{(c1, ccount1 ), (c2, c

count
2 ), . . . (cm , ccountm )} that are sorted in ascending

order. From this sorted sequence we can estimate the maximal quantile
value that corresponds to each centroid ci :

q(ci) =
1

n

∑
j<i

ccountj +
1

n
ccounti , (5.4)

where n =
m∑
j=1

ccountj is the total number of indexed elements in the data

structure.
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Thus, according to (5.4), every cluster Ci in t-digest data structure
is responsible for a certain range of quantile values (q(ci–1), q(ci)],
whose length depends on the cluster size, the number of elements that
contribute to this cluster. Correct cluster sizing has a direct influence on
the accuracy and in the t-digest algorithm it is provided by
a non-decreasing scale function. Such a function k = k(q ,σ) takes into
account desired compression σ and scales quantile values q differently
based on how far their are from the extrema such as q = 0 and q = 1.
The good choice of the scale function is crucial and there are alternative
functions with different trade-offs in terms of accuracy [Du18a]. For
instance, one of commonly used functions is

k(q ,σ) =
σ

2π
arcsin (2q – 1), (5.5)

where the compression parameter σ > 1 (bigger values correspond to less
compression).

With respect to the chosen scale function k = k(q ,σ), for every cluster
Ci that is associated with its centroid ci in the t-digest data structure,
we can define the k-size, denoted as K(ci), which expresses the scaled
length of the quantile range for the cluster:

K(ci) := k (q(ci),σ) – k (q(ci–1),σ) , i = 2 . . .m (5.6)

where K(c1) := k (q(c1),σ).

To restrict the number of elements in a cluster in a way that depends
on the quantile values it is responsible for, we can restrict its k -size
and with non-linear scale functions we result in non-uniform clusters,
having larger cluster sizes for the middle-range quantiles and smaller
near the extrema (up to singleton clusters that contain only one element).
Moreover, the t-digest algorithm is designed to build a fully-merged
t-digest data structure, meaning all clusters {Cj }mj=1 satisfy the digest
property: K(ci) ≤ 1, (except singleton clusters)

K(ci) + K(ci+1) > 1,
(5.7)
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which not only restricts the k -size of each cluster, but also ensures that
any two adjacent clusters cannot be further merged.

In practice, to fulfill the constraints of the digest property (5.7), we
do not need to recompute the k -size for each cluster on every change.
Instead, since all centroids are sorted in the t-digest, the number of
elements in the cluster Ci can be limited by choosing a boundary for its
estimated maximal quantile value:

qlimit = k–1 (k(q(ci),σ) + 1,σ) , (5.8)

that for the scale function (5.5) has the following form:

qlimit =
1

2

[
1 + sin

(
arcsin (2 · q(ci) – 1) +

2π

σ

)]
. (5.9)

Having the rules (5.8) to restrict the number of elements per cluster in
t-digest, we can formulate the merging t-digest algorithm as
Algorithm 5.9, which is similar to the regular clustering procedure. To
summarize input sequence of weighted data points
{(x1, x count1 ), (x2, x

count
2 ), . . . (xb , x

count
b )}, we sort them together with all

centroids from the t-digest data structure and, making a single pass
through the resulting sequence X, we attempt to merge them
successively if the digest property is not violated. We start with
the left-most centroid, take its cluster as the current candidate cluster,
and compute its boundary value qlimit by (5.8). Then, sequentially
processing all centroids from X, we estimate their approximate quantile
values and compare them to the boundary value. If absorbing of
the pending centroid does not exceed the boundary value, we merge it
into the candidate cluster and continue with the next centroid from
the sequence X. Otherwise, meaning the maximual capacity of
the candidate cluster is reached and no new elements can be added, we
persist the current candidate cluster in the t-digest data structure,
emit a new candidate cluster with the pending centroid, and recompute
the quantile boundary value qlimit. At the end, we receive a fully-merged
t-digest data structure.
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Algorithm 5.9: Merging elements to t-digest
Input: Buffer B with elements {(x1, x count1 ), (x2, x

count
2 ), . . . (xb , x

count
b )}

Input: t-digest data structure t-digest
Input: Compression parameter σ > 1, scale function k

Input: t-digest data structure with merged buffer
X← sort(t-digest ∪ B)

t-digest← ∅
m ← count(X),n ←

∑
xi∈X

x counti

c ← x1, qc ← 0

qlimit ← k–1 (k(qc ,σ) + 1,σ)

for i ← 2 to m do
q̂ ← qc +

1
n c

count + 1
n x

count
i

if q̂ ≤ qlimit then
ccount ← ccount + x counti

c ← c + x counti · xi–c
ccount

continue
t-digest← t-digest ∪ {(c, ccount)}
qc ← qc +

1
n c

count

qlimit ← k–1 (k(qc ,σ) + 1,σ)

c ← xi

t-digest← t-digest ∪ {(c, ccount)} // last cluster usually is a singleton

return t-digest
As we can see, every time when a new candidate cluster is emitted

the boundary value qlimit has to be recomputed which involves expensive
computation of the scale function and its inverse, according to (5.8)
and (5.9). Luckily, the number of clusters is not too large in practice and
various techniques have been suggested in order to optimize the boundary
estimation, such as using efficient approximations for components of scale
functions or roughly estimating the maximal number of elements that
can be summarized into each cluster.

The complete algorithm to index a continuous data stream is based on
the idea of processing streaming data by buffers of some fixed size and
continuously merge them into the t-digest data structure.
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Algorithm 5.10: Stream processing with t-digest
Input: Data stream D = {x1, x2, . . . , }
Input: Buffer size b, compression parameter σ > 1, scale function k

Input: t-digest data structure
t-digest← ∅
while D do

B← {(x1, 1), (x2, 1), . . . , (xb , 1)}
t-digest←Merge(t-digest, B,σ, k)

return t-digest

Note, the runtime costs of the buffer-and-merge Algorithm 5.10 are
shared between frequent inserts of input elements into the buffer and rare
calls of Algorithm 5.9. Since the inserts are cheap, the overall costs are
dominated by the sort and the scale function invocations in the merging
sub-algorithm that are amortized over several insertions.

Example 5.9: Indexing data stream with t-digest
Consider the dataset of n = 20 integers from Example 5.6:

{0, 0, 3, 4, 1, 6, 0, 5, 2, 0, 3, 3, 2, 3, 0, 2, 5, 0, 3, 1}.

As an example, let’s take the compression parameter σ = 5, the buffer size
b = 10, and the scale function as given by (5.5).

We populate the buffer B with the first ten elements from the input:

B =
〈
(0, 1), (0, 1), (3, 1), (4, 1), (1, 1), (6, 1), (0, 1), (5, 1), (2, 1), (0, 1)

〉
.

According to Algorithm 5.10, we need to join elements from the buffer and
the centroids that are in the t-digest. However, since the t-digest data
structure is empty, the list of candidate centroids X contains only n = 10

elements from B, which we sort in ascending order:

X =
〈
(0, 1), (0, 1), (0, 1), (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1)

〉
,

We select our first candidate cluster by taking the left-most centroid (0, 1)

and compute its quantile boundary value qlimit using the formula (5.9):

qlimit =
1

2

[
1 + sin

(
arcsin (–1) +

2π

5

)]
= 0.34549.
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Then, we take the next element from X, which is again (0, 1), and evaluate
if it can be merged to the candidate cluster without violating the digest
property. In our case it requires to estimate the maximal quantile value q̂

of this merged cluster:
q̂ =

(1 + 1)

10
= 0.2,

and because it is below the quantile boundary value qlimit, we can freely
merge the element (0, 1) into the current candidate cluster, which now
has ccount = 2 elements but, since the elements are identical, the centroid
stays the same c = 0.

Similarly, we are able to merge the next element (0, 1) to the candidate
cluster, that changes only the number of summarized elements ccount = 3.

Next, we get the fourth element from X, which is (0, 1), and follow the same
procedure as above to check if it can also be merged into the candidate
cluster. However, the estimated maximal quantile q̂ of such merged cluster
will become:

q̂ =
(3 + 1)

10
= 0.4,

that exceeds the current boundary value qlimit = 0.34549. Thus, we stop
our attempts to absorb other centroids by the candidate cluster, store it
into the t-digest data structure

t-digest =
〈
(0, 3)

〉
,

and remember its maximal quantile value as q = ccount

n = 0.3.

From this moment we start to build a new candidate cluster from
the current pending element (0, 1), having c = 0 and ccount = 1, and its
quantile boundary value is

qlimit =
1

2

[
1 + sin

(
arcsin (2 · 0.3 – 1) + 2π

5

)]
= 0.874025.

Next, we take element (1, 1) and if we merge it to the current candidate
cluster, the estimated maximal quantile q̂ will be

q̂ = 0.3 +
(1 + 1)

10
= 0.5,
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that doesn’t exceed the current boundary value. Thus, we merge
the element (1, 1) to the current cluster whose counts increase to
ccount = 2 and the centroid becomes

c = 0 +
1 – 0

2
= 0.5.

Similarly, we process all the rest of the elements from X and the t-digest
data structure grows into:

t-digest =
〈
(0, 3), (2, 5), (5, 1), (6, 1)

〉
.

Continue processing the dataset, we fill a new buffer:

B =
〈
(3, 1), (3, 1), (2, 1), (3, 1), (0, 1), (2, 1), (5, 1), (0, 1), (3, 1), (1, 1)

〉
,

join it with the t-digest data structure, and sort the resulting sequence
X in ascending order of centroids:

X =
〈
(0, 3), (0, 1), (0, 1), (1, 1), (2, 5), (2, 1), (2, 1),

(3, 1), (3, 1), (3, 1), (3, 1), (5, 1), (5, 1), (6, 1)
〉
.

Having that, we flush the t-digest data structure and starting from
the left-most elements attempt to merge sequentially elements and store
clusters into t-digest that they cannot be further merged.

At the end, the resulting t-digest data structure consists of m = 5

clusters and has the following view:

t-digest =
〈
(0.1667, 6), (2.36364, 11), (5, 1), (5, 1), (6, 1)

〉
.

Because we lost information about exact elements clustered together
(except the singleton clusters, where the centroid is the initial element),
the t-digest data structure provides a lossy representation of the data
stream and to estimate quantiles and answer the Quantile query, we need
to make an interpolation, taking into account distribution of clusters
that has been produced by the chosen scale function.
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Algorithm 5.11: Answering Quantile queries with t-digest
Input: t-digest data structure with m clusters
Input: Value q ∈ [0, 1]

Output: q-quantile
n ←

m∑
j=1

ccountj

if n · q < 1 then
return c1

if n · q > n – 1
2c

count
m then

return cm

/* at this point, we can be sure that ∃i ∈ [1,m) : q(ci ) +
1
2n c

count
i+1 > q, */

/* so the searched quantile is somewhere between ci and ci+1 */

if ccounti = 1 and q(ci) > q then
return ci

if ccounti+1 = 1 and q(ci+1) –
1
n ≤ q then

return ci+1

Δleft ← (ccounti = 1) ? 1 : 0

Δright ← (ccounti+1 = 1) ? 1 : 0

wleft ← n · q – n · q(ci) +
ccount
i –Δleft

2

wright ← n · q(ci) – n · q +
ccount
i+1 –Δright

2

return ci ·wright+ci+1·wleft
wleft+wright

Thus, to find the q-quantile from the t-digest data structure, we
calculate the rank of the searched element x in this sorted sequence,
which is n · q , where n is the total number of elements summarized into
t-digest data structure. If this rank is below one, we report the centroid
c1 as the quantile. Similarly, if the rank is within a half of the last cluster
of the the maximal count or even above, we return cm that the maximal
element in the digest. Otherwise, we search for clusters Ci and Ci+1 whose
estimated quantile values given by formula (5.4) encircle the given quantile
value q . When the left cluster Ci is a singleton and its maximal quantile
surpasses q , we return centroid ci as the quantile that is the element
that was actually summarized into the cluster. Similarly, if the right
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cluster Ci+1 is a singleton and its estimated minimal quantile value falls
behind the given quantile value q , meaning this cluster is responsible for
the searched quantile, we report centroid ci+1 as the best estimation to
it. Otherwise, we compute weights by evaluating the contribution of each
such cluster and build an interpolation by taking the weighted average
of the centroids from both clusters, which is reported as the q-quantile.

The quantile estimation algorithm is dependent on the choice of the scale
function and with more aggressive functions that produce a bigger tail of
singleton clusters at the edges, it can be tuned to improve accuracy for
extreme quantiles [Du18]. Additionally, it is advised to persist the minimal
and maximal elements during the indexing to use them in interpolation.

Example 5.10: Quantile query with t-digest
We perform the Quantile query to calculate the 0.65-quantile from
the t-digest data structure built in Example 5.9:

t-digest =
〈
(0.1667, 6), (2.36364, 11), (5, 1), (5, 1), (6, 1)

〉
.

The total number of elements in the t-digest is the sum of counts from all
clusters, that is n = 20 in our case. The rank of the searched quantile x is
n · q = 20 · 0.65 = 13, which is neither smaller than one, nor too close to n,
therefore, we start searching for two consecutive clusters Ci and Ci+1, whose
centroids will encircle the searched quantile x . In the current t-digest
data structure, these are C2 and C3, because

q(c2) +
1

2 · 20
ccount3 =

6 + 11

20
+

1

40
= 0.875 > 0.65,

as it required according to Algorithm 5.11.

Since the cluster C3 is a singleton, meaning it has ccount3 = 1, we need to
compare its maximal quantile value to the searched quantile value q in
order to check if its centroid can be the best fit. Thus, we calculate

q(c3) +
1

20
=

6 + 11 + 1

20
+

1

20
= 0.95,

that is significantly surpasses the value q = 0.65 and we conclude that
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the actual quantile is located somewhere in between the centroids c3 and
c2, but remember that the right cluster is a singleton by setting Δright = 1.

Therefore, the searched quantile can by estimated by the interpolation
using the weighted average of the centroids, where the weights are

wleft = 20 · 0.65 – 20 · q(c2) +
ccount2 – 0

2
= 13 – 20 · 6 + 11

20
+

11

2
= 1.5,

wright = 20 · q(c2) – 20 · 0.65 +
ccount3 – 1

2
= 20 · 6 + 11

20
– 13 +

1 – 1

2
= 4.

Finally, the estimated 0.65-quantile for the dataset of Example 5.9 is

x =
c2 · wright + c3 · wleft

wleft + wright
=

2.36364 · 4 + 5 · 1.5
1.5 + 4

= 3.08,

which is pretty close to the exact value of 3 for that dataset.

Similar to the Quantile query, we can use the t-digest data structure
to answer the Inverse quantile query and find the rank of some given
element x . We start with the comparison of the element x to the minimal
and maximal centroids in the t-digest data structure, which are the left-
most and right-most clusters, accordingly. If x falls outside that range,
we just report either 1 or the total number of elements n as the estimated
rank value, depending on the side the element appear. Otherwise, we
search for the element x through the centroids and if such clusters are
found, we accumulate their counts and report the rank(x ) as the rank of
the cluster with the smallest index adjusted by that amount. If neither
of the checks above are succeeded, we can be sure that the element x

falls in between centroids of some consecutive clusters, say (ci , ci+1),
and its rank is already at least n · q(ci). If both of these clusters are
singletons, meaning their centroids are exactly the input elements that
were summarized, we do not need to correct that value and return it
as the searched rank. When only one of those clusters is a singleton,
we fine-tune the rank by the scaled contribution of another cluster to
get the final value. Otherwise, we build an interpolation using the both
cluster sizes and adjust the guaranteed rank value.
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Algorithm 5.12: Answering Inverse quantile queries with t-digest
Input: Element x
Input: t-digest data structure with m clusters
Output: Rank of element
n ←

m∑
j=1

ccountj

if x < c1 then
return 1

if x > cm then
return n

/* check if x is one of the centroids */

if ∃j : cj = x then
J← {j : cj = x}, i∗ ← min(J)
return n · q(ci∗) – ccounti∗ + 1

2

∑
j∈J

ccountj

/* at this point, we can be sure that ∃i ∈ [1,m) : x ∈ (ci , ci+1) */

rank ← n · q(ci)
if ccounti = 1 and ccounti+1 = 1 then

return rank

x̂ ← x–ci
ci+1–ci

if ccounti = 1 then
return rank + x̂

2 · c
count
i+1

if ccounti+1 = 1 then
return rank – (1–x̂)

2 · ccounti

return rank + x̂
2 · c

count
i+1 – (1–x̂)

2 · ccounti

As mentioned earlier, to answer the Range query, it is simple enough
to perform two Inverse quantile queries and find the difference between
the ranks of the range borders.

Properties

There is a clear trade-off between the size of the t-digest data structure
as controlled by the compression parameter σ, the speed, and the accuracy
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to which the quantiles are estimated. Thus, with a smaller value of σ
and a large buffer size b, we can achieve higher speed with constant
memory usage. For highest accuracy, it is preferred to use larger σ to
have less compression and a bigger buffer (e.g., 10 × σ), while for the
smallest memory — a smaller buffer and larger values of the compression
parameter σ.

As shown by the t-digest authors, when using the scale function (5.5),
the number of clusters m in the t-digest data structure that satisfies
the digest property (5.7) and indexed n ≥ σ

2 elements is in the range of⌊
σ

2

⌋
≤ m ≤ dσe. (5.10)

Example 5.11: Estimate required space
For example, we want to index at least n = 1000 elements with
the compression parameter σ = 100. Therefore, according to (5.10), we
can expect from 50 to 100 clusters in the fully-merged t-digest.

In the t-digest data structure each cluster is represented by its centroid
and the number of indexed elements. Thus, having 32-bit counters and
double precision 64-bit floating point number for the centroid value, the
entire centroid requires 12 bytes of memory and the whole data structure
fits in about 1.2 KB of memory.

For high accuracy we typically use buffer ten times bigger the compression
parameters and having b = 10 · σ = 1000 we can allocate smaller 16-bit
counters and double precision 64-bit floating point numbers for elements
in the buffer, that end up in additional 10 KB of memory in runtime.

The t-digest algorithm maintains accuracy ε in q-quantile estimation
that is proportional to q ·(1–q) and, in contrast to other algorithms which
maintain only the constant absolute error, in the t-digest the relative
error is bounded that makes it resistant to significant errors for extreme
quantiles. The advantage of the t-digest over the q-digest is also that it
can handle floating point values while the q-digest, as we have already
seen, is limited to integers only.
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Two t-digest data structures can be easily merged using the same
algorithm, but the resulting data structure is not the same as
the t-digest built for the joined input stream. However, the empirical
results show that it provides a good estimation to that value, so it is
possible to compose t-digests for different parts of the data stream in
parallel and combine them to answer rank queries. This makes
the algorithm parallel friendly and useful in MapReduce and stream
mining tasks for Big Data applications.

The t-digest algorithm has become more and more popular these days.
For instance, it is used in the percentiles aggregation in Elasticsearch
and also available in stream-lib and Apache Mahout.

Conclusion
In this chapter we covered efficient algorithms and data structures that
are widely used to calculate rank-based characteristics of the data using
a small amount of memory. We studied a popular sampling algorithm,
well-known tree-based stream summary algorithm as well as its modern
alternative that is based on one-dimensional clustering. With these
algorithms we can find ranks of elements in a data stream, various
quantiles and execute range queries.

If you are interested in more information about the material covered
here or want to read the original papers, please take a look at the list of
references that follows this chapter.

In the next chapter we consider the similarity problem, one of
the fundamentals in data analysis. We study different similarity
definitions and efficient probabilistic algorithms that approach
the problem of ascertaining the most similar documents for a given
document across huge datasets.
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6
Similarity

Similarity is a fundamental data analysis problem that has attracted a lot
of research effort in the last two decades. While talking about relations
of two documents1, we are mostly interested in concepts such as roughly
the same and in finding a way to express similarity numerically.

The similarity plays an important role for Big Data applications and
can be used to reduce the processing time and computation efforts. For
instance, with its help, we can eliminate data that has already been
processed even if it doesn’t have the same form as before. Another
example is the development of different sampling techniques to handle

1“Documents” can be objects of any nature, e.g., texts, images, etc.
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large volumes of data, that are sometimes unfeasible to process. When
handling data from a number of classes, instead of just taking every n-th
document from the dataset (which can result in unbalanced processing
of the classes), we can develop a similarity measure to group documents
of one class together and process equal subsets from each class to keep
the processing balanced.

Example 6.1: DNA sequences (Xie et al., 2015)
The rapid development of DNA sequencing technologies in recent years
has led to a huge number of discovered DNA sequences. Evaluation
of the similarity between them is a crucial starting point for analyzing
genomic information and has a wide range of applications. However, DNA
databases have a huge number of documents, where the same data can
be stored in various different forms and an efficient search for similar
sequences is essential.

The most well-known similarity-related problem is to find a nearest
neighbor for a given document, meaning the document that is most similar
to it across the dataset. Having an efficient algorithm for the nearest
neighbor search in a large database can speed up, by several orders of
magnitude, many important applications like document retrieval, image
matching, etc.

The naive solution is to use a linear scan, iterate over all existing
documents, and compare them to the given document. Such an approach
guarantees to find the exact nearest neighbor of any query object, but
requires O(n) time, where the number of pairs n is huge. In high-
dimensional spaces, the problem of the nearest neighbor search becomes
even more difficult.

Thus, we are looking for sublinear time solutions that approximately
find the nearest neighbor, that is suitable in most practical cases. In
practice, we are interested in solving an approximate nearest neighbor
problem or, more formally, a ε–Nearest neighbor problem to find with
some high probability 1 – ε the nearest neighbor for a given document in
a large database.
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The immediate application of the nearest neighbor search is
the detection of duplicates (exact and non-exact), a task to find
documents that at some level are similar to the given document.

Example 6.2: Intellectual property (Broder et al., 1997)
The detection of duplicates, illegal copies, or modifications, is very
important in intellectual properties protection and plagiarism prevention.

Given a source document, we can perform a nearest neighbor search to
find other documents that are similar to it, in whole or part, that have
been substantially copied or minorly edited.

Another important application of the nearest neighbor problem is
clustering, a task of grouping documents in a way that documents in
the group (cluster) are more similar to each other than to other documents
outside the group, in other words, to group the nearest documents
together.

Conceptually, to find similar documents in a dataset, we need to
compare each document to each document, which requires the evaluation
of about the quadratic number of pairs. Thus, for 1 million documents
there are about 500 billion (5 · 1011) pairs and, judging 106 pairs per
second, it takes almost six days to process all those documents, which is
unpractical.

Since the similarity problem itself is fuzzy, it is natural to use
probabilistic algorithms to solve it fast and efficiently.

Jaccard (resemblance) similarity

While it is not immediately clear how to express the similarity between
documents of arbitrary representation, mathematics has already
developed a solid theory for set similarity. Thus, representing documents
as collections of some features, the document similarity problem can be
converted to a set intersection problem and evaluated, for instance, by
a random sampling that can be done independently for each document.
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There are many different ways to represent a document of any nature
as a set. Generally speaking, we need to identify important document
characteristics that describe it in the best way and represent the document
as a simple collection of those features. To be able to compare documents
with higher effectiveness, it is important to define a canonical collection of
features which stay the same for documents that differ only in information
that is usually ignored as meaningless (e.g., for text documents, we often
ignore punctuation, capitalizations, formatting, and so on). The step of
the preprocessing of documents to their canonical form is called document
normalization.

Example 6.3: Features for music tracks
In the task of finding audio matches, we want to use features that are
robust to the common types of abuse that are performed on audio before
it reaches our ears. For instance, we can note the peaks in the spectrum
and encode their positions in time and space as a collection of signatures
that describe the particular audio.

In contrast, for songs, we can extract features based on mel-frequency
cepstral coefficients (MFCCs), which are a short-time spectral
decomposition of a musical clip that conveys the general frequency
characteristics important to human hearing. Representing a song as
a collection of MFCC frames, we can consider two songs similar if they
have the same frames regardless of the order.

Another example shows how text documents can be treated.

Example 6.4: Shingling technique for text documents
For text documents, the most well-known method to represent them as
collections of features is shingling, where shingle is a contiguous subsequence
contained in a document. Specifically, every document can be associated
with a collection of w -shingles, that includes all shingles of some predefined
size w contained in the document.

For example, consider a text document “The quick brown fox jumps over
the lazy dog”. We can build shingles of size w = 6 from the sequence of
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characters which are

“the qu”, “he qui”, “e quic”, “ quick”, “quick ”, “uick b”, “ick br”, “ck bro”,
“k brow”, and so on.

Another approach is to use word tokenization, for that our example can be
reduced to a simple split of the document by spaces, and we build shingles
from the sequence of words. For example, 3-shingles (3-grams) will be

“the quick brown”, “quick brown fox”, “brown fox jumps”, “fox jumps over”,
“jumps over the”, “over the lazy”, “the lazy dog”.

Unfortunately, the length of the shingles can vary by a wide range, and it
can be tough to allocate a space-efficient data structure.

Instead, we can convert shingles to fixed-length entities by applying a
classical hash function that hashes to the desired number of bits, e.g., 8-bit
values. This approach has some additional tiny probability of collision,
but can drastically reduce the required space.

If two documents dA and dB are represented as collections of features,
we can mathematically calculate their resemblance as a Jaccard similarity
J(dA, dB) which indicates the ratio of common features in both documents,
and produces a number between zero and one, such that it is close to
one for the documents that are roughly the same:

J(dA, dB) =
|dA ∩ dB|
|dA ∪ dB|

. (6.1)

The Jaccard similarity of exact duplicates is equal to one, and we can
consider documents as nearest neighbors if their resemblance exceeds
a certain given threshold 0 < θ < 1.

In reality with high volumes of documents to compute the Jaccard similarity
for, it suffices to keep a relatively small fixed-size sketch for each document.
Such sketches can be produced very fast (linear on document size) and,
given two sketches, the Jaccard similarity can be computed in linear time
based on the size of the sketches.
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Example 6.5: Jaccard similarity
Medical symptoms can be naturally used as features for diseases. Consider
five well-known illnesses together with their most common symptoms2:

Disease Symptoms
d1 allergic rhinitis sneezing, itchiness, runny nose
d2 common cold runny nose, sore throat, headache, muscle

aches, cough, sneezing, fever, loss of taste
d3 flu fever, aching body, feeling tired, cough, sore

throat, headache, difficulty sleeping, loss of
appetite, diarrhea, nausea

d4 measles runny nose, cough, red eyes, fever, greyish-
white spots, rash

d5 roseola fever, runny nose, cough, diarrhea, loss of
appetite, swollen glands, rash

Intuitively, we can expect that the common cold is a bit more similar to
the flu, than to roseola; roseola should be similar to measles, and allergic
rhinitis should be quite different from the others. Let’s compute Jaccard
similarities for these documents.

Documents d2 and d3 have 14 different symptoms in total while sharing
only 4 of them (cough, fever, headache, sore throat); thus, the similarity is
equal to 0.2857, which is about 29%:

J(d2, d3) =
4

14
= 0.2857.

Next, we compare documents d4 and d5 that have 9 different symptoms in
total and 4 in common, so the similarity is 44%:

J(d4, d5) =
4

9
= 0.44.

Comparing d1 to d3 gives us no common symptoms, so J(d1, d3) = 0 and
they are two different diseases that cannot be accidentally mixed up.

Once every document is represented as a collection of features, we
have the set of all features across all documents which is called

2Find more conditions and treatments at NHS Choices https://www.nhs.uk

https://www.nhs.uk
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the universal set Ω. This feature set can be seen as a bit-array, where
set bits indicate that the corresponding feature from the universal set is
present in the document.

The universal set is usually much bigger than the collection of features
from a particular document, therefore the document bit-arrays have much
more unset bits that set ones (very sparse).

Example 6.6: Document bit-array
Consider the list of diseases from Example 6.5. The universal set Ω for these
documents includes all the different symptoms mentioned in the documents
(in practice, it should consist of all possible medical symptoms). We can
enumerate those symptoms in some particular order, e.g., alphabetically:

Index Symptom
0 aching body
1 cough
2 diarrhea
3 difficulty sleeping
4 feeling tired
5 fever
6 greyish-white spots
7 headache
8 itchiness
9 loss of appetite

Index Symptom
10 loss of taste
11 muscle aches
12 nausea
13 rash
14 red eyes
15 runny nose
16 sneezing
17 sore throat
18 swollen glands

The bit-array that corresponds to document d3 (flu) and the order of
features has the following form:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 1 1 1 1 1 0 1 0 1 0 0 1 0 0 0 0 1 0

Thus, the set bit in position 5 (corresponding to fever) means that it is
a symptom for the flu, while the unset bit in position 13 indicates that
rash is not a symptom.

The Jaccard similarity between two document bit-arrays is the ratio
between the number of bits that are set for both documents (i.e., have
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ones in the same bit-positions) to the number of bits that are set for
either one or the other document.

A binary representation of the documents encodes only the fact of
the feature’s existence in the document, but cannot answer questions
about how frequently the feature appears and does not support feature
prioritizing. For instance, in Example 6.5 many diseases have a cough,
fever, and runny nose as symptoms because it is just the way our
body protects itself regardless of the particular illness. However, this
makes many different diseases a bit more similar to each other and to
identify “truly” similar documents we need to use different approaches, for
instance the TF–IDF model, which prioritize more unique terms between
documents, and represents documents as dense vectors of the features’
weights. Unfortunately, the Jaccard similarity defined by (6.1) cannot
be applied in this case, and we need to go for other similarity definitions,
such as the Ruzicka similarity or the cosine similarity.

Cosine similarity

Another view on mathematical formalization of documents is to represent
them as dense vectors of weighted features, where the weights could
highlight the importance of the features.

Text documents are the main targets of such formalization due to
the popularity of the Vector Space Model3, that provides
a representation for such documents as dense vectors of identifiers. For
instance, the term frequency – inverse document frequency model
(TF–IDF) considers documents as dense vectors of term weights, built
as a relative frequency of the term in the document (term frequency,
TF), normalized by the relative number of documents in the dataset
that contains the term (inverse document frequency, IDF).

3G. Salton et al., A vector space model for automatic indexing, 1975
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Example 6.7: Vector Space Model
Consider the documents from Example 6.5 and let’s build a real-valued
representation of them using the TF–IDF model. We treat every
symptom sj as a term and compute its weight wj for the document based
on the occurrence of the term in the dataset. The idea is to prioritize
terms that occur more in the particular document but are very rare in
the whole dataset, which could be an indicator that they better
characterize the document. In our case, all symptoms occur exactly one
or zero times in the documents, so instead of using the pure frequency, we
use the features frequency adjusted for document length, the relative
frequency f dj of the symptom in the document. To make the results more
visual, we additionally scale the output and round the weights to integers:

wj = 100 · f dj · log n

nj
,

where nj is the number of documents that contain feature sj and n is
the total number of documents in the dataset.

Like in Example 6.6, we can define a universal set Ω and enumerate all
the different symptoms alphabetically. Thus, we end up with 19 unique
features which will induct the dimensionality of our document vectors.

Feature Symptom Number of documents
s0 aching body 1
s1 cough 4
s2 diarrhea 1
s3 difficulty sleeping 1
s4 feeling tired 1
s5 fever 4
s6 greyish-white spots 1
s7 headache 2
s8 itchiness 1
s9 loss of appetite 2
s10 loss of taste 1
s11 muscle aches 1
s12 nausea 1
s13 rash 2
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Feature Symptom Number of documents
s14 red eyes 1
s15 runny nose 4
s16 sneezing 2
s17 sore throat 2
s18 swollen glands 1

Consider document d3 (flu) and build its representation as a vector of
weights of the document features. The feature s0 (aching body) is one out
of the 10 features for document d3, its relative frequency is f 30 = 1

10 = 0.1;
since no other document from the dataset contains that feature, n0 = 1

and the total number of documents n = 5:

w3
0 = 0.1 · log 5

1
≈ 16.

Similarly, feature s1 (cough) appears once in the document, so f 31 = 0.1,
but it is contained also in four documents in the dataset, so n1 = 4 and
its weight is

w3
1 = 1 · log 5

4
≈ 2.

We can continue processing all features and if some feature from
the universal set is not present in the document, its weight is equal to
zero regardless of other counts.

Thus, the final real-valued vector representation of document d3 is

16 2 9 16 16 2 0 9 0 9 0 0 16 0 0 0 0 9 0

One of the popular similarity measures in the area of document vectors,
the cosine similarity c(dA, dB), is the value of the angle α = α(dA, dB)
between two documents that are represented as two non-zero vectors:

c(dA, dB) = cos(α) = dA · dB
‖dA‖2 · ‖dB‖2

. (6.2)

The cosine similarity focuses on the orientation of the document
vectors, not on their magnitude. If two document vectors are orthogonal
in the space (therefore, such documents are completely non-related),
the angle between them is 90◦ and the cosine similarity is cos 90◦ = 0.



173

On the other hand, if the angle between the document vectors is close to
0◦, the documents are roughly the same and their cosine similarity is
close to one.

Although the cosine function can take values from [–1, 1], in most
information retrieval problems document vectors have only positive
components, so the angle doesn’t exceed 90◦ and the cosine similarity only
has values from [0, 1].

Example 6.8: Cosine similarity
Consider the RGB color space that defines the chromaticity of red (R),
green (G), and blue (B). Every supported color can be represented with non-
negative 8-bit values of R, G, and B. For instance, red has the maximum
value 255 in the R channel and zeros in other channels.

Many people natively can identify similar colors, but let’s estimate their
cosine similarities. Consider the list of colors in the table below.

Color R G B

d1 red 255 0 0
d2 dark red 139 0 0
d3 ruby 224 17 95
d4 deep sky blue 0 191 255

Alternatively, we can draw them as position vectors in three-dimensional
RBG space.

R

G

B

d1
d2

d3

d4

100
200100

200

100

200
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We compute the similarity between documents d1 (red) and d2 (dark red)
which intuitively must be very similar:

c(d1, d2) =
255 · 139 + 0 · 0 + 0 · 0√

2552 + 02 + 02 ·
√
1392 + 02 + 02

= 1.

Thus, according to the cosine similarity, the documents are exactly
the same, this is due to the fact that for cosine similarity only
the orientation is important (the fact, that both of them have values only
in the R channel), but not the magnitude of the vectors (the actual value
in the channel).

Next, consider the document d4 (deep sky blue), that must be strong
contrast to d1 (red), and compute the cosine similarity between them:

c(d1, d4) =
255 · 0 + 0 · 191 + 0 · 255

255 · 255
= 0.

Definitely, these documents are orthogonal which confirms the zero cosine
similarity.

Now, consider the document d3 (ruby), that has values in all channels,
and find which color it is more similar to:

c(d3, d4) =
224 · 0 + 17 · 191 + 95 · 255√

2242 + 172 + 952 ·
√
02 + 1912 + 2552

= 0.32,

and

c(d3, d1) =
224 · 255 + 17 · 0 + 95 · 0√
2242 + 172 + 952 · 255

= 0.92.

Thus, ruby is more similar to red than to deep sky blue, which is predictable
since it is a representation of the color of the cut and polished ruby gemstone
and is a shade of red.

Now we study a generic framework for efficient searching of near-
duplicate documents and then we go to its well-known implementations
regarding different definitions of similarity.
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6.1 Locality–Sensitive Hashing
Locality–Sensitive Hashing (LSH) was proposed by Piotr Indyk and
Rajeev Motwani in 1998 [In98] as a family of functions with the property
that similar input objects (from the domain of such functions) have
a higher probability of colliding in the range space than dissimilar ones.

Intuitively, the LSH is based on the simple idea that if two documents
of any nature are close together, then, after applying those hash functions,
the resulting hash values of these documents will remain close as well.

Locality-sensitive hash functions radically differ from conventional hash
functions because they have the goal of maximizing the probability of
a collision of similar items, while others try to minimize it. If we consider
two documents that are different just by a single byte and apply any
conventional hash function, for instance, MurmurHash3 or MD5, the hash
values will be completely different, because the goal of those hash functions
is to maintain a low probability of collision.

In order to construct locality-sensitive hash functions that preserve
similarity between documents, it is necessary to know how to measure
such similarity Sim(dA, dB) and distinguish similar objects using a certain
threshold θ.

The similarity measure should be chosen based on the particular practical
problem and different similarity measures induce different LSH function
families. However, not every similarity measure can be used to build
locality-sensitive hash functions, for instance, it has been proven that it is
impossible to construct them for such popular metrics as the Dice coefficient
and the Overlap coefficient.

The locality-sensitive hash function h is a function that maps every
document from the dataset, presuming similarity between documents in
the way that the probability of collision P is higher for similar documents:
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Pr (h(dA) = h(dB)) ≥ p1, if Sim(dA, dB) ≥ θ,

Pr (h(dA) = h(dB)) ≤ p2, if Sim(dA, dB) ≤ γθ,
(6.3)

where 0 < γ < 1 and 0 ≤ p2 < p1 ≤ 1.

The closer γ is to one, the better the function, the smaller error in
the similarity detection.

0 1
0

0.5

1

Sim

P

γθ θ

The Locality–Sensitive Hashing algorithm is a generic schema that
solves similarity problems with the help of locality-sensitive hash functions
that have been built for the chosen similarity measure.

Algorithm 6.1: Locality-sensitive bucketing
Input: Dataset D = {d1, d2, . . . dn}
Input: Family of LSH functions Hθ

Sim
Output: LSH hash table with documents grouped into buckets
T← ∅
h ∼ Hθ

Sim
for d ∈ D do

key ← h(d)

T(key)← T(key) ∪ {d}
return T

The simple idea is to map documents, using locality-sensitive hash
functions, to a limited number of buckets where similar documents
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appear in the same bucket with a higher probability. Such buckets can
be organized in a hash table, where each of them is indexed by its hash
value, and we can search for near documents via a hash table lookup.

However, as we see from (6.3), locality-sensitive hash functions are not
exact, which means false positive and false negative events can occur.

False positive events in this generic schema occur when two dissimilar
documents (whose similarity measure does not exceed the threshold θ)
appear in the same bucket. This type of error can be eliminated by
calculating the exact similarities for documents in the bucket and
comparing them to the given threshold.

More difficult are false negatives, when two similar documents end
up in different buckets. This cannot be avoided, but to minimize their
number we can build k different hash tables using randomly selected
distinct LSH functions from the same family that map to the same set of
bucket keys. In other words, we are increasing the number of estimators
for each bucket that can boost the accuracy.

Algorithm 6.2: Finding similar documents
Input: Document d , dataset D
Input: LSH hash table T with documents grouped into buckets
Input: Similarity threshold θ

Output: Similar documents
S← ∅
for key ∈ T do

if d /∈ T(key) then
continue

for c ∈ T(key) do
if Sim(d , c) ≥ θ then

S← S ∪ {c}

return S

Since locality-sensitive hash functions focus on preserving similarities,
we can expect that hash functions will map similar documents to
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the same bucket at least once. The resulting buckets can be built from
the documents that appear together at least once.

Of course, this technique increases the number of false positive errors,
but they can be eliminated with high confidence, as we described above.

Algorithm 6.3: Locality–Sensitive Hashing algorithm
Input: Document d
Input: LSH hash table T with documents grouped into buckets
Input: Similarity threshold θ

Output: Similar documents
S← ∅
for i ← 1 to k do

Ti ← Bucketing(D, Hθ
Sim)

T :=
k⋃

i=1
Ti

for key ∈ T do
if d /∈ T(key) then

continue
for c ∈ T(key) do

if Sim(d , c) ≥ θ then
S← S ∪ {c}

return S

The performance of the LSH algorithm depends on a proper choice
of θ and k . Bad choices for these parameters could result in too few
documents in the hash buckets leading to incorrect grouping, or too many
documents leading to an increased time for exact similarity computation
at the final step.

The Locality–Sensitive Hashing algorithm is a framework to solve
the Nearest neighbor problem, it has different implementations based on
the chosen similarity measure. For instance, for the regular Euclidian
distance it can be implemented as Random Projections, for Jaccard
similarity as minwise hashing (MinHash), and for cosine similarity as
SimHash that we study in detail in the next few sections.
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Nearest neighbors search

When we need to find the nearest neighbors for a given document from
the dataset distributed into buckets by the LSH algorithm, we apply
the same locality-sensitive hash functions to that document and get
the number of relevant mapped buckets. Documents in those buckets
are the candidates for the nearest neighbors, and we compute the exact
similarity between them and the given document, filtering by
the comparison to the similarity threshold θ.

In practical applications, there is a huge number of documents and
the problem of searching in a LSH hash table becomes challenging.
There are many approaches to handling it, but most of them introduce
additional measures that can help to store hash table keys in an optimized
order to improve the table lookup.

For instance, SortingKeys–LSH , invented by Yingfan Liu et al. in
2014 [Li14], improves the search by minimizing random I/O operations
when retrieving candidate documents. The authors defined a custom
distance measure for the hash table keys and proposed to sort those keys
in a special linear order associated with that distance. Following that
order, the candidate documents can be stored closely in the memory or
on the disk. When a new document arrives, we need to retrieve only
the documents for the close hashes according to the introduced distance
measure, and can find the candidates faster due to the reduction of
random I/O operations and higher search accuracy.

6.2 MinHash
The most well-known implementation of the Locality–Sensitive Hashing
schema for Jaccard similarity is minwise hashing, or simply MinHash,
proposed by Andrei Broder in 1997 [Br97], which includes a similarity-
preserving hash function family and an algorithm for near-duplicates
detection. Initially used in AltaVista search engine to detect duplicate
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web pages [Br00], today it is widely adopted in the search industry with
numerous applications including large-scale machine learning systems,
content matching for online advertising, and others.

The idea is to represent documents as short fixed-length signatures
while preserving the similarity and efficiently compare them.

MinHash signatures

For every document di in the form of a document bit-array, the MinHash
value is the position of the left-most set bit, in some permuted order of
the index (some order of the features). Thus, by each permutation π, we
can define a different MinHash value min(π(di)).

Example 6.9: MinHash value
Consider the document bit-array built for the document d3 (flu) in
Example 6.6.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 1 1 1 1 1 0 1 0 1 0 0 1 0 0 0 0 1 0

For instance, let’s take a random permutation of the index 0 . . . 18:

π = {16, 13, 12, 4, 17, 10, 1, 2, 9, 14, 8, 5, 15, 3, 6, 18, 11, 7, 0},

that corresponds to the following features order:

Index Symptom
16 sneezing
13 rash
12 nausea
4 feeling tired
17 sore throat
10 loss of taste
1 cough
2 diarrhea
9 loss of appetite
14 red eyes

Index Symptom
8 itchiness
5 fever
15 runny nose
3 difficulty sleeping
6 greyish-white spots
18 swollen glands
11 muscle aches
7 headache
0 aching body
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Thus, the document bit-array, indexed in the permuted order is

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0 0 1 1 1 0 1 1 1 0 0 1 0 1 0 0 0 1 1

After the bits are re-ordered according to the permutation π, the position
of the left-most 1-bit for d3 is 2, thus the MinHash value for the document
d3 equals 2:

min(π(d3)) = 2.

Instead of relying on a single MinHash value, variability can be
reduced by building the MinHash signature of length k for each
document di , which is a vector of k MinHash values computed using k

random permutations π1, π2, . . . , πk of the bit-array index. The length of
the signatures k is independent of the size n of the universal set Ω and
has to be chosen based on the allowed probability of error and given
similarity threshold.

The list of signatures that have been built for each document {di}ni=1

create a signature matrix MinHashSig k × n, that is the primary data
structure of the MinHash algorithm. The rows in the signature matrix
correspond to the permutations and the columns correspond to
the documents. It is important to highlight here, that to build
the signature matrix we must use the same collection of permutations
and apply them in the exact order.

The signature matrix MinHashSig is a dense matrix with integer values,
and the number of columns is equal to the number of documents in
the dataset. However, the number of rows in the signature matrix is much
less compared to the number of features in the universal set Ω, so this is
more storage-efficient than the binary representations of the documents.

Unfortunately, in practice, it is unfeasible to permute a large index
explicitly; even picking a random permutation of millions or billions
of integers is time-consuming, and the additional necessary sorting of
the index would take even more time.
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For example, even for a very tiny webspam database of 350000 documents
and 16 million features [Li12], the preprocessing cost for 500 independent
random permutations was about 6000 seconds. However, nowadays it is
not rare to find a universal set with upwards of 1 billion features. To
pick a random permutation of 1 billion elements is not only slow, but
just the representation of the index using 32-bit integers requires 8 GB of
memory to store just one permutation.

Additionally, if the dataset does not fit into the main memory and we need
to store it on disk, to access bits in a randomly permuted order will have
the same disk issues as those discussed in the context of Bloom filters.

However, we can simulate the effect of a random permutation by
a random hash function that maps indices 0 . . .m to exactly the same
range. Some collisions can occur, but they are not important as long as
k is big enough. For instance, we can use the family of universal hash
functions h{a,b}(x ), earlier defined by (1.2).

Example 6.10: Permutation simulation
Consider again the same bit-array that we built for document d3 (flu) in
Example 6.6.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 1 1 1 1 1 0 1 0 1 0 0 1 0 0 0 0 1 0

The universal set Ω for the documents has 19 features that are indexed
by integers in the range 0 . . . 18. To build signatures of length k = 4 for
the document d3, we select four random hash functions from the family (1.2)
that map every index position f ∈ 0 . . . 18 to position hi(f ) ∈ 0 . . . 18,
making the permutation of the index. In our case m = 19 and it is enough
to choose p = M5 = 25 – 1 = 31.

h1(x ) := ((22 · x + 5) mod 31) mod 19,

h2(x ) := ((30 · x + 2) mod 31) mod 19,

h3(x ) := ((21 · x + 23) mod 31) mod 19,

h4(x ) := ((15 · x + 6) mod 31) mod 19.
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The corresponding permutations produced by the hash functions are

h1 = {5, 8, 18, 9, 0, 3, 13, 4, 7, 17, 8, 11, 2, 12, 3, 6, 16, 7, 10},
h2 = {2, 1, 0, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 18, 17, 16, 15},
h3 = {4, 13, 3, 5, 14, 4, 6, 15, 5, 7, 16, 6, 8, 17, 7, 9, 18, 8, 10},
h4 = {6, 2, 5, 1, 4, 0, 3, 18, 2, 17, 1, 16, 0, 15, 11, 14, 10, 13, 9}.

Thus, instead of picking k random permutations, we simply compute
h1, h2, . . . , hk random hash functions on the rows and build the signature
matrix MinHashSig out of them. Note that we need only one pass
through the data to build the signature matrix in this way.

Algorithm 6.4: Building the MinHash signature matrix
Input: Binary document-vectors {dj }nj=1

Input: Family of universal hash functions {hi}ki=1

Input: Number m of unique features in the universal set
Output: MinHash signature matrix
MinHashSig←∞
for f ← 0 to m – 1 do

for i ← 1 to k do
h f
i ← hi(f )

for dj ∈ D do
if dj [f ] 6= 1 then

continue
for i ← 1 to k do

MinHashSig[i – 1, dj ]← min(MinHashSig[i – 1, dj ], h f
i )

return MinHashSig

Suppose we have a million documents and use signatures of length 200,
then using 32-bit integers to represent the values we need 800 bytes per
document, the entire dataset requires about 800 MB of memory storage.
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Example 6.11: MinHash signature matrix
Let’s build a MinHash signature matrix with signatures of length k = 4

using the permutations built in Example 6.10. Within the initial feature
order, the bit-arrays for all documents are below.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

d1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0
d2 0 1 0 0 0 1 0 1 0 0 1 1 0 0 0 1 1 1 0
d3 1 1 1 1 1 1 0 1 0 1 0 0 1 0 0 0 0 1 0
d4 0 1 0 0 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0
d5 0 1 1 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1

In the beginning, all values in the signature matrix are not set, effectively
we can fill them with ∞:

d1 d2 d3 d4 d5
h1 ∞ ∞ ∞ ∞ ∞
h2 ∞ ∞ ∞ ∞ ∞
h3 ∞ ∞ ∞ ∞ ∞
h4 ∞ ∞ ∞ ∞ ∞

The values of hash functions for the index value 1 are h1
1 = h1(1) = 5,

h1
2 = h2(1) = 2, h1

3 = h3(1) = 4, and h1
4 = h4(1) = 6. In the first

position, only document d3 has a 1-bit, thus we can update its signature
values for each row, and the new values would be the minimum between
the existing values of column d3 in the signature matrix and the values of
the corresponding hash functions. For instance,

MinHashSig[h1, d3] = min(MinHashSig[h1, d3], h1
1 ) = min(∞, 5) = 5.

Thus, the signature matrix MinHashSig after the first row has been
processed is

d1 d2 d3 d4 d5
h1 ∞ ∞ 5 ∞ ∞
h2 ∞ ∞ 2 ∞ ∞
h3 ∞ ∞ 4 ∞ ∞
h4 ∞ ∞ 6 ∞ ∞

For the index value 2 the hash values are h2
1 = h1(2) = 8, h2

2 = h2(2) = 1,
h2
3 = h3(2) = 13, and h2

4 = h4(2) = 2. In this case, all columns, except
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d1, can be updated since all those documents have the second bit set.
The columns d2, d4, and d5 simply get the corresponding hash values
because there were no prior values for them (∞ in the signature matrix).
However, for d3 we need to compare the existing values with the current
values of the hash functions to choose the smallest for each row, for instance,
MinHashSig[h2, d3] = min(MinHashSig[h2, d3], h2

2 ) = min(2, 1) = 1.

The matrix has the following form:

d1 d2 d3 d4 d5
h1 ∞ 8 5 8 8

h2 ∞ 1 1 1 1

h3 ∞ 13 4 13 13

h4 ∞ 2 2 2 2

Skipping ahead, this is the signature matrix after processing 14 index
positions.

d1 d2 d3 d4 d5
h1 7 3 0 3 3

h2 6 1 0 0 0

h3 5 4 3 4 3

h4 2 0 0 0 0

Next, we continue on to process index value 15. At this position all
documents, except d3, have corresponding bits set. The values of the hash
functions are h15

1 = h1(15) = 6, h15
2 = h2(15) = 18, h15

3 = h3(15) = 9, and
h15
4 = h4(15) = 14. For instance,

MinHashSig[h1, d1] = min(MinHashSig[h1, d1], h15
1 ) = min(7, 6) = 6,

which means we need to change the corresponding value in the signature
matrix.

d1 d2 d3 d4 d5
h1 6 3 0 3 3

h2 6 1 0 0 0

h3 5 4 3 4 3

h4 2 0 0 0 0

If we process further index values, we can see that no actual updates are
possible, meaning that the signature matrix above is the final one.
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In fact, every permutation defines a MinHash function that is applied
to the documents. It was proven that a family of such functions is an LSH
family and the probability of collision over all permutations is equal to
the Jaccard similarity:

Pr
(

min(π(dA)) = min(π(dB))
)
= J(dA, dB). (6.4)

Thus, to estimate the Jaccard similarity between two documents, it is
enough to compute the fraction of the MinHash signatures for which two
corresponding columns have the same value (collide) in the signature
matrix MinHashSig. While we are looking for hash collisions, it is
possible that no identical values in either row are found, then we can
assume that the documents are dissimilar.

Example 6.12: Similarity between signatures
Consider the signature matrix MinHashSig, that we built in Example 6.11.

d1 d2 d3 d4 d5
h1 6 3 0 3 3

h2 6 1 0 0 0

h3 5 4 3 4 3

h4 2 0 0 0 0

For instance, columns d2 and d3 share one value out of four signatures and
the similarity between them is

SimMinHashSig(d2, d3) =
1

4
= 0.25.

From Example 6.5 we know that the exact similarity is 0.2857, which is
pretty close.

Columns d4 and d5 have three out of four values in common, therefore
the similarity is

SimMinHashSig(d4, d5) =
3

4
= 0.75.

This notably exceeds the exact Jaccard similarity value 0.44, but still
indicates the high similarity between documents.
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In contrast, columns d1 and d3 share no common values, so the similarity
is 0 which is the exact value as well.

Remember, that the value we compute from the signature matrix is
an approximation for the true value of the Jaccard similarity and depends
on the signature length. The current length k = 4 is used for demonstration
purposes only, and, in fact, is too small to build a close estimation with
low variance according to the law of large numbers.

Properties

There is a clear trade-off between the similarity estimation error and
storage. Indeed, the more MinHash functions hi we use, the longer
signatures we build, and correspondingly the lower expected error δ in
the similarity estimation. However, it increases the storage requirements
for the signature matrix MinHashSig and the number of required
permutations which can significantly increase the computational efforts.

The practical guideline on choosing the signature length k based on
the expected standard error δ is

k =

⌊√
θ · (1 – θ)

δ
+ 1

⌋
.

To store the MinHash signature of a single document using p-bit
MinHash values, we need p · k bits per signature (for instance, p = 32

allows to enumerate up to 232 – 1 features) and the memory requirements
for the whole MinHash signature matrix MinHashSig is p · k · n bits.

When the number of documents n is high, storage becomes a problem
for the algorithm. As a work-around to this problem, Ping Li and Arnd
Christian König in 2010 [Li10] proposed a simple modification of minwise
hashing, called b-bit minwise hashing. It provides a simple solution by
storing only the lowest b bits of each p-bit MinHash value, naturally
reducing the required memory for the signature matrix.

Intuitively, using fewer bits per MinHash value increases the similarity
estimation variance, compared with the original minwise hashing for
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the same signature length k . Thus, it is necessary to increase k to
maintain the same accuracy. The theoretical results [Li11] demonstrate
that the signature length k should be adjusted only by a factor of about
θ+1
θ . For most popular cases, when the resemblance is not too small (e.g.,

θ ≥ 0.5 as a common threshold), this is just two to three times bigger.

If the number of documents is large, which is the reason for using such
improvements, the theoretical results suggest using b = 1 if the similarity
threshold is θ ≥ 0.4, and b ≥ 2 otherwise. Thus, even with the increased
length of signatures, the total signature matrix size becomes smaller with
b-bit minwise hashing.

Example 6.13: b-bit minwise hashing
As an example, for the similarity threshold θ = 0.5, we can use b = 1, so
the estimation variance will increase at most by the factor of three and, in
order not to lose accuracy, it is necessary to adjust the signature length
respectively. If each MinHash value has been stored initially using 32 bits,
the improvement by using one-bit values is 32

3 ≈ 10.67.

More specifically, replacing the classical MinHash algorithm that uses
32-bit MinHash values and signatures of length k = 200 by the 1-bit
minwise hashing, we need longer signatures of length k = 3 · 200 = 600,
but greatly decrease the memory requirements from 800 bytes to 75 bytes
per document.

Perhaps the most important advantage of b-bit minwise hashing are
simplicity and minimal modifications to the original minwise hashing
algorithm, therefore, it could be used to optimize already running systems.

Nearest neighbors search

While MinHash signatures let us represent documents in a compressed
form using a space-efficient MinHashSig data structure that preserves
the similarity information, there is still a quadratic number of pairs,
which, as we already estimated, are unfeasible to process quickly for huge
datasets of millions of documents. For instance, if a dataset consists of
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one million documents, the number of pairs is 5 · 1011 and, doing as high
as 107 comparisons per second, it requires about 14 hours to finish.

According to the generic LSH schema, to find the nearest neighbors
for a given document, we need to take a number of independent locality-
sensitive hash functions and apply them to the dataset in order to
compute a key for each document, that is used to group them.

However, if documents are already represented as a MinHash signature
matrix, it is enough to split all rows into b bands, select only one
conventional hash function g (e.g., MurmurHash3), and apply it to
the portion of each column within the band. Every band corresponds
to a subset of features and we hash the documents only looking at that
subset. Thus, two documents end up in the same bucket (have equal hash
values) only if they are exact in that band or when a collision happens,
that is rare for conventional hash functions and will be eliminated at
the last step. In other words, two documents will appear in the same
bucket if there is at least one band where their signature values are
identical.

By choosing the number of bands b appropriately, we eliminate many
document pairs with similarities below the threshold θ. Intuitively,
the more similar the signatures are, the more likely they will agree on all
rows in some band and become a candidate pair.

Example 6.14: MinHash LSH schema
Let’s divide the signature matrix built in Example 6.11 into b = 2 bands
with two rows each:

d1 d2 d3 d4 d5

ba
nd

1 h1 6 3 0 3 3
h2 6 1 0 0 0

ba
nd

2 h3 5 4 3 4 3
h4 2 0 0 0 0

The last two columns in band 1 are identical, so regardless of the particular
hash function, the documents d4 and d5 become a candidate pair. Similarly,
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documents d2 and d4, d3 and d5 that have identical values in band 2 also
become candidate pairs.

Considering the similarity threshold θ = 0.3, we eliminate false positive
candidate pairs by computing the exact similarities between documents in
each pair and compare it with the threshold:

J(d4, d5) = 0.44 > θ,

J(d2, d4) = 0.27 < θ,

J(d3, d5) = 0.307 > θ.

Only the pairs d4 (measles) and d5 (roseola), d2 (common cold) and d4
(roseola) can be returned as near-duplicates for the given threshold, which
was our expectation as well.

Note that we choose the similarity threshold to eliminate duplicates quite
randomly; however, there is a relation between the number of bands,
the length of the signature, and the threshold.

To successfully apply a banding strategy, we need to have
a recommendation for the number of bands, this is dependent on
the similarity threshold θ we want to use to distinguish similar
documents. Intuitively, if we have too many bands it is more likely that,
for at least one small portion, many documents will become candidate
pairs (an increased number of false positive errors), while for a few
bands we need to compare long subsequences of signatures that are
likely to differ in a few values even for documents that are very alike
and we can miss many similar documents.

As soon as all candidate pairs are built, we execute the last step of
the LSH schema and compute the exact similarity between the documents
to eliminate false positive results.

The LSH approach is very sensitive to the similarity distribution between
documents in the dataset. If the dataset is skewed and most documents are
similar to each other, we may find that all documents fall in one bucket,
while other buckets remain empty.
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Suppose, that a particular pair of documents have similarity s, then
the probability P that the signatures agree in all rows of at least one
band is

P = 1 – (1 – s
k
b )b , (6.5)

where b is the number of bands, k is the length of MinHash signatures;
so the k

b is the number of rows in each band.

The graph of the probability that documents with similarity s become
candidate pairs according to (6.5) is an S-curve, meaning its values are
very low until it reaches a step, then its values quickly increase and stay
very high.

0 1
0

0.5

1

J

P

θ

According to formula (6.3), we want to find the parameters when that
step occurs close to the threshold θ, giving conditions for b and k :

θ ≈
(
1

b

) b
k

.

For example, the graph above is built for signatures of length k = 50

with b = 10 bands, five rows each. The approximate step value is 0.63
which is the similarity threshold at which documents are considered
similar.

Generally, for the given signature length k and similarity threshold θ,
the number of bands can be estimated as

b =
⌊
eW(–k ·ln θ)

⌋
, (6.6)
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where W(·) is the Lambert W function, which cannot be expressed in
terms of elementary functions, but can be approximately computed as
an iterative process4:

Wnext =
1

Wprev + 1
· (W2

prev – k · ln θ · e–Wprev).

Example 6.15: Similarity threshold estimation
In the previous example, we used b = 2 bands with signatures of length
k = 4. This setup corresponds to threshold θ = 0.707, meaning that
documents with similarity of at least 70% are likely to become a candidate
pair after applying the bucketing from Example 6.14:

θ ≈
(
1

2

) 2
4

= 0.707.

On the other hand, if we want to estimate the required number of buckets
for k = 4 and the similarity threshold of 0.707 using (6.6), we need to
compute the Lambert function W(–4 · ln (0.707)):

Iteration W b

1 1.3868 4
2 0.9510 2
3 0.6948 2
4 0.6933 2
5 0.6933 2

As you can see, the iterative process converges quite quickly and
the recommended number of bands is 2.

However, since we are using very short signature lengths k = 4,
the standard error δ = 0.11 according to formula (6.2), and similarity for
the true candidates can be approximated much lower than its true level,
hence they can end up in different buckets. If we want to be more precise
and maintain a standard error δ about 0.05 with the similarity threshold
θ = 0.7, we need to use signatures of length:

k =

⌊√
0.7 · 0.3)
0.05

+ 1

⌋
= 10.

4As an initial value we can use Wprev = 0, meaning only one band
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The MinHash algorithm is very efficient for huge datasets and can
be easily applied to the MapReduce computation model that makes
it popular in Big Data applications. Its various implementations are
available in Apache Spark, Apache Mahout, Apache Lucene and used
in search engines and databases such as Elasticsearch, Apache Solr,
CrateDB, and others. Google was reportedly using it for Google News
personalization.

6.3 SimHash
Another popular hashing algorithm is SimHash, a sign normal random
projection algorithm, that is based on the simhash function developed by
Moses S. Charikar in 2002 [Ch02] and applied by Gurmeet Singh Manku,
Arvind Jain, and Anish Das Sarma in 2007 [Ma07] to solve the problem
of detection of near-duplicate web pages in Google.

From the mathematical point of view, the SimHash uses the concept
of sign random projections. For a k -dimensional real-valued document-
vector d it defines a similarity-preserving SimHash function family {hsimv }
that for the random vector v with components generated from i.i.d normal
(i.e., vi ∝ N(0, 1)), produces a value as

hsimv (d) := sign(v · d) =

1, v · d ≥ 0,

0, v · d < 0.
(6.7)

Thus, the SimHash value is the sign of the random projection and since
the hyperplane with a normal vector v separates the multidimensional
space into two half-spaces, it encodes just the information on the side
(positive or negative) where the document is located.

Example 6.16: SimHash value
Consider the document-vector from Example 6.7 built for d3 (flu):

16 2 9 16 16 2 0 9 0 9 0 0 16 0 0 0 0 9 0
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To compute its SimHash value, we need to build a vector v of 19 components
which defines a hyperplane that separates the 19-dimensional space of
documents. To build such a vector, we generate 19 random values from
the normal distribution N(0, 1) and use them as components of the vector
(since scaling is not important in our case we scale the values by 10):

5 -1 6 15 -2 -2 16 8 -5 5 -5 -5 2 -19 -17 -6 -10 3 -9

The dot product of these two vectors is the sum of pairwise products of
the corresponding components of both vectors:

v · d = 5.12.

Thus, the sign of the result is positive, and the SimHash value is

hsimv (d) = sign(v · d) = 1.

Notice, if two documents have an angle α = π in between, they will
certainly appear in different half-spaces, and the reverse — documents
with a perfect alignment that have α = 0, definitely lie in the same
half-space. Since the magnitude of the document-vectors doesn’t play
any role in formula (6.7), the probability that two documents dA and dB
have the same SimHash value is equal to the probability of appearing on
the same side of the hyperplane, that can be formulated using the angle
between the documents α = α(dA, dB) as

Pr
(
hsim(dA) = hsim(dB)

)
= 1 –

α

π
≈ cos α + 1

2
, (6.8)

which defines the probability of hash collision for the SimHash function.

Such collision probability is closely related to the function cos(α),
therefore if documents are close to each other in terms of the cosine
similarity (6.2), they will almost certainly collide, and vice versa. In this
sense, a family of hash functions preserves the cosine similarity between
documents and is the locality-sensitive function family for the cosine
similarity.
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SimHash signatures

The variability of using a single SimHash function, with just a single bit,
is very high and to reduce it we can use p hash functions with different
random vectors to produce a p-bit vector that is called a SimHash
signature. Since every hash function preserves the similarity between
documents, to estimate the similarity between signatures, we need to
count the number of same-valued corresponding bits in them.

Thus, instead of working directly with long and real-valued
document-vectors, the SimHash algorithm maintains a SimHashTable
data structure that for every document stores its short fixed-length
binary SimHash signature, which is conceptually very close to
the signatures that we built in the MinHash algorithm.

Every document in the SimHashTable is represented as a p-bit binary
string, which requires significantly less storage than high dimensional real-
valued document-vectors, therefore it is a storage-efficient representation
of the dataset.

Consider documents represented by real-valued vectors from the weights
(w0,w1, . . . ,wk–1) of the document features (s0, s1, . . . sk–1), or, practically
speaking, we can think about documents as vectors of tuples {(sj ,wj )}k–1j=0.

To build a p-bit SimHash signature for a document d , first, we hash
each feature sj using any conventional hash function h (e.g.,
MurmurHash3, SHA–1) into a p-bit hash value hj = h(sj ) that is going
to be unique to the particular feature. After that, we start with
an intermediate p-dimensional zero vector v and, iterating over hash
values for all the features, we increase the i-th component vi by
the weight wj if i-th bit of the hash value hj is one, and decrease
otherwise. At the end, when all features have been processed, we
determine the signs of components of the vector v and set
the corresponding bits of the final p-bit SimHash signature f to one for
positive, and to zero for negative components.
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Algorithm 6.5: Building the SimHash signature table
Input: Document-vectors d = {(sj ,wj )}k–1j=0

Input: Conventional hash function h

Output: SimHash signature table
v := {vi}p–1i=0, vi ← 0

for j ← 0 to k – 1 do
hj ← binary(h(sj ))
for i ← 0 to p – 1 do

/* hj [i] ∈ {0, 1}, we either increment or decrement vi */

vi ← vi + (2 · hj [i ] – 1) · wj

return sign(v)

Example 6.17: SimHash signature table
Consider the dataset from Example 6.7. For simplicity, we build 6-bit
SimHash signatures and to compute hashes from all the features of
the universal set Ω, we use a randomly chosen 32-bit hash function
MurmurHash3:

h(x ) := MurmurHash3(x ) mod 26.

Thus, the hashes of the features are

Feature Symptom h(s) binary(h(s))
s0 aching body 56 000111
s1 cough 9 100100
s2 diarrhea 14 011100
s3 difficulty sleeping 41 100101
s4 feeling tired 17 100010
s5 fever 43 110101
s6 greyish-white spots 7 111000
s7 headache 5 101000
s8 itchiness 26 010110
s9 loss of appetite 37 101001
s10 loss of taste 24 000110
s11 muscle aches 13 101100
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Feature Symptom h(s) binary(h(s))
s12 nausea 6 011000
s13 rash 38 011001
s14 red eyes 62 011111
s15 runny nose 18 010010
s16 sneezing 27 110110
s17 sore throat 46 011101
s18 swollen glands 4 001000

Similar to that example, we can build a real-valued representation of all
documents in the dataset using feature weights:

d1 0 0 0 0 0 0 0 0 54 0 0 0 0 0 0 7 31 0 0
d2 0 3 0 0 0 3 0 11 0 0 20 20 0 0 0 3 11 11 0
d3 16 2 9 16 16 2 0 9 0 9 0 0 16 0 0 0 0 9 0
d4 0 4 0 0 0 4 27 0 0 0 0 0 0 15 27 4 0 0 0
d5 0 3 13 0 0 3 0 0 0 13 0 0 0 13 0 3 0 0 23

Let’s build a signature for document d3 (flu). We start iterating over all
features, using their binary representations, and for each feature, we build
a value based on the document weights.

The intermediate vector v is a vector of 6 components that are all equal
to zero at the beginning:

0 0 0 0 0 0

We start computing components of the vector v by iterating over all
features. For instance, the binary representation of the feature s0 has zeros
in positions 0, 1, and 2, thus we decrease the corresponding components
of vector v by the feature weight w3

0 = 16 that can be found in the first
column for the document d3 in the table above. For positions 3, 4, and
5, where the feature’s hash value has ones, we add the feature weights
instead:

-16 -16 -16 16 16 16

In the same way, we process the feature s1, that has ones in the positions
0 and 3, with the corresponding weight w3

1 = 2:
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-14 -18 -18 18 14 14

Continuing with other features, we get the final form of the vector v .

4 -32 0 4 -40 0

The actual values in the vector v are not critical and to build a signature
for the document we need only the signs of the components. If a component
of vector v is non-negative, the corresponding component of the signature
is set to one; otherwise, it is set to zero. For document d3 we have negative
values in positions 1 and 4 only, thus the signature f 3 is

0 1 2 3 4 5

1 0 1 1 0 1

Following the same format, we process all remaining documents and
the final SimHashTable is

0 1 2 3 4 5

d1 0 1 0 1 1 0
d2 1 0 1 1 0 0
d3 1 0 1 1 0 1
d4 0 1 1 0 0 1
d5 0 0 1 0 0 0

The probability that two signatures collide on some bit is equal to
the collision probability given by formula (6.8). Therefore, two documents
are considered similar if their signatures differ in at most p bit-positions
or, in other words, the Hamming distance between their signatures is
at most η, where η is a design parameter that is closely related to
the similarity threshold θ.

The Hamming distance is widely used in information theory and can be
seen as a measure of the minimum number of errors that could transform
one signature into another. For binary strings, the Hamming distance is
equal to the number of ones after applying the bitwise XOR operation.
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Example 6.18: Hamming distance between signatures
Consider the signatures that we built in Example 6.17 and compare
the documents d4 (measles) and d5 (roseola) using the Hamming distance:

0 1 2 3 4 5

d4 0 1 1 0 0 1
d5 0 0 1 0 0 0

The corresponding bits in these two signatures differ in positions 1 and 5.
Thus, the Hamming distance between them is equal to 2, meaning these
documents are quite similar to each other, which is not surprising. For
comparison, the exact cosine similarity between these documents is

c(d2, d4) = cos(α) = 0.17,

while for the current dataset the similarity threshold θ = 0.15 can be
considered reasonable.

Properties

While the SimHash function generates a single bit output, the MinHash
function generates an integer, however, SimHash could be compared
with the 1-bit minwise hashing schema that also uses a single bit output.
However, it seems that the MinHash approach outperforms SimHash for
high similarity thresholds [Li10].

In fact, SimHash is a dimensionality reduction technique that maps
high-dimensional vectors to p-bit signatures, where p is small (usually,
32 or 64). As was shown experimentally by Gurmeet Singh Manku,
Arvind Jain, and Anish Das Sarma, 64-bit signatures are enough to
handle 8 billion (≈ 234) documents.

Nearest neighbors search

The SimHash algorithm lets us represent documents as a space-efficient
SimHashTable of p-bit values that preserve the similarity information,
but there is still a quadratic number of pairs that has to be evaluated to
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compute the Hamming distance and compare it with the threshold η, for
huge datasets of millions of documents that is unfeasible to process in
a timely manner.

Additionally, to identify the nearest neighbors for a document d with
signature f d , we need to find all signatures from the SimHashTable that
differ from f d in at most η bit-positions, which is known as the Hamming
distance range query problem5 and has remained difficult to solve on
a large scale.

For similar documents, meaning choosing a small Hamming distance
threshold η, we can use the Block-Permuted Hamming Search approach
and split each p-bit SimHash signature into M blocks of about b =

⌈ p
M

⌉
consecutive bits each.

Figure 6.1: p-bit SimHash signature split into M blocks

block 1 block 2 block 3 . . . block M

b bits

m blocks︸ ︷︷ ︸
Instead of comparing the whole signature, we can randomly choose m

out of M blocks and perform search queries using the exact block-by-block
comparison to the top bits of the given signature, where parameter m is
a design parameter related to the Hamming distance threshold η.

Every group of selected m blocks defines a new shorter signature value,
that is about m · b bits and, since the order of the signatures is not
important, exactly N =

(M
m

)
transformed m-block signatures can be built

for each original p-bit SimHash signature.

5M. Minsky and S. Papert. Perceptrons. MIT Press, 1969
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Example 6.19: m-blocks SimHash signatures
Consider a 64-bit SimHash signature and define the similarity threshold
in terms of the Hamming distance at η = 2.

We can split the signature into M = 5 blocks, each block receives about
b =

⌈
64
5

⌉
= 13 consecutive bits, for instance, 13, 13, 13, 13, and 12 bits

per block. If we proceed with a block-by-block comparison with m = 3

blocks, the total number of ways to choose them is N =
(
5
3

)
= 10, and

the resulting 3-block signatures contain either 39 bits (or 38, for the last
block of 12 bits).

Thus, for every p-bit SimHash signature in the SimHashTable we can
produce N =

(M
m

)
m-block signatures and store them in sorted buckets

{Bi}Ni=1. Each bucket Bi will be associated with the particular selection
of m blocks πi and the exact number of bits in the stored signatures bi .

Algorithm 6.6: Bucketing m-block signatures
Input: SimHash signature table
Input: Number N of m-block signatures
Output: Buckets with m-block signatures
for i ← 1 to N do

for fj ∈ SimHashTable do
f̂j ← πi(fj )
Bi ← Bi ∪ {f̂j }

Bi ← sort(Bi)

return {B1, B2, . . . , BN}

When we need to find near-neighbors whose p-bit SimHash signatures
differ in at most η bit-positions from the signature f d of the given
document d , we probe each of N buckets, that can be done in parallel.
For every bucket Bi we find all m-block signatures whose bi bits match
the bi bits of πi(f d ). If the total amount of signatures is 2q , then on
average 2q–b such matches are expected in every bucket.

After that step, to eliminate possible false positive candidates, we
compute the exact Hamming distance for each signature and check that
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it doesn’t exceed the η.

Instead of building new shorter signatures and keeping the SimHashTable
for the exact Hamming distance computation in the last step, we can
permute the original SimHash signatures in a way that selects m blocks
as the upper-most bits in the signature and keeps them in an untouched
order. Hence, if signatures are permuted in the same way, the Hamming
distance will not change, and we are still able to eliminate false positive
candidates by exact distance calculation.

Algorithm 6.7: Searching for nearest neighbors
Input: Document d = (sd ,wd )

Input: Hamming distance threshold η
Output: List of nearest neighbors
fd ← Signature(d , h)

neighbors ← ∅
for i ← 1 to N do

candidates ← ∅
for f̂j ∈ Bi do

if fd [: bi ] = f̂j then
candidates ← candidates ∪ {j}

for ĵ ∈ candidates do
if HammingDistance(fj , fd ) ≤ η then

neighbors ← neighbors ∪ {dj }

return neighbors

Using the binary search to find matches in each bucket, an individual
probe could be done in O(bi) steps, but the number of bits in each block
bi should be reasonably large to avoid checking too many signatures.

For every p-bit SimHash signature, the total number of buckets for
the given Hamming distance threshold η has to be selected as M > η+1,
then for a block-by-block comparison we can use m ∈ [1,M – η] blocks.

However, there is a clear trade-off between the number of blocks m and
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the number of buckets N for the fixed choice of the SimHash signature
length p and the Hamming distance threshold η. If we use more blocks,
therefore longer signatures, it reduces the query time because there is
fewer possible matches but increases the required storage. On the other
hand, with shorter signatures we can reduce the storage, but it requires
the checking of more matches, which increases the query time.

To optimize storage usage, it is possible [Ma07] to compress fingerprints
which can decrease the data structure size by approximately half.
The compression is based on the fact that fingerprints for similar
documents share some amount of bits, so we can build shorter blocks
where fingerprints are encoded by storing Huffman codes for the
most-significant 1-bit positions of their XOR differences.

SimHash appeared to be popular for approximate nearest neighbors
searches, but it could be due to the popularity of the cosine similarity,
for which SimHash can be directly applied. Same as with MinHash,
the SimHash algorithm suites for the MapReduce model and is widely
available, but it is mostly in independent libraries. Google was reportedly
using it for near-duplicate detection in web crawling.

Conclusion
In this chapter we considered different approaches to defining similarity
between documents of any nature. We have learned a very powerful
framework that addresses the near-duplicate detection problem which is
extremely important for many real-world applications. As to particular
implementation we considered two very efficient algorithms that are
widely used in the industry.

If you are interested in more information about the material covered
here or want to read the original papers, please take a look at the list of
references that follows this chapter.
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This chapter ends our narration about probabilistic data structures
and algorithms. While it is impossible to cover all the existing amazing
solutions, here we wanted to highlight their common ideas and important
areas of application, including efficient membership querying, counting,
stream mining, and similarity estimation.

Hopefully you found this book useful and learned out of it.

Thank you very much.
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Heavy hitters problem, 95, 96, 100, 112,

114, 119
HyperLogLog, 77, 81–85, 89
HyperLogLog++, 77, 85

Inverse quantile query, 130, 136, 146, 157

Linear Counting, 28, 63–68, 82, 84, 87
fill-up probability, 67
load factor, 67

Linear probing, 11–14, 37, 38, 41

Locality–Sensitive Hashing, 175–179,
186, 189, 194

hash function, 175–178
SortingKeys–LSH, 179

LogLog, 77, 79–81, 84
LSH, see Locality–Sensitive Hashing

Majority algorithm, 97–100, 102
Majority problem, 94, 96, 97
Max–Change problem, 96
MD5, see Message–Digest Algorithm
Median query, see Quantile query
membership problem, 21–22
Merkle–Damgård schema, 5, see also

Message–Digest Algorithm
MD–compliant padding, 5

Message–Digest Algorithm, 5–6, 83, 175
MinHash, 178–193

b-bit hashing, 187, 199
hash function, 199
signature, 181, 195
signature matrix, 181
value, 180

minwise hashing, see MinHash
Misra–Gries algorithm, see Frequent

algorithm
MLR, see Random sampling algorithm
MurmurHash, 8–10, 83, 175, 189
MurmurHash3, see MurmurHash

nearest neighbor, 164
Nearest neighbor problem, 164, 179, 188,

199

overflow probability, 34

PCSA, see Probabilistic Counting with
stochastic averaging

Probabilistic Counting, 68–78, 80
. . . with stochastic averaging, 74, 78
FM Sketch, 69
rank, 69

probabilistic data structure, viii
probabilistically correct deletion, 36, 55

q-digest, 138–148, 159
digest property, 140

Quantile digest, see q-digest
Quantile query, 130, 137, 145, 154
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quotient, 36
Quotient filter, 36–49

RadioGatún, 6, 7
Random algoritm, see Random sampling

algorithm
Random sampling algorithm, 131–138
Range query, 130, 147, 158
rank, 127, 128, 131

median, 97, 108, 128
percentile, 128
quantile, 127, 130, 131

ε–approximate, 128, 138, 145

sampling
random, 131
reservoir, 131

Secure Hash Algorithms, 5–7, 83
SHA–0, see Secure Hash Algorithms
SHA–1, see Secure Hash Algorithms
SHA–2, see Secure Hash Algorithms
SHA–256, see Secure Hash Algorithms
shingle, 166

w -shingle, 166
sign normal random projection

algorithm, see SimHash
SimHash, 178, 193–203

hash function, 193
signature, 195
value, 193

similarity, 163, 198
cosine similarity, 170, 172, 178, 194
Jaccard similarity, 167, 169, 178,

179, 186
stochastic averaging, 73

t-digest, 148–160
. . . fully-merged, 149, 150
digest property, 149, 150
k -size, 149
scale function, 149–151, 156

TF–IDF model, 170

universal hash function, 2, 182
universal set, see universe
universe, 2, 169
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